Istituto di Scienze Polari (ISP)

Research activities

ISP's research activities take place, mainly though not exclusively, in Antarctica and the Arctic, where snow and ice are the dominant aspect of the landscape. These regions, more than others, are affected by climate change. Understanding the history of our planet, and how human activities, from the origins of the first civilizations to the present day, have influenced ecosystems, by interacting and modifying the delicate balances that govern the earth's climate system, is the challenge we face. The history enclosed and preserved in ice and, going even further back in time, in sediments, even in times before the appearance of man, is an important topic addressed by ISP researchers.


Mute witnesses of these changes are the polar biological communities: on them the anthropic impact can be devastating. It is essential to improve our knowledge of their current state, to understand their evolution, with a view to future research missions in space. In fact, some polar habitats represent important terrestrial laboratories for astrobiological studies.
All these activities, and many others, are deepened in the thematic areas that characterize the institute.



Thematic Areas


Thematic Area 1 - CONTAMINANTS and ECOSYSTEMS

The research activities carried out within the Thematic Area Contaminants and Ecosystems are aimed at studying the sources, transport dynamics, diffusion and fate of regulated and emerging contaminants, including micro/nano-plastics and trace elements, in polar ecosystems. These ecosystems are particularly sensitive to external perturbations, such as human activities and climate change. In fact, the Polar regions constitute the final sink for many pollutants emitted at mid-latitudes and transported on a regional and global scale (long-range) through atmospheric and oceanic circulation and migratory animals: all drivers influenced by the ongoing climate change. Global warming has also favored a growing anthropic impact in the polar areas due to the development of tourist activities, mining and maritime traffic with a consequent increase in the local input of contamination, including noise pollution. The direct and indirect effects of these changes combined with the different dynamics of contamination are causing the fragmentation and destruction of habitats, the alteration of aquatic and terrestrial food webs, as well as loss of diversity with repercussions also on Arctic populations.


In this context, the multidisciplinary skills that converge in this Thematic Area constitutes an indispensable requirement for understanding the effects due to anthropic impact and climate change in polar ecosystems by following a One Health approach and aiming at a sustainable management of these vulnerable environments in the near future.


The main lines of investigation refer to the following areas: development and optimization of highly sensitive analytical methods for the detection of pollutants in the abiotic and biotic environmental compartments, understanding of transport and distribution processes in ecosystems, evaluation of the interactions with biota and the ecological effects, study of the capability of ecosystems to adapt and respond to contamination.





Thematic Area 2 - PALEOCLIMATE and PALEOENVIRONMENTS

The Anthropocene Epoch is a novel, yet unofficial, unit of geologic time, used to describe the most recent period in Earth's history when human activity started to have a significant impact on the planet's climate and ecosystems. The Anthropocene is also a period characterized by an unprecedented technology level that allows us to measure essential variables of the climate system (ECVs) at high temporal resolution (e.g. satellites) and forecast future climate scenarios using state-of-the-art supercomputers based on Shared Socioeconomic Pathways (SSPs). However, instrumental records exist only since the mid XX century while simulations are time-limited to a few centuries. Thus, it remains elusive whether the documented and predicted changes are part of the long-term natural variability of the climate system. In this respect, climate archives such as ice cores, marine/lake sediment cores, corals, speleothems and tree-rings offer an extraordinary perspective of the past climate evolution and, thus, they represent a fundamental benchmark to place on-going climate change into a larger context of long-term natural climate variability. In particular, the past climate is punctuated by important climate events that can be used as examples (not necessarily analogues) to assess the rate of natural changes and understand the interactions between critical components of the climate system including external and internal forcings. Thus, paleo-climatology is a fundamental research field for the study of the Anthropocene as it provides insight into how Earth's climate system works and how it may change in the future. This, ultimately, improves climate models by lowering uncertainties on future projections.

Natural archives of past climate history are pillars for paleoclimatologists as they literally represent time machines. Scientists look for clues of past events in these records as biological, geochemical, and sedimentary indicators used for the empirical quantification of climatic and environmental parameters, something generally referred to as proxies. Each type of archive comes with its benefits and drawbacks. Thus, paleo-studies greatly benefit from the integration of complementary archives together to have an interdisciplinary overview on how the climate system works.





