http://www.cnr.it/ontology/cnr/individuo/prodotto/ID250379
wFEM Heat Kernel: Discretization and Applications to Shape Analysis and Retrieval (Articolo in rivista)
- Type
- Label
- wFEM Heat Kernel: Discretization and Applications to Shape Analysis and Retrieval (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.cagd.2013.01.002 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Giuseppe Patané (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.sciencedirect.com/science/article/pii/S0167839613000137 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- Google Scholar (literal)
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche, Italy (literal)
- Titolo
- wFEM Heat Kernel: Discretization and Applications to Shape Analysis and Retrieval (literal)
- Abstract
- Recent results in geometry processing have shown that shape segmentation, comparison,
and analysis can be successfully addressed through the heat diffusion kernel. In this
paper, we focus our attention on the properties (e.g., scale-invariance, semi-group property,
robustness to noise) of the wFEM heat kernel, recently proposed in Patanè and Falcidieno
(2010), and its application to shape comparison and feature-driven approximation. After
proving that the wFEM heat kernel is intrinsically scale-covariant (i.e., without shape
or kernel normalization) and scale-invariant through a normalization of the Laplacian
eigenvalues, we experimentally verify that the wFEM heat kernel descriptors are more
robust against shape/scale changes and provide better matching performances with respect
to previous work. In the space F(M) of piecewise linear scalar functions defined on
a triangle mesh M, we introduce the wFEM heat kernel Kt , which is used to increase
the degree of flexibility in the design of geometry-aware basis functions. Furthermore,
we efficiently compute scale-based representations of maps on M by specializing the
Chebyshev method through the solution of a set of sparse linear systems, thus avoiding the
spectral decomposition of the Laplacian matrix. Finally, the scalar product induced by Kt
makes F(M) a Reproducing Kernel Hilbert Space, whose (reproducing) kernel is the linear
FEM heat kernel, and induces the FEM diffusion distances on M. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di