Progetto OXiNEMS (DFM.AD001.216)
Area tematica
Scienze fisiche e tecnologie della materia
Area progettuale
Sensori multifunzionali e dispositivi elettronici (DFM.AD001)Struttura responsabile del progetto di ricerca
Istituto superconduttori, materiali innovativi e dispositivi (SPIN)
Altre strutture che collaborano al progetto di ricerca
Responsabile di progetto
LUCA PELLEGRINO
Telefono: 010/3536282
E-mail: luca.pellegrino@spin.cnr.it
Abstract
OXiNEMS - Oxide Nanoelectromechanical Systems for Ultrasensitive and Robust Sensing of Biomagnetic Fields - aims at integrating more functionalities into nanomechanical systems (NEMS) by using (crystalline) transition metal oxides, a class of compounds that show a wide range of physical properties, with the perspective of introducing new classes of transducers with unprecedented detection/transduction mechanisms. The OXiNEMS team will implement ultrasensitive magnetic field detectors robust to applied magnetic fields and able to measure very weak magnetic fields, targeting those generated by human brain activity of the order of tens of femtotesla. The OXiNEMS sensors are foreseen to allow the effective integration of magnetoencephalography (MEG) with other recently developed imaging techniques such as ultralow field (ULF) Magnetic Resonance Imaging (MRI) and with techniques traditionally non-compatible with MEG, such as Transcranial Magnetic Stimulation (TMS) and trigger a new generation of multimodal systems allowing to image brain activity and connectivity with high spatial and temporal resolution, with a sound impact on basic and clinical neuroscience.
Obiettivi
A) To kick-off the technology of full-oxide nanomechanics by studying the feasibility, advantages and limits of a new class of NEMS devices based on integrated multifunctional oxide thin film structures. New applications arise that reach far beyond the state-of-the-art and are impossible to achieve using silicon-based devices.
B) To assess the potential of a full-oxides NEMS sensor in detecting very tiny magnetic fields (sensitivity better than 10 fT/sqrt(Hz), bandwidth DC-1 MHz), and in quickly recovering in a strong applied field (» 1 T). Such sensor would be the suitable magnetic field NEMS sensor in a Magnetoencephalography (MEG) system for the detection of the magnetic fields of the human brain, also in the presence of relatively strong applied fields as in Very-Low-Field (VLF)/ Ultra-Low-Field (ULF)-Magnetic Resonance Imaging (MRI) and Transcranial Magnetic Stimulation (TMS).
C) To develop strategies for the integration of such devices into small-scale prototypes of MEG and MEG/MRI/TMS setups, with the perspective of novel, multimodal, large scale commercial instruments.
Data inizio attività
01/01/2019
Parole chiave
Oxide Electronics, Magnetoencephalography, Magnetic Resonance Imaging
Ultimo aggiornamento: 11/12/2024