AQUAE
Il futuro è nell’oceano
La mostra scientifica interattiva “Aquae. Il futuro è nell’oceano” è ideata e realizzata da

Consiglio Nazionale delle Ricerche

Unità Comunicazione e Relazioni con il Pubblico
Dipartimento Scienze del Sistema Terra e Tecnologie per l’Ambiente
Istituto di Scienze Marine
Istituto per lo Studio degli Impatti Antropici e la Sostenibilità in Ambiente Marino
Istituto di Scienze Polari
Istituto di Ingegneria del Mare
La mostra

Il nostro Pianeta, visto dallo spazio, appare come una grande sfera blu. A dispetto del suo nome, infatti, il 71% della Terra è ricoperto dagli oceani, che svolgono funzioni indispensabili per la nostra sopravvivenza. Regolano il clima, ospitano una incredibile biodiversità, forniscono sostentamento a milioni di persone e veicolano l’80% dei commerci mondiali. Il rapporto dell’uomo con il mare affonda le sue radici nel mito e per molti secoli gli oceani hanno rappresentato il luogo dell’ignoto.

Oggi il mare e i suoi fondali costituiscono un campo d’indagine e di studio di grande rilevanza scientifica, non solo per il presente, ma soprattutto per il futuro, quando il ruolo dell’oceano diventerà sempre più determinante per le condizioni di crescita e di sviluppo dell’intera umanità.

La mostra si propone di descrivere le principali caratteristiche dell’ambiente marino, con particolare attenzione all’utilizzo e alla conservazione delle sue risorse per uno sviluppo sostenibile.

Si avvale di esperimenti, attrezzature scientifiche, modelli in scala, videoinstallazioni e immagini suggestive, per accompagnare il pubblico in un viaggio alla scoperta degli oceani.

In particolare nella prima sezione della mostra sono presentati i temi generali legati al mare: aspetti geografici, fisici, chimici e biologici. Un po’ di luce viene gettata su un ambiente che fino alla metà del secolo scorso era pressoché ignoto: quello dei fondali oceanici. Exhibit interattivi e video consentono di rispondere a domande quali: come si formano le onde e le correnti? Che legame c’è tra mare e clima del Pianeta? Qual è il motore biologico del mare?

Nella seconda parte della mostra viene illustrato il rapporto tra uomo e mare: da sempre gli oceani rappresentano una risorsa inestimabile per la nostra specie. Oggi la scienza e la tecnologia sono impegnate nella ricerca di nuovi metodi per l’utilizzo sostenibile delle numerose risorse che il mare ci offre e al contempo stanno sviluppando strategie per monitorare e preservare l’ambiente marino dagli effetti dell’impatto antropico.

L’ultima parte della mostra è dedicata alle ricerche svolte da diversi istituti e numerose strutture del Cnr che si occupano di mare e navigazione. Rappresenta inoltre un momento di riflessione per comprendere come il futuro e la salvaguardia degli oceani dipendano anche da noi, dai nostri comportamenti e dalle politiche che i nostri governi e le industrie decideranno di adottare.

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano
aquaebnl.it
La ricerca sul mare in Italia

Mari e oceani

La profondità degli oceani

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano

aquae.cnr.it
Mari e oceani

Col termine oceano si intendono le vaste distese d'acqua salata presenti sulla superficie terrestre. I mari sono invece insenature marginali degli oceani; sono più piccoli e generalmente diversi per caratteristiche geologiche dei fondali.

La profondità degli oceani

<table>
<thead>
<tr>
<th>Oceano</th>
<th>Massima profondità</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceano Pacifico</td>
<td>11,000 m</td>
</tr>
<tr>
<td>Oceano Atlantico</td>
<td>8,600 m</td>
</tr>
<tr>
<td>Oceano Indiano</td>
<td>7,400 m</td>
</tr>
<tr>
<td>Oceano Artico</td>
<td>7,235 m</td>
</tr>
<tr>
<td>Oceano Antartico</td>
<td>5,450 m</td>
</tr>
<tr>
<td>Mar Mediterraneo</td>
<td>5,267 m</td>
</tr>
</tbody>
</table>

OSSIGENO
Gli oceani producono più del 50% dell’ossigeno presente nell’atmosfera; è prodotto dalle alghe verdi e azzurre che fanno parte del piancton. Inoltre immagazzinano gran parte della CO₂ contenuta nell’atmosfera.

CLIMA
Gli oceani distribuiscono il calore sulla Terra, influendo in maniera determinante sul clima.

BIODIVERSITÀ
Quasi la metà delle specie del mondo vive nel mare. Questa ricca biodiversità non è solo una meraviglia ecologica: è un tesoro di sostanze chimiche che possono contenere anche delle cure per gravissime malattie.

RISORSE ENERGETICHE
Si stima che nel 2050 oltre il 50% delle risorse energetiche e minerarie verranno estratte dal mare.

ECONOMIA
Il valore economico degli oceani supera i 24,000 miliardi di dollari e nel futuro crescerà ancora.

CIBO
Gli oceani sono una delle principali fonti di cibo per il nostro Pianeta.

