Comunicato stampa

Nuova luce sui superconduttori ad alta temperatura

19/07/2019

Struttura cristallina di Ba(1-x)K(x)Fe(2)As(2)
Struttura cristallina di Ba(1-x)K(x)Fe(2)As(2)

Dopo anni dalla scoperta dei superconduttori ad alta temperatura, i meccanismi che regolano questo fenomeno sono ancora misteriosi. Un recente studio, apparso sulla copertina della rivista Physical Review Letters, svela nuove proprietà fondamentali di questo stato della materia. La ricerca è firmata dai ricercatori dell’Istituto struttura della materia (Cnr-Ism) e dell’Istituto dei sistemi complessi (Cnr-Isc), in collaborazione con l’Università di Friburgo

 

Un lavoro recentemente pubblicato su Physical Review Letters a opera di due istituti del Consiglio nazionale delle ricerche, l’Istituto struttura della materia (Cnr-Ism) e l’Istituto dei sistemi complessi (Cnr-Isc), in collaborazione con l’Università di Friburgo, spiega i meccanismi che regolano le proprietà della superconduttività ad alta temperatura. La superconduttività è la capacità di cui sono dotati alcuni materiali di sostenere il passaggio di corrente elettrica senza scaldarsi e dissipare energia. Tuttavia, affinché un materiale manifesti questa qualità e diventi effettivamente superconduttivo bisogna scendere a temperature bassissime, tanto da rendere la pratica non applicabile nella vita quotidiana. Trent’anni fa si è scoperta l’esistenza della superconduttività ad alte temperature, i cui meccanismi sono però ancora ignoti. L’obiettivo di questa ricerca è studiare questi meccanismi, per conoscerli e riuscire a costruire dei superconduttori di nuova generazione, che lavorino per esempio a temperatura ambiente, con prospettive dirompenti nel campo dell’elettronica, della ‘quantum information’, dei trasporti, e di altri ancora.

“I nostri colleghi di Friburgo hanno preso un cristallo metallico, e lo hanno colpito con un laser misurando quanta della luce inviata tornava indietro, ‘rimbalzando’ sul materiale. Noi del Cnr abbiamo analizzato questi dati e abbiamo potuto rilevare alcune proprietà fondamentali del cristallo, tra queste le proprietà vibrazionali, ovvero lo spostamento relativo degli atomi del materiale sottoposto a una certa stimolazione”, spiega Emmanuele Cappelluti del Cnr-Ism “a questo punto, stimolando lo stesso campione abbiamo misurato la sua temperatura critica Tc, cioè la soglia di temperatura sotto la quale il materiale diventa superconduttore. Abbiamo così scoperto che c’è una correlazione tra le proprietà ottiche e vibrazionali e la temperatura critica”, aggiunge Cappelluti.

Questa evidenza è molto utile perché fornisce un nuovo potente strumento di indagine. “Possiamo usare le proprietà ottiche vibrazionali, relativamente semplici da conoscere, come indicatore della fase della superconduttività, meno semplice. Inoltre proprio questo risultato apre nuove prospettive nella comprensione dell’origine della superconduttività ponendo chiare limitazioni sui possibili meccanismi in atto”, conclude Cappelluti.

Il lavoro pubblicato è stato frutto di una collaborazione tra il gruppo sperimentale di Christian Bernhard, dell’Università di Friburgo (Svizzera), e i ricercatori del Cnr-Ism e Cnr-Isc che hanno sviluppato le conseguenze teoriche dei risultati sperimentali.

 

 

Roma, 19 luglio 2019

 

 

La scheda

 

Chi: Istituto di struttura della materia (Cnr-Ism), Istituto dei sistemi complessi (Cnr-Isc), Università di Friburgo

Che cosa: Lo studio chiarisce alcune proprietà dei superconduttori ad alta temperatura e fornisce un nuovo strumento di indagine per studiare la superconduttività; Physical Review Letters DOI: https://doi.org/10.1103/PhysRevLett.122.217002

Per informazioni: Emmanuele Cappelluti, Cnr-Ism mail: emmanuele.cappelluti@ism.cnr.it, tel: 040 3756494; Flavia Mancini, Cnr-Iom mail: mancini@iom.cnr.it, tel 040 375 6488

Per informazioni:
Emanuele Guerrini
CNR - Ufficio Stampa
emanuele.guerrini@cnr.it
06.4993 2644

Capo ufficio stampa:
Marco Ferrazzoli
marco.ferrazzoli@cnr.it
ufficiostampa@cnr.it
06 4993 3383
skype marco.ferrazzoli1

Immagini: