Istituto per i Polimeri, Compositi e Biomateriali (IPCB)


Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration

Intervertebral disc (IVD) degeneration is one of the main causes of low back pain. Current surgical treatments are complex and generally do not fully restore spine mobility. Development of injectable extracellular matrix-based hydrogels offers an opportunity for minimally invasive treatment of IVD degeneration. Here we analyze a specific formulation of collagen-low molecular weight hyaluronic acid (LMW HA) semi-interpenetrating network (semi-IPN) loaded with gelatin microspheres as a potential ...

A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation

PMM2-CDG (PMM2 gene mutations) is the most common congenital disorder of N-glycosylation. We conducted a nationwide survey to characterize the frequency, clinical features, glycosylation and genetic correlates in Italian patients with PMM2-CDG. Clinical information was obtained through a questionnaire filled in by the referral physicians including demographics, neurological and systemic features, neuroimaging data and genotype. Glycosylation analyses of serum transferrin were complemented by ...

Plasmonic octagonal quasicrystals for surface enhanced Raman sensing

Surface enhanced Raman scattering (SERS) on eight-fold quasicrystal arrays with precisely controlled size and spacing fabricated via electron beam lithography was investigated. This SERS substrate shows high efficiency at 785 nm excitation in the detection of p-mercaptoaniline (pMA), and a SERS enhancement factor (EF ) of 107 is achieved. SERS behavior of the realized engineered SERS substrate indicates that the present engineered metamaterial may be used as an ultrasensitive Raman probe and ...

Fabrication and characterization of metal-core carbon-shell nanoparticles filling an aeronautical composite matrix

Metal nanoparticles (NPs) were prepared from acrylamide complex of iron and nickel nitrates by controlled thermolysis at constant temperature in a self-generated atmosphere and used to fabricate epoxy resin nanocomposites. X-ray diffraction performed on the nanoparticles revealed a metal core/polymeric shell structure for the nanoparticles thermolysed at higher temperature as also confirmed by cross analysis of thermo-gravimetrical and vibrating magnetometer data. Optical microscopy was used to ...