The stable set polytope of claw-free graphs with stability number at least four. II. Striped graphs are G-perfect (Articolo in rivista)

Type
Label
  • The stable set polytope of claw-free graphs with stability number at least four. II. Striped graphs are G-perfect (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.jctb.2014.02.009 (literal)
Alternative label
  • Galluccio, A.; Gentile, C.; Ventura, P. (2014)
    The stable set polytope of claw-free graphs with stability number at least four. II. Striped graphs are G-perfect
    in Journal of combinatorial theory. Series B (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Galluccio, A.; Gentile, C.; Ventura, P. (literal)
Pagina inizio
  • 1 (literal)
Pagina fine
  • 28 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 108 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 28 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Consiglio Nazionale delle Ricerche (CNR) (literal)
Titolo
  • The stable set polytope of claw-free graphs with stability number at least four. II. Striped graphs are G-perfect (literal)
Abstract
  • In [6], Edmonds provided the first complete description of the polyhedron associated with a combinatorial optimization problem: the matching polytope. As the matching problem is equivalent to the stable set problem on line graphs, many researchers tried to generalize Edmonds' result by considering the stable set problem on a superclass of line graphs: the claw-free graphs. However, as testified also by Grotschel, Lovasz, and Schrijver [14], \"in spite of considerable efforts, no decent system of inequalities describing STAB(G) for claw-free graphs is known\". Here, we provide an explicit linear description of the stable set polytope of claw-free graphs with stability number at least four and with no 1-join. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it