Thematic Area 3 - CHANGES in POLAR SYSTEMS

The Earth system is highly interconnected. In this thematic area research activities are aimed at deepening our understanding of the processes and interactions among the different components of the climate system and assessing its responses to global changes. A more comprehensive and holistic understanding of the polar system is needed to guide future climate policy decisions. The knowledge of the characteristics of the polar atmosphere is crucial for studying the biogeochemical cycles of natural chemical species, the long-range transport processes of pollutants and climate-altering compounds and the feedback mechanisms triggered by the atmospheric warming and the interaction of the atmosphere with the cryosphere and oceans.


The cryosphere constitutes a very fragile portion of the Earth system, made even more vulnerable by climate change. Through multidisciplinary and interconnected research activities, the study of snow and ice, their chemical composition and their main physical parameters, the evolution of the permafrost and the increased melting impact on the atmosphere, biosphere and hydrosphere at both regional and global levels is being pursued.

The hydrosphere consists largely of the oceans, which influence the Earth system in all its spheres by storing and redistributing fresh water, heat, climate-altering gases, and other particulate and dissolved substances. Oceanographic research supports more accurate predictions of global changes by studying the chemical and physical properties of seas and oceans, their movements, energy exchanges with the atmosphere, the organisms that inhabit them, and the geological structure of ocean basins. Polar limnological environments are studied as both sentinels of climate change and to investigate the responses of their short trophic net to these changes, including anthropogenic perturbations.
Polar ecosystems are an important reservoir of natural resources and can partly mitigate the effects of climate change from which they are threatened today. The study of biodiversity and resilience to global changes with an ecosystem approach, integrating the influence of environmental factors, community-level interspecific relationships, and socio-economic aspects is a challenge for effective and sustainable management of natural resources.





Thematic Area 4 - EARTH OBSERVATION and MODELS

The main activities of the thematic area Earth Observation (EO) and Polar Ecosystem Modeling include remote and proximal sensing, spatial analysis, thematic mapping, and geographic and environmental knowledge organization. The activity focuses on three main methodological pillars: remote and in situ observations, information organization, and representation by numerical and conceptual models.


The research of this thematic area focuses on the responses of polar ecosystems to changes in air and sea temperature, in polar ice caps, in sea level height, and in persistence and thickness of snowpack and ice, also through the comparisons of climate belts. Analyses also cover permafrost evolution, coastal erosion, accretion processes, release and segregation of climate-altering gases, biogeochemical cycles, and biodiversity. The observational methodologies aim to detect environmental and climate dynamics at different spatial and temporal scales by identifying and studying multiple essential variables and their biological and geophysical interactions by integrating information from different platforms. The continuous comparison allows the combination of spatial and ecological models with observations.


The team has a group dedicated to organizing multilingual terminological knowledge, thesauri, and metadata to support data description and environmental information, focusing on polar environments. The subject area develops, by Findable Accessible Interoperable Reusable (FAIR) principles, data chains and products to support the study of terrestrial, aquatic, and cryosphere systems and the development of interoperable GIS, thematic mapping, and operational services. Figure 1: the Spegazzini Glacier (Los Glaciares National Park, Santa Cruz, Argentina, January 2010), together with the Upsala and the Perito Moreno Glaciers, feeds the Lago Argentino in the Los Glaciares National Park, in this photo, the calving-type glacier front is visible, characterized by abundant seracs, which can reach 135 m in height.




Thematic Area 5 - BIOSCIENCES

The Biosciences thematic area deals with the study of the biosphere in polar areas at different levels of biological complexity, from molecules to ecosystems and up to biomes. In particular, the attention is focused on the description and quantification of the biodiversity of the organisms that inhabit polar environments, to evaluate their structural and functional complexity. In this regard, scenarios of population shifts, changes in biodiversity and biogeochemical processes deriving from climate change and human impact are evaluated. The main interest is focused on the interactions between biological and ecological aspects, together with abiotic processes and effects on the carbon cycle and energy flows in the polar regions. Further fields of investigation concern the research of biomolecules of microbial origin, the ability of polar microorganisms to degrade organic contaminants and astrobiological aspects linked to life in extreme environments.

The central themes of the research carried out within the Biosciences Thematic Area are (1) structural and functional organization of polar ecosystems and dynamics of populations and communities; (2) response of individuals, populations and communities to external influences of climatic and anthropogenic origin (including loss and fragmentation of habitat, withdrawal, extraction, pollution, etc.); (3) biotechnological implications deriving from adaptation to low temperatures and/or other physical-chemical factors.