Materiali estratti dalla mostra interattiva
AQUAE. Il futuro è nell’oceano
aquae.cnr.it

Gli oceani restano un mistero. Si stima che solo il 5% dei fondali oceanici sia stato esplorato con sistematicità, mentre conosciamo molto meglio la superficie della Luna o di Marte.
I fondali oceanici

Il mare costituisce il “richiamo” naturale di qualsiasi tipo di sedimento, per quanto lunga e tortuosa sia la fase di trasporto. Poiché i due terzi della terra sono coperti dalle acque, i sedimenti presenti sui fondali marini costituiscono il maggiore archivio naturale della storia della Terra. L’indagine dei fondali oceanici permette quindi di documentare gli scenari climatici e ambientali che si sono succeduti nel tempo.

Lo sviluppo delle tecniche di carotaggio è iniziato negli anni Cinquanta e ha costituito una grande rivoluzione scientifica modificando le concezioni sul funzionamento del pianeta Terra. Attualmente i carotaggi vengono effettuati in tutti gli oceani e mari, in Artide e in Antartide.

Le indagini hanno fornito spiegazioni sulla formazione degli oceani e dei continenti, documentato che il suolo dell’Antartide rimase ricoperto dai ghiacci per diversi milioni di anni, dimostrato che il Mar Mediterraneo si prosciugò quasi completamente 5 milioni di anni fa e da allora ha attraversato varie fasi di stagnazione.

Il campionamento avviene con diverse tecniche, la più comune è quella del carotaggio che consiste nel prelievo di campioni cilindrici di sedimento (carote) di diametro variabile mediante strumenti detti carotieri.

I carotaggi vengono effettuati dalla piattaforma continentale alla piana abissale. Queste indagini permettono di ottenere informazioni su sedimenti che risalgono fino a circa 200 milioni di anni fa, età della più antica crosta oceanica.

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano
aquaecnr.it
Paesaggio sottomarino

I fondali marini sono invisibili: ne abbiamo conoscenza indiretta da strumenti geofisici e da poche e localizzate immersioni di sommozzatori, sommergibili o strumenti manovrati (ROV). Gli spazi sottomarini, immensi e bui, sono modellati da correnti e altri eventi dinamici come frane, eruzioni vulcaniche, tettonica esattamente come la terra emersa che abbiamo continuamente sotto i nostri occhi. Anche se non vediamo il paesaggio sottomarino, su di esso prendiamo molte decisioni, in base a ricostruzioni parziali e locali, per trovare risorse e aree di discarica.

Le nuove tecniche di misura della profondità (rilievi batimetrici) offrono dettagli senza precedenti e consentono di ricostruire il paesaggio sottomarino con risoluzioni in alcuni casi decimetriche. Si tratta però di una conoscenza indiretta, come quella che i satelliti offrono della superficie di Marte. Ad esempio, un canyon sottomarino come quello di Monterey nell'Oceano Pacifico non è diverso per estensione e dimensione dal Gran Canyon del Colorado; del primo non possiamo però avere esperienza diretta: non è cioè un paesaggio che possiamo percorrere, fotografare o usare come sfondo in un selfie. Solo in pochissimi punti i batiscafì o le telecamere subacquee ci offrono qualche immagine diretta dei suoi fondali. È come se si dovesse documentare il Gran Canyon del Colorado durante un lungo “trekking”, avendo soltanto un paio di foto a disposizione.

Batimetria del Canyon di Monterey

Il Marsili è il più grande vulcano in Europa, ma non si vede

Vista 3D del modello digitale dell'Italia (toni di verde) della piattaforma continentale (grigio) e scarpata apula (blu), a 25 metri di profondità; sono evidenti canyon e frane sottomarine recenti in scarpata. Foto scattate da veicoli subacquei che documentano la vita di coralli nel buio a 600 m di profondità.

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell'oceano
aquae.cnr.it
La dinamica degli oceani

“Duck Story”

Una nave nel 1992 perde in mare un container carico di 29.000 paperelle gialle. Per oltre 20 anni questi giocattoli hanno attraversato gli oceani seguendo la circolazione globale, dando preziose informazioni agli scienziati sulle correnti e sui vortici oceanici.

Circolazione globale

Le correnti oceaniche trasportano calore dall’equatore ai poli e operano come un motore per il clima globale. Negli oceani ci sono numerose correnti, determinate e influenzate dai venti, dalla rotazione terrestre, dalla temperatura e dalla salinità dell’acqua. Quello che viene chiamato nastro trasportatore oceanico è un modello semplificato dell’intera circolazione oceanica mondiale che nasce dalla combinazione di tutte queste correnti.

Il nastro trasportatore è chiamato anche circolazione termoalina poiché i due fattori importanti che la controllano sono la temperatura (termo-) e la salinità (alina). Entrambi questi fattori determinano la densità dell’acqua e sono proprio le diverse densità degli strati oceanici che ne determinano il movimento, insieme all’azione del vento che però non agisce a tutte le profondità. Le variazioni di densità dell’acqua sono causate da differenze di temperatura e di salinità, a loro volta indotte da evaporazione, precipitazioni, venti e intensità dell’irraggiamento solare. L’acqua calda ha una densità minore e risale mentre l’acqua fredda affonda. La densità dell’acqua cresce anche all’aumentare della concentrazione di sali minerali.

