@prefix prodottidellaricerca: . @prefix istituto: . @prefix prodotto: . istituto:CDS024 prodottidellaricerca:prodotto prodotto:ID18829 . @prefix pubblicazioni: . @prefix unitaDiPersonaleInterno: . unitaDiPersonaleInterno:MATRICOLA6699 pubblicazioni:autoreCNRDi prodotto:ID18829 . @prefix modulo: . modulo:ID1971 prodottidellaricerca:prodotto prodotto:ID18829 . @prefix rdf: . prodotto:ID18829 rdf:type prodotto:TIPO1101 . @prefix retescientifica: . prodotto:ID18829 rdf:type retescientifica:ProdottoDellaRicerca . @prefix rdfs: . prodotto:ID18829 rdfs:label "Resolving photon number states in a superconducting circuit (Articolo in rivista)"@en . @prefix xsd: . prodotto:ID18829 pubblicazioni:anno "2007-01-01T00:00:00+01:00"^^xsd:gYear ; pubblicazioni:doi "10.1038/nature05461"^^xsd:string . @prefix skos: . prodotto:ID18829 skos:altLabel "
D.I.Schuster, A.A.Houck, J.A.Schreier, A.Wallraff, J.M.Gambetta, A.Blais, L.Frunzio, J.Majer, B.Johnson, M.H.Devoret, S.M.Girvin, and R.J.Schoelkopf (2007)
Resolving photon number states in a superconducting circuit
in Nature (Lond.); NATURE PUBLISHING GROUP,, LONDON (Regno Unito)
"^^rdf:HTML ; pubblicazioni:autori "D.I.Schuster, A.A.Houck, J.A.Schreier, A.Wallraff, J.M.Gambetta, A.Blais, L.Frunzio, J.Majer, B.Johnson, M.H.Devoret, S.M.Girvin, and R.J.Schoelkopf"^^xsd:string ; pubblicazioni:paginaInizio "515"^^xsd:string ; pubblicazioni:paginaFine "518"^^xsd:string ; pubblicazioni:numeroVolume "455"^^xsd:string . @prefix ns11: . prodotto:ID18829 pubblicazioni:rivista ns11:ID372285 ; pubblicazioni:pagineTotali "4"^^xsd:string ; pubblicazioni:numeroFascicolo "7127"^^xsd:string ; skos:note "ISI Web of Science (WOS)"^^xsd:string ; pubblicazioni:affiliazioni "Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA."^^xsd:string ; pubblicazioni:titolo "Resolving photon number states in a superconducting circuit"^^xsd:string ; prodottidellaricerca:abstract "Electromagnetic signals are always composed of photons,\nalthough in the circuit domain those signals are carried as voltages\nand currents on wires, and the discreteness of the photon's energy\nis usually not evident. However, by coupling a superconducting\nquantum bit (qubit) to signals on a microwave transmission line, it\nis possible to construct an integrated circuit in which the presence\nor absence of even a single photon can have a dramatic effect. Such\na system can be described by circuit quantum electrodynamics\n(QED)--the circuit equivalent of cavity QED, where photons\ninteract with atoms or quantum dots. Previously, circuit QED\ndevices were shown to reach the resonant strong coupling regime,\nwhere a single qubit could absorb and re-emit a single photon\nmany times. Here we report a circuit QED experiment in the\nstrong dispersive limit, a new regime where a single photon has\na large effect on the qubit without ever being absorbed. The hallmark\nof this strong dispersive regime is that the qubit transition\nenergy can be resolved into a separate spectral line for each photon\nnumber state of the microwave field. The strength of each line is a\nmeasure of the probability of finding the corresponding photon\nnumber in the cavity. This effect is used to distinguish between\ncoherent and thermal fields, and could be used to create a photon\nstatistics analyser. As no photons are absorbed by this process, it\nshould be possible to generate non-classical states of light by measurement\nand perform qubit-photon conditional logic, the basis\nof a logic bus for a quantum computer."@en . @prefix ns12: . prodotto:ID18829 pubblicazioni:editore ns12:ID12063 ; prodottidellaricerca:prodottoDi istituto:CDS024 , modulo:ID1971 ; pubblicazioni:autoreCNR unitaDiPersonaleInterno:MATRICOLA6699 . ns12:ID12063 pubblicazioni:editoreDi prodotto:ID18829 . ns11:ID372285 pubblicazioni:rivistaDi prodotto:ID18829 .