A truncated Newton method in an augmented Lagrangian framework for nonlinear programming (Articolo in rivista)

Type
Label
  • A truncated Newton method in an augmented Lagrangian framework for nonlinear programming (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/s10589-008-9216-3 (literal)
Alternative label
  • Di Pillo, G.; Liuzzi, G.; Lucidi, S.; Palagi, L. (2010)
    A truncated Newton method in an augmented Lagrangian framework for nonlinear programming
    in Computational optimization and applications; Springer, New York (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Di Pillo, G.; Liuzzi, G.; Lucidi, S.; Palagi, L. (literal)
Pagina inizio
  • 311 (literal)
Pagina fine
  • 352 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.springerlink.com/content/0456n13657x86ng1/ (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 45 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 2 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Science direct - Elsevier (literal)
  • Mathematical Reviews on the web (MathSciNet) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Di Pillo G.: Università di Roma \"La Sapienza\" Liuzzi G.: IASI, CNR Lucidi L.: Università di Roma \"La Sapienza\" Palagi L.: Università di Roma \"La Sapienza\" (literal)
Titolo
  • A truncated Newton method in an augmented Lagrangian framework for nonlinear programming (literal)
Abstract
  • In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direction produces a sequence of points which locally converges to a KKT pair with superlinear convergence rate. The local algorithm is globalized by means of a suitable merit function which is able to measure and to enforce progress of the iterates towards a KKT pair, without deteriorating the local efficiency. In particular, we adopt the exact augmented Lagrangian function introduced in Pillo and Lucidi (SIAM J. Optim. 12:376-406, 2001), which allows us to guarantee the boundedness of the sequence produced by the algorithm and which has strong connections with the above mentioned truncated direction. The resulting overall algorithm is globally and superlinearly convergent under mild assumptions. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Editore di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it