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano
aquae.cnr.it
Sapore di sale

L’acqua marina ha una salinità media del 35‰. Questo vuol dire che in 1 litro di acqua sono dischiolti in media 35 g di sali minerali. La salinità dei mari e degli oceani cambia con le condizioni locali della temperatura. Nei mari caldi, dove l’acqua superficiale è sottoposta a intenso irraggiamento solare e a forte evaporazione, può raggiungere valori molto grandi, mentre nei mari freddi scende a concentrazioni significativamente più basse.

Nel Mar Morto, che in realtà è un grande lago, la salinità è elevatissima, fino a dieci volte maggiore rispetto a quella degli oceani. Una concentrazione di sale del genere non permette lo sviluppo di alcuna forma di vita, eccetto alcuni microorganismi, alghe e una specie di gamberetto, da qui il nome Mar Morto.

Classificazione delle acque in base alla salinità

Acqua dolce minore di 0,05%
Acqua salmastra 0,05 - 3 %
Acqua salata 3 - 5 %
Salamoia maggiore di 5%

Salinità media di mari e oceani

- Mar Morto: 35%
- Mar Rosso: 4,2%
- Mar Mediterraneo: 3,7%
- Oceani: 3,2-3,7%
- Mar Nero: 2%
- Mar Baltico: 1,5%

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano
aquae.cnri.it
L'exhibit sulla salinità

Materiali estratti dalla mostra interattiva

AQUAE. Il futuro è nell’oceano

aquae.cnr.it
Il motore biologico del mare

Un microlitro di oceano è la quantità di acqua di mare contenuta in un millimetro cubo. Al suo interno vivono numerosi organismi microscopici che possono essere considerati il vero e proprio motore biologico dell’ecosistema marino.

In mare la maggior produzione di materia organica è data dalle microalghe che costruiscono le molecole organiche, utilizzando l’energia luminosa proveniente dal sole e le sostanze inorganiche.

Il nutrimento fondamentale del fitoplancton nell’ecosistema marino è quello di digestare le molecole organiche comprese dagli organismi morti. L’energia assorbita nutritiva inorganiche

Le carenza ascensionali richiamano i detriti organici e inorganici verso la superficie.

Gli esseri viventi presenti negli oceani costituiscono una enorme comunità di organismi in rapporto con l’ambiente che li circonda: l’insieme di queste due componenti - organismi e ambiente - forma un immenso ecosistema, il maggiore dell’intera biosfera. Le relazioni tra gli organismi marini sono molto complesse e vanno a costituire una serie di catene alimentari che si diramano in tutte le direzioni, formando delle vere e proprie reti trofiche.

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano
aquae.cnr.it
Gli oceani svolgono un ruolo fondamentale nella regolazione del clima sulla Terra. Assorbono calore nei periodi e nelle zone più calde e lo rilasciano lentamente nei periodi e nelle zone più fredde. Questa azione è così forte da regolare la variabilità meteorologica tra le stagioni e da influire sulla variabilità climatica anche su archi temporali di decine di anni. In altre parole, se con il riscaldamento climatico attuale lasciamo immagazzinare troppo calore negli oceani, ci ritroveremo il clima cambiato non per la prossima stagione, ma per svariati decenni a venire su tutto il Pianeta.

Gli oceani assorbono circa 93% del calore in eccesso che arriva sulla Terra e 30% delle emissioni di anidride carbonica.

Gli oceani assorbono grandi quantità di CO₂ dall’atmosfera, rallentando il ritmo del cambiamento climatico. Ma i benefici sul clima dovuti a questo accumulo non hanno un costo: l’acidificazione degli oceani. La CO₂, dissolta in acqua innesca infatti una serie di reazioni che portano ad un aumento dell’acidità dell’oceano.


L’equazione che rappresenta l’azione dell’acqua in presenza di CO₂ è:

\[
\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3
\]

L’acqua torna sulla Terra sotto forma di precipitazione e si condensa per formare le nuvole. L’acqua è emessa dal suolo, dalle piante, dagli animali e dall’uomo. L’acqua scende attraverso i fiumi e filtra nel terreno per scorrere verso il mare.

L’oceano rappresenta il principale serbatoio per il ciclo dell’acqua e, con i suoi continui scambi con l’atmosfera, è strettamente correlato al clima. Quando le molecole d’acqua vengono riscaldate, evaporano e passano all’atmosfera. Quasi tutta la pioggia che cade sulle terre emerse ha la sua origine negli oceani. A causa del riscaldamento globale, questo ciclo tende ad accelerare e aumenta la frequenza di eventi meteorologici estremi come alluvioni, siccità o uragani.

Materiale estratto dalla mostra interattiva AQUAE. Il futuro è nell’oceano.
Osservare gli oceani

Perché studiamo gli oceani?

L’oceano fornisce risorse alimentari: siamo interessati a conoscere i processi che ne influenzano la produttività (temperatura, correnti, presenza di nutrienti).

Utilizziamo gli oceani (trasporti marittimi, estrazioni di gas e petrolio, uso ricreativo): siamo interessati a studiare i processi che possono influenzare queste attività (onde, venti, correnti, temperatura).

