PRIN 2017 - 20179337R7 - Dr.Giambastiani (DCM.AD005.025)
Thematic area
Chemical sciences and materials technology
Project area
Chimica e materiali per le energie rinnovabili (DCM.AD005)Structure responsible for the research project
Institute of chemistry of organometallic compounds (ICCOM)
Project manager
GIULIANO GIAMBASTIANI
Phone number: 0555225288
Email: giuliano.giambastiani@iccom.cnr.it
Abstract
Main International Agencies have recently claimed that renewable energy will be soon the most economic source of energy. Therefore, it is mandatory and urgent to develop new chemical technologies fostering this transition as witnessed by the growing interest of EU on the topic.
The conversion of small molecules (H2O, CO2, N2, O2) by photo- and/or electro-catalysis is an enabling technology in this direction and matches with EU priorities. The energy efficiency and selectivity depends largely on the creation of multielectron (low overpotential) transfer paths. However, studies on the knowledge-based design of materials for multielectron transfer are lacking.
MULTI-e project aims at addressing this challenging research area by combining multidisciplinary expertise: theoretical modeling, advanced characterization techniques, material science, photo- and electro-catalysis. 2D-type materials and their derivatives will be investigated for the selective photo- and/or electro-conversion of small molecules through multielectron transfer processes, the latter induced by novel mechanisms for the generation of charged excitons or other active species stabilized on the surface enough time to al
Goals
L'attività progettuale prevede come obiettivo principale lo sviluppo di catalizzatori eterogenei per applicazione nell'ambito energetico em segnatamente per la attivazione e conversione di piccole molecole (sia dal punto di vista della catalisi termica classica sia da quello della elettrocatalisi). I principali target di attivazione riguardano molecole quali O2, CO2 e N2.
Start date of activity
22/02/2019
Keywords
heterogeneous catalysis, sustainable chemistry, materials chemistry
Last update: 08/12/2023