Progetto di ricerca

AndQC - Andreev qubits for scalable quantum computation (DFM.AD002.079)

Area tematica

Scienze fisiche e tecnologie della materia

Area progettuale

Scienze e tecnologie quantistiche (DFM.AD002)

Struttura responsabile del progetto di ricerca

Istituto Nanoscienze (NANO)

Altre strutture che collaborano al progetto di ricerca

Responsabile di progetto

LUCIA SORBA
Telefono: 050509118
E-mail: lucia.sorba@nano.cnr.it

Abstract

Our goal is to establish the foundations of a radically new solid state platform for scalable quantum computation, based on Andreev qubits. This platform is implemented by utilizing the discrete superconducting quasiparticle levels (Andreev levels) that appear in weak links between superconductors. Each Andreev level can be occupied by zero, one, or two electrons. The even occupation manifold gives rise to the first type of Andreev qubit, which has recently been demonstrated by some of the consortium members. We will characterize and mitigate the factors limiting the coherence of this qubit to promote these proof of concept experiments towards a practical technology. The odd occupation state gives rise to a second type of qubit, the Andreev spin qubit, with an unprecedented functionality: a direct coupling between a single localized spin and the supercurrent across the weak link. Further harnessing the odd occupation state, we will investigate the so far unexplored scheme of fermionic quantum computation, with the potential of efficiently simulating electron systems in complex molecules and novel materials. The recent scientific breakthrough by the Copenhagen node of depositing of

Obiettivi

Our goal is to establish the foundations of a radically new solid state platform for scalable quantum computation, based on Andreev qubits. This platform is implemented by utilizing the discrete superconducting quasiparticle levels (Andreev levels) that appear in weak links between superconductors. Each Andreev level can be occupied by zero, one, or two electrons. The even occupation manifold gives rise to the first type of Andreev qubit, which has recently been demonstrated by some of the consortium members. We will characterize and mitigate the factors limiting the coherence of this qubit to promote these proof of concept experiments towards a practical technology. The odd occupation state gives rise to a second type of qubit, the Andreev spin qubit, with an unprecedented functionality: a direct coupling between a single localized spin and the supercurrent across the weak link. Further harnessing the odd occupation state, we will investigate the so far unexplored scheme of fermionic quantum computation, with the potential of efficiently simulating electron systems in complex molecules and novel materials. The recent scientific breakthrough by the Copenhagen node of depositing of

Data inizio attività

01/06/2019

Parole chiave

Andreev qubits, scalable quantum, computation

Ultimo aggiornamento: 09/12/2024