L’oceano influenza il clima (distribuzione delle precipitazioni, clima regionale, formazione di tempeste e uragani, assorbimento di CO₂): vogliamo comprendere e prevedere come questo avviene.

Come studiamo gli oceani

- Dati
- Modello numerico
- Comprensione
- Previsione

L’oceanografia fisica studia

La distribuzione delle proprietà dell’acqua di mare, come temperatura, salinità, pressione, ossigeno e altri gas disolti
Gli scambi di energia e materia tra l’oceano e l’atmosfera

Altre proprietà specifiche dell’acqua di mare, come la propagazione del suono o la penetrazione della luce
I movimenti dell’acqua, come le maree, le onde e le correnti

Sistemi autonomi fissi

Ormegni
Catene strumentarie che lungo la colonna d’acqua misurano una serie di parametri (temperatura, correnti, gas disvolti, ecc.)

Bee meteo-oceanografiche
“Boa ODAS Italia” nel Santuario dei Cetacei iMar Ligure: è un laboratorio marino d’altura

Piattoforma oceanografica “Acqua alta”
La piattaforma del Cnr opera nell’Alto Adriatico dal marzo 1970. È posta a 8 miglia marine al largo della costa di Fronte a Venizia, su 16 metri di profondità. Equipaggiata con le più moderne tecnologie, è l’unica piattaforma al mondo operativa in mare aperto che permetta la prolungata permanenza a bordo di ricercatori e tecnici durante le campagne di misura e con qualsiasi condizione meteo-marina

Sistemi autonomi mobili

Bee flottanti (drifter)
Sono bee che seguono passivamente il moto delle correnti dotate di antenna GPS e sensori di temperatura

Veicoli autonomi subacquei (Gliders)
Sono i veicoli “attivi” autonomi, la cui rotta viene programmata prima della messa a mare, che misurano temperatura, salinità, ossigeno e altri parametri

Materiali estratti dalla mostra interattiva
AQUAE. Il futuro è nell’oceano
aquae.cnr.it
E la nave va

Fin dall’antichità l’uomo costruisce imbarcazioni per spostarsi e trasportare merci attraverso la principale via di comunicazione a sua disposizione: il mare. A partire dalla scoperta dell’America la navigazione estese gli orizzonti europei anche grazie al progresso nelle costruzioni navali ed all’aumento delle dimensioni dei natanti: passarono dalle 50 tonnellate delle piccole caravelle di Colombo fino alle 500 tonnellate dei galeoni secenteschi. Questa corsa a realizzare imbarcazioni sempre più grandi e avanzate non si è più arrestata ed oggi si costruiscono barche, sottomarini, piattaforme galleggianti e navi sempre più complesse e ricche di tecnologia.

Gli oceani veicolano

La progettazione e costruzione di navi e imbarcazioni è un settore in cui l’Italia svolge un ruolo di leader mondiale: nel nostro Paese si fabbricano il 50% delle grandi navi da crociera e i migliori yacht del mondo, dei quali è il maggior esportatore. Le competenze “di eccellenza” proprie del nostro Paese non riguardano unicamente il design e la progettazione degli scafi, ma anche le fasi di verifica sperimentale, effettuate su modelli in scala testati in enormi vasche e sottoposti alle condizioni operative più difficili. Un’attività che viene svolta presso i laboratori del Cnr, meglio conosciuti come la “Vasca Navale” italiana.
Il canale di circolazione didattico di Cnr - Istituto di Ingegneria del Mare (soggetto a disponibilità)
Il presente
Il rapido sviluppo dell’economia globale dal dopoguerra ad oggi ha portato a un aumento vertiginoso dello scambio di merci via mare: i trasporti via mare sono ancora oggi i più economici e puliti. Questo ha comportato la costruzione di navi sempre più grandi, determinando l’esigenza di potenziamento delle infrastrutture logistiche a servizio delle aree portuali e un corrispondente sviluppo degli apparati tecnologici, determinando la concentrazione dei servizi portuali in grandi centri globali. Oggi il porto è diventato un’infrastruttura progettata per il passaggio più fluido e veloce possibile delle merci. In molti casi, questo ha determinato lo spostamento delle attività portuali al di fuori dei nuclei urbani storici, verso nuove aree maggiormente adeguate a entrare nel circuito dei grandi commerci globali, determinando dunque la separazione di quella simbiosi fisica tra città e porto che aveva costituito per millenni l’identità delle città di mare. La conseguenza di questi cambiamenti epocali è stata, in molti casi, la dismissione di vaste aree urbanizzate, in precedenza direttamente o indirettamente collegate ai porti. Questo fenomeno ha prodotto un elevato fabbisogno di rigenerazione al quale ancora oggi si stenta a far fronte.

Il passato
I porti nascono dalla decisione di alcune comunità di stanziarsi lungo le coste, in luoghi adeguatamente protetti, per avvantaggiarsi dell’accesso diretto a risorse come la pesca e per attivare rotte commerciali di medio e largo raggio. Quelli che quindi oggi chiamiamo porti erano in passato vere e proprie città affacciate sul mare e dotate di infrastrutture materiali e immateriali adeguate a sostenere gli scambi commerciali via mare.

I porti erano luoghi di scambio e non solo di passaggio delle merci: questo comportava il valore aggiunto legato allo scambio di culture, esperienze e saperi. Non era raro in passato, infatti, che le città di porto ospitassero stabilmente comunità provenienti dai Paesi con cui esse commerciavano.

Rigenerazione delle aree portuali urbane dismesse o declinanti al fine di favorire la riconnessione tra città e porto

Il futuro dei porti

Presenza di un enorme patrimonio culturale, sia materiale che immateriale, all’interno delle città portuali storiche, su cui è possibile fare leva per stimolare un nuovo sviluppo economico

Riconnessione tra città e porto come prima mossa per il ripristino dell’idea più generale di porto quale luogo di scambio e non solo di passaggio di merci

Porti come “hub” (nuclei) in grado di guidare la domanda di innovazione e sviluppo di ambiti territoriali più vasti, ripristinando quindi anche un legame di scambio tra città di mare ed entroterra

L’economia per la quale oggi questo scambio è di nuovo possibile è l’economia della conoscenza, che investe soprattutto in innovazione, in reti di sapere, in comunità di confronto, sperimentazione e pratica. In questo senso, i porti sono ancora luoghi privilegiati, in quanto i trasporti (e tra questi, come si è visto, quelli marittimi sopra tutto) attirano una enorme quantità di fondi per la ricerca e l’innovazione

 Traffico in milioni di TEU nel 2017 nei 15 porti più grandi del mondo

- Shanghai (Cina) 40,23
- Singapore (Singapore) 33,67
- Shenzhen (Cina) 25,21
- Ningbo-Zhoushan (Cina) 24,61
- Hong Kong (Cina) 20,76
- Busan (Sud Corea) 20,47
- Guangzhou (Cina) 20,37
- Qingdao (Cina) 18,90
- Los Angeles (Long Beach) (USA) 16,89
- Dubai (Emirati Arabi uniti) 15,37
- Tianjin (Cina) 15,07
- Rotterdam (Paesi Bassi) 13,73
- Port Klang (Malesia) 11,98
- Antwerp (Borussia) 10,45
- Xiamen (Cina) 10,38

17.000 navi transiteranno ogni giorno nelle acque dell’Unione Europea

Materiali estratti dalla mostra interattiva
AQUAE. Il futuro è nell’oceano
aquaecnr.it
La pesca

La pesca è un’attività che da millenni fornisce cibo alle popolazioni insediate presso laghi, mari o fiumi. Per tre miliardi di persone il pesce è la principale fonte di proteine e questo lo rende il prodotto naturale più commerciato al mondo. Ma la dipendenza globale da questa importante risorsa è anche la più grande minaccia per la sopravvivenza delle popolazioni ippiche.

La pesca nel Mar Mediterraneo ha una cruciale importanza culturale, sociale ed economica, fornendo una importante fonte di reddito e sostenendo le tradizioni e lo stile di vita di molte comunità costiere. Tuttavia, la pesca marittima nel Mar Mediterraneo deve affrontare importanti sfide: circa il 90 per cento degli stock sfruttati è al di fuori dei limiti biologici di sicurezza e le catture cominciano a diminuire.

Durante il Summit sullo Sviluppo Sostenibile delle Nazioni Unite a New York nel settembre 2015, i leader mondiali hanno presentato una serie di 17 obiettivi di sviluppo sostenibile per porre fine alla povertà, combattere la disuguaglianza, l’ingiustizia e affrontare il problema del cambiamento climatico entro il 2030. L’obiettivo 14, dal titolo “Conservare e utilizzare in modo sostenibile gli oceani, i mari e le risorse marine per lo sviluppo sostenibile”, è di particolare rilevanza per la gestione delle attività di pesca nel Mar Mediterraneo e stabilisce obiettivi ambiziosi che promuovono la salute degli ecosistemi marini.

Di recente, il Mar Mediterraneo si è trovato in una situazione di instabilità a causa dei conflitti politici in corso, esacerbando il problema della migrazione attraverso il mare. Al tempo stesso, colmare il divario esistente nel tasso di sviluppo tra le diverse subregioni del Mar Mediterraneo rimane una priorità assoluta. In particolare, il settore della pesca ha un ruolo importante da svolgere in tale strategia, in quanto è cruciale per il sostentamento, la sicurezza alimentare e lo sviluppo sostenibile a lungo termine dell’area mediterranea.
Specie marine aliene

Le specie aliene comprendono tutti quegli organismi introdotti dall’uomo, intenzionalmente o meno, in una regione diversa da quella della loro distribuzione naturale. Le specie aliene sono considerate una delle principali cause di riduzione della biodiversità dovuta all’alterazione degli equilibri preda-predatore e ai meccanismi di competizione sulle risorse e alla diffusione di patogeni. In alcuni casi tali effetti possono avere anche ripercussioni sanitarie ed economiche nei diversi settori produttivi.

