04/05/2021
Uno studio realizzato dal Cnr-Ibbr in collaborazione con l’Hannover Medical School ha identificato un nuovo meccanismo molecolare che contribuisce alla degenerazione dei neuroni nell’atrofia muscolare spinale. Lo studio, pubblicato su Pnas, e cofinanziato dalla Fondazione Telethon, ha permesso di migliorare le funzioni motorie di un modello “in vivo” della malattia
L’atrofia muscolare spinale (Sma) è una malattia genetica rara causata da bassi livelli della proteina SMN e caratterizzata dalla morte selettiva dei motoneuroni spinali, neuroni deputati al controllo dei muscoli. In una ricerca dell’Istituto di bioscienze e biorisorse del Consiglio nazionale delle ricerche di Napoli (Cnr-Ibbr), in collaborazione con Peter Claus dell’Hannover Medical School, è stata identificata la proteina B-Raf come il punto centrale di una estesa rete di proteine che contribuiscono alla degenerazione dei motoneuroni in mancanza della proteina SMN.
Lo studio, pubblicato su Pnas e cofinanziato dalla Fondazione Telethon, ha utilizzato un approccio innovativo detto di network biology, che consente di avere una visione globale di tutti i partner coinvolti in un dato processo e permette di identificare rapidamente gli interruttori principali, da attivare o disattivare affinché quel processo sia modulato. “È un po’ come ricostruire la mappa delle varie linee della metropolitana ed identificare così le stazioni dove queste si intersecano, i cosiddetti hub: se si interviene sugli hub si avrà un effetto sull’intera rete”, spiega Elia Di Schiavi ricercatore del Cnr-Ibbr e autore dello studio.
In questo lavoro, usando ben quattro diversi modelli Sma “in vivo” e “in vitro”, è stato quindi possibile chiarire la rete di segnalazione alterata nella malattia. “Questa rete è strutturata in due cluster centrati sulle proteine AKT e 14-3-3ζ/δ, rispettivamente. I cluster sono collegati tra loro dalla proteina B-Raf, che lavora come hub principale. L'interazione diretta di B-Raf con 14-3-3ζ/δ è stata dimostrata essere cruciale per la sopravvivenza dei motoneuroni”, continua Di Schiavi. Ulteriori analisi hanno rivelato che entrambe le proteine erano poco espresse nei motoneuroni e nel midollo spinale di modelli murini nelle fasi pre-sintomatiche della malattia. “Utilizzando colture cellulari derivate da pazienti affetti da Sma è stato possibile confermare un simile pattern con una bassa espressione delle due proteine”, aggiunge il ricercatore Cnr-Ibbr. “Ma la cosa ancor più interessante è che questo meccanismo è perfettamente conservato nell’evoluzione, poiché un modello Sma del verme nematode C. elegans ha mostrato ugualmente una minore espressione dell'omologo di B-Raf, chiamato lin-45, quando il gene Smn1 era silenziato”.
Inoltre, in questo piccolo verme così diverso dall’uomo è stato possibile prolungare la sopravvivenza dei motoneuroni aumentando l'espressione di B-Raf/lin-45, con conseguente miglioramento delle funzioni motorie. “Il recupero è stato efficace anche dopo che la degenerazione dei motoneuroni era iniziata. Questo studio pone il fondamento per ulteriori analisi che possano far sperare nella possibilità di intervenire anche quando i sintomi della malattia comincino a manifestarsi e in maniera complementare ai trattamenti farmacologici attualmente utilizzati nella pratica clinica”.
Per informazioni:
Elia Di Schiavi
Cnr-Ibbr
elia.dischiavi@ibbr.cnr.it
Ufficio stampa:
Emanuele Guerrini
Ufficio stampa Cnr
emanuele.guerrini@cnr.it
Responsabile Unità Ufficio stampa:
Marco Ferrazzoli
marco.ferrazzoli@cnr.it
ufficiostampa@cnr.it
06 4993 3383
Vedi anche: