Progetto di ricerca

LESGO Light to Store chemical Energy in reduced Graphene Oxide for electricity generation (DFM.AD003.389)

Area tematica

Scienze fisiche e tecnologie della materia

Area progettuale

Materiali innovativi (DFM.AD003)

Struttura responsabile del progetto di ricerca

Istituto Nanoscienze (NANO)

Responsabile di progetto

VALENTINA TOZZINI
Telefono: 050509433
E-mail: valentina.tozzini@cnr.it

Abstract

Hydrogen is being pursued as a promising route to store energy, potentially mitigating the unpredictability of electricity generation based on renewables. Provided that more than 95% of H2 produced comes from breaking the C-H bond in hydrocarbons, it is natural to think that storing H bound to C may provide a long-term solution to this challenge. LESGO proposes to store energy in the C-H bond of reduced graphene oxide (rGO-H). rGO-H can be stored safely, exhibits an energy density more than 100 times larger than that of H2 gas, and can be easily transported wherever the electricity generation is needed. LESGO will demonstrate that rGO-H can become an ideal energy stock at an affordable cost and used to supply electrical power on demand where it is required. LESGO's consortium has been structured to bring together a highly interdisciplinary community that will enable the emergence of an ecosystem around a circular economy relying on the use of: widely available raw materials, storing energy in chemical bonds, using it in applications that require electrical power, and finally recovering the materials for a second or multiple lives.

Obiettivi

Hydrogen is being pursued as a promising route to store energy, potentially mitigating the unpredictability of electricity generation based on renewables. Provided that more than 95% of H2 produced comes from breaking the C-H bond in hydrocarbons, it is natural to think that storing H bound to C may provide a long-term solution to this challenge. LESGO proposes to store energy in the C-H bond of reduced graphene oxide (rGO-H). rGO-H can be stored safely, exhibits an energy density more than 100 times larger than that of H2 gas, and can be easily transported wherever the electricity generation is needed. LESGO will demonstrate that rGO-H can become an ideal energy stock at an affordable cost and used to supply electrical power on demand where it is required. LESGO's consortium has been structured to bring together a highly interdisciplinary community that will enable the emergence of an ecosystem around a circular economy relying on the use of: widely available raw materials, storing energy in chemical bonds, using it in applications that require electrical power, and finally recovering the materials for a second or multiple lives.

Data inizio attività

01/11/2020

Parole chiave

ENERGY, STORAGE, TECHNOLOGIES

Ultimo aggiornamento: 13/12/2024