50% delle specie aliene viaggia a bordo delle nostre navi

**Nelle acque di zavorra**
Che vengono caricate dalla nave nel porto di partenza e scaricate in quello di arrivo per stabilizzare la nave durante la navigazione o durante le operazioni di carico e scarico

**Dove trovano un passaggio?**
Attaccati allo scafo come “bio-fouling”
Ogni oggetto immerso in mare, e quindi anche lo scafo di una nave, viene ricoperto da una serie eterogenea di organismi marini che svolgono, come sede definitiva della loro esistenza, quella invitante superficie ancora disabitata

**Quanti organismi, potenzialmente alieni, possono viaggiare su una nave?**

<table>
<thead>
<tr>
<th>Immaginiamo una nave cargo di ultima generazione</th>
<th>CMA CGM Jules Verne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume di acque di zavorra: circa 45.000 m³</td>
<td>Lunghezza: 396 metri</td>
</tr>
<tr>
<td>Superficie dello scafo a disposizione del “bio-fouling”: 20.300 m²</td>
<td></td>
</tr>
</tbody>
</table>

**Organismi marini trasportati**
1.129 organismi/m² sullo scafo
da 3.000 a 50.000 individui/m³ nelle acque di zavorra

<table>
<thead>
<tr>
<th>Nelle acque di zavorra</th>
<th>Attaccati allo scafo</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.300</td>
<td>45.000</td>
</tr>
<tr>
<td>1.129</td>
<td>3.000</td>
</tr>
<tr>
<td>22.918.700</td>
<td>135.000.000</td>
</tr>
</tbody>
</table>

**Totale* organismi potenzialmente viaggianti sul megacargo**
da 157.918.700 a 2.272.918.700

**Commercio di specie per acquari**
**Acquacoltura**

**Commercio di crostacei vivi**
**Navigazione**

**Come arrivano nel Mar Mediterraneo?**
**Costruzione di canali**

Materiali estratti dalla mostra interattiva
AQUAE. Il futuro è nell’oceano
aquae.cnr.it
L’inquinamento dei mari

Le attività umane e le crescenti richieste di risorse esercitano un'enorme pressione sull'ecosistema marino.

Dai sacchetti di plastica ai pesticidi, ai prodotti petrolchimici, la maggiore parte dei rifiuti prodotti dall'uomo finisce, in un modo o nell'altro, in mare.

L’inquinamento degli oceani è dovuto sia alle attività terrestri, sia a quelle marine.

80% dell’inquinamento dei mari proviene dalla terraferma
20% dell’inquinamento dei mari proviene da attività svolte in mare (pesca, acquacultura, trasporti marittimi, estrazioni petrolifere ecc...)

Una delle principali pressioni umane che colpiscono l’ambiente marino deriva dall’inquinamento chimico

Metalli pesanti: Cr, Cu, Cd

Metilmercurio: Hg\(_2\)C – Hg

Idrocarburi policiclici aromatici

BDE209

Policlorobifenili

Le emissioni in atmosfera dovute a industrie e trasporti sono un’altra fonte rilevante dell’inquinamento da attività umane. Una volta emessi, molti composti chimici (rame, nichel, mercurio, cadmio, piombo, zinco e composti organici sintetici) rimangono nell’aria per settimane, se non di più. Con i venti si spostano e ricadono negli oceani. Tutti questi inquinanti e rifiuti sono poi redistribuiti sulla superficie del globo dalle correnti dei mari.

Metalli pesanti: Attività industriali ed estrattive Discariche

Inquinanti organici persistenti (pesticidi, policlorobifenili…)
Attività industriali primarie e secondarie Attività agricole

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano
aquae.cnr.it
L’oceano di plastica

La produzione mondiale di plastica è cresciuta in maniera esponenziale dagli anni Cinquanta ad oggi. Purtroppo, molta di questa plastica diventa velocemente rifiuto che, se non gestito correttamente, si disperde nell’ambiente. Tra questi rifiuti plastici circa 8 milioni di tonnellate finiscono nei mari di tutto il mondo, dove possono restare anche per qualche centinaia di anni prima di degradarsi completamente.

Tempi di degradazione della spazzatura marina
La plastica non è inquinante in quanto tale, lo diventa quando viene abbandonata nell’ambiente anziché essere smaltita correttamente.

Il motivo per cui la plastica diventa parte dei rifiuti marini, ovvero Marine Litter, è la mancata gestione del rifiuto e la non corretta applicazione delle tre «R»

Macro-Micro-Nano plastiche

Gli organismi marini di grandi dimensioni possono subire danni dalle macroplastiche e mesoplastiche perché vi rimangono intrappolati oppure, scambiandole per cibo, vengono soffocati.

Le plastiche, frammentandosi in microplastiche, possono essere ingerite dagli organismi ed entrare nella catena trofica marina. Le microplastiche possono interagire anche con le sostanze chimiche già presenti in mare e trasferirle nella catena trofica.

Il reale effetto ecotossicologico sulla catena trofica delle nanoplastiche, a causa delle ridottissime dimensioni, è ancora molto incerto.

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano
aquaecnr.it
Il grande vortice d’acqua
Energia dal mare

La crescita della popolazione mondiale richiede la capacità di affrontare con urgenza alcune sfide sociali che vanno dal crescente fabbisogno energetico alla scarsità di cibo e acqua.

L’utilizzo di fonti rinnovabili dal mare è una soluzione promettente per la disponibilità di grandi spazi, per la varietà delle risorse marine e per il basso impatto visivo dalla costa.

Il futuro nella Smart City galleggiante

L’Arcipelago Energetico si pone come esempio di smart city galleggiante, autonoma dal punto di vista energetico e capace di utilizzare l’energia prodotta da fonti rinnovabili marine per la produzione di combustibili liquidi (metano e idrogeno), nonché per i costosi processi di desalinarizzazione dell’acqua marina e per le attività di acquacoltura.

In questo modo all’interno si possono costruire dei moduli galleggianti (“isole”), ciascuno con delle funzionalità ben precise: dalla produzione di energia con pannelli solari, all’acquacultura e ad altre attività produttive e ricreative.

Energia dalle maree
L’acqua di alta marea viene intrappolata in un bacino ottenuto tramite una diga che la rilascia con la bassa marea, mietendo in moto delle turbine accoppiate a generatori elettrici.

Energia dalle onde
La produzione di energia avviene mediante dispositivi flottanti dalle forme più svariate che trasformano il movimento delle onde nel moto relativo di un rotore.

Energia dal gradiente di temperatura (energia talassotermica)
La differenza tra la temperatura delle acque superficiali e profonde viene sfruttata per la produzione di energia elettrica mediante un ciclo a vapore (Ocean Thermal Energy Conversion).

Energia dalle correnti
La corrente mette in movimento le pale di turbine nel mare, simili a quanto avviene con le pale eoliche.

Energia dal gradiente salino (energia osmotica)
Sfrutta l’energia osmotica derivante dalla differenza di salinità tra gli oceani e l’acqua dolce in corrispondenza delle foci dei fiumi.

Il consumo di energia nel mondo

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano

aquae.cnr.it
Robotica marina

Gli oceani costituiscono un’immensa risorsa di cibo e di materie prime, ma sono ancora in gran parte inesplorati a causa delle difficoltà che l’uomo incontra ad operare in un ambiente così arduo da affrontare come quello marino.

La robotica marina è lo strumento che può aiutare l’uomo a vincere le sfide poste dall’esplorazione degli oceani e consentirgli di conoscere meglio, mettere a frutto e proteggere le enormi risorse in essi presenti.

Il robot

- Aiuta l’uomo supportando il subacqueo nelle sue attività e monitorandone le condizioni di salute
- Sostituisce l’uomo eseguendo lavori ripetitivi come campionamenti lungo percorsi predefiniti in superficie o in profondità
- Estende l’uomo permettendogli di intervenire da remoto in luoghi inaccessibili come i fondali marini, sotto il pack, sotto le pareti dei ghiacciai, nei campi minati

ASV - Autonomous Surface Vehicle battelli autonomi, lavorano in superficie, ad esempio per rilievo del profilo del fondale portuale e costiero

Tipologie di robot marini

- AUV - Autonomous Underwater Vehicle veicoli subacquei autonomi, lavorano nella colonna d’acqua, ad esempio per campionamenti su larga scala di parametri bio-chimico-fisici delle acque, per rilievo del profilo del fondale

Il futuro della robotica marina

- Robot modulari, trasformabili e portabili
- Nave estesa con robot subacquei e di superficie
- Nave autonoma
- La nave autonoma Yara Birkeland

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano aquae.cnr.it
Robotica marina

Il robot e-URoPe (electronic - Underwater Robotic Pet) di Cnr - Istituto di Ingegneria del Mare

Materiali estratti dalla mostra interattiva AQUAE. Il futuro è nell’oceano aquae.cnr.it
La ricerca sul mare in Italia

Pensiamo l'oceano come un'illimitata vastità e, sbagliando, siamo portati a pensare che altrettanto illimitate siano le sue risorse e la sua resilienza a qualunque tipo di pressione antropica. Non è così. Dobbiamo ripensare l'economia tenendo conto che anche l'oceano, con i suoi ecosistemi e i suoi meccanismi di circolazione, vada preservato e protetto. Per due secoli la nostra società ha pensato la “ Crescita Economica” come lineare e illimitata. A fronte di questa prospettiva, illusoria e non sostenibile, dobbiamo rendersi conto che l'oceano ci abbia fino ad ora “aiutato” in modo silenzioso e insostituibile. L`acidificazione delle acque oceaniche consente di tenere il drammatico aumento di CO2, in Atmosfera “soltanto” a poco più di 400 ppm che a oltre 600 ppm (in assenza di oceano); il riscaldamento globale sarebbe più drastico se l'oceano non assorbisse una grande quantità di calore portando però ad un`inevitabile aumento di volume delle sue acque e quindi all’aumento del livello del mare che percepiamo solo quando la nostra economia si trova a combattere l`erosione costiera o l`annegamento di intere isole oceaniche; infine, l’oceano è diventato un immenso “bidone delle spazzature” dove gettiamo sostanze chimiche disolute e, negli ultimi 50 anni, tantissima plastica (su cui, fortunatamente, sta aumentando l’attenzione della società).

Non possiamo pensare di salvare l’ecosistema oceanico mantenendo inalterata la nostra idea di crescita economica e occupandoci solo di preservare qualche zona “bella” da usare magari in un quadro di turismo di massa industrializzato. Dobbiamo studiare l’oceano, le sue creature e i suoi fondali ma contemporaneamente dobbiamo cambiare la nostra economia passando ad una economia circolare che superi la produzione di rifiuti e l’impostazione “usa e getta” che il nostro Pianeta non può più sostenere anche col paziente aiuto del suo oceano.

In Italia il sistema della ricerca marina è rappresentato da nove Enti e Istituti, vigilati da tre Ministeri e da una vasta rete di Università vigilate dal MIUR. Oltre 2000 tra ricercatori e tecnici, impegnati nelle diverse discipline che caratterizzano la ricerca marina e marittima, dirigono e partecipano a progetti internazionali, europei e nazionali, dedicati alla comprensione dei principali processi che caratterizzano e guidano l’evoluzione dell’ambiente marino e costiero e allo sviluppo di nuove tecnologie per un uso sostenibile e moderno delle sue risorse. Uno sforzo imponente che supporta in maniera attiva anche lo sviluppo dell’innovazione nel settore privato e dell’“economia blu del Paese” e contribuisce alla corretta applicazione della politica di gestione e protezione dell’ecosistema marino e all’attuazione della politica marittima integrata. Fondamentali per le attività di ricerca e sviluppo delle realtà locali, oltre alla rete capillare di Istituti e Centri di eccellenza distribuiti su tutto il territorio nazionale, sono le Infrastrutture di Ricerca che rappresentano “ambienti” e piattaforme tecnologiche interconnesse a livello europeo per la crescita, il trasferimento della conoscenza e la formazione nei settori di punta del comparto marino e marittimo.
Il Presidente della Repubblica Sergio Mattarella all’inaugurazione tenutasi in sede Centrale Cnr il 21 novembre 2018
Il gruppo di progetto della mostra con il Direttore Generale del Cnr all’inaugurazione in sede Centrale Cnr il 21 novembre 2018
Gruppo di progetto del Consiglio Nazionale delle Ricerche

Unità Comunicazione e Relazioni con il Pubblico
Daniela Gaggero, Francesca Messina, Filippo Sozzi

Dipartimento Scienze del Sistema Terra e Tecnologie per l’Ambiente
Simona Longo, Antonello Provenzale, Fabio Trincardi

Istituto di Scienze Marine
Lucilla Capotondi, Katrin Schroeder

Istituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino
Marco Faimali, Mario Sprovieri

Istituto di Ingegneria del Mare
Gabriele Bruzzzone, Massimo Caccia, Marina Landolfi, Alessandro Moriconi

Istituto di Scienze Polari
Angelo Viola

Contributi scientifici

Istituto di Scienze Marine
Elisabetta Campiani, Simone Colella, Andrea Pisano, Gianluca Volpe

Istituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino
Maria Bonisgore, Chiara Gambardella, Francesca Garaventa, Marco Melita

Istituto di Ingegneria del Mare
Massimo Guerra, Claudio Lugni, Andrea Mancini

Istituto per le Risorse Biologiche e le Biotecnologie Marine
Luca Bolognini, Fabio Grati, Iole Leonori, Mauro Marini, Alessandro Lucchetti

Istituto per le Tecnologie della Costruzione
Roberto Malvezzi, Paolo Mirabelli, Marco Padula, Francesca Piceni

Servizi a cura di Cnr
Unità Comunicazione e Relazioni con il Pubblico

Responsabile
Silvia Mattioni

Coordinamento operativo
Francesca Messina

Progettazione scientifica exhibit e formazione animatori scientifici
Luca Balletti, Filippo Sozzi

Design exhibit e progetto grafico
Daniela Gaggero

Realizzazione exhibit e allestimenti
Manuele Gargano, Filippo Novara, Alberto Ravazzolo

Logistica e rapporto con i fornitori
Patrizia Cecchetto, Claudia Valentini

Comunicazione
Cecilia Tria

Servizi informatici/sito web aquae.cnr.it
Alix Madeleine di Maio

Social/Sito Web comunicazione.cnr.it
Silvia Perrella, Edward Bartolucci, Claudia Valentini

Coordinamento amministrativo
Ivana Bertolotto

Segreteria e contabilità
Francesca Lupi

Altri contributi dalla rete Cnr

Sezione Acquisti - Ufficio Servizi Generali della Direzione Centrale
Supporto alla Rete Scientifica e alle Infrastrutture
Emanuela Guadalupi

Strumentazione scientifica
Mirena Borghini, Roberto Bozzano, Giorgio Bruzzone, Roberta Ferretti, Mauro Giacopelli, Angelo Odetti, Sara Pensieri, Edoardo Spirandelli

Video “Il Plancton”
Istituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino
Angela Cuittita, Gabriella Titone, Edulab

Istituto di Scienze del Patrimonio Culturale
Ivan Ferrari, Francesco Gabellone, Francesco Giuri

Si ringrazia
Sonia Albertazzi, Emilio Fortunato Campana, Andrea Felici, Francesca Gorini, Leonardo Langone, Marco Lig, Gabriele Marozzi, Pierpaolo Orrico, Daniele Ranocchia, Marzia Rovere, Guido Villani

Materiali estratti dalla mostra interattiva
AQUAE. Il futuro è nell’oceano
aquae.cnr.it