CRUISE SUMMARY REPORT

CRUISE Name: No:

CRUISE PERIOD start: to end:
PORT OF DEPARTURE (enter name and country)
PORT OF RETURN (enter name and country)

SHIP Name: Call Sign:
Type of ship:
enter the full name and international radio call sign of the ship from which the data were collected, and indicate the type of ship, for example, research ship; ship of opportunity, naval survey vessel; etc.

RESPONSIBLE LABORATORY
enter name and address of the laboratory responsible for coordinating the scientific planning of the cruise
Name:
Address:
Country:

CHIEF SCIENTIST(S) Name:
enter name and laboratory of the person(s) in charge of the scientific work (chief of mission) during the cruise.

OBJECTIVES AND BRIEF NARRATIVE OF CRUISE:
enter sufficient information about the purpose and nature of the cruise so as to provide the context in which the report data were collected.

PROJECT (IF APPLICABLE) if the cruise is designated as part of a larger scale cooperative project (or expedition), then enter the name of the project, and of organisation responsible for co-ordinating the project.
Project name:
Coordinating body:
PRINCIPAL INVESTIGATORS Enter the name and address of the Principal Investigators responsible for the data collected on the cruise and who may be contacted for further information about the data. (The letter assigned below against each Principal Investigator is used on pages 2 and 3, under the column heading ‘PI’, to identify the data sets for which he/she is responsible)

<table>
<thead>
<tr>
<th>PI</th>
<th>name</th>
<th>body</th>
<th>address</th>
<th>country</th>
<th>e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOORINGS, BOTTOM MOUNTED GEAR AND DRIFTING SYSTEMS

This section should be used for reporting moorings, bottom mounted gear and drifting systems (both surface and deep) deployed and/or recovered during the cruise. Separate entries should be made for each location (only deployment positions need be given for drifting systems). This section may also be used to report data collected at fixed locations which are returned to routinely in order to construct ‘long time series’.

<table>
<thead>
<tr>
<th>PI</th>
<th>Latitude</th>
<th>Longitude</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>deg - min - N/S</td>
<td>deg - min - E/W</td>
<td>enter code(s) from list on last page.</td>
<td>Identify, as appropriate, the nature of the instrumentation the parameters (to be) measured, the number of instruments and their depths, whether deployed and/or recovered, dates of deployments and/or recovery, and any identifiers given to the site.</td>
</tr>
</tbody>
</table>

SUMMARY OF MEASUREMENTS AND SAMPLES TAKEN

Except for the data already described on page 2 under ‘Moorings, Bottom Mounted Gear and Drifting Systems’, this section should include a summary of all data collected on the cruise, whether they be measurements (e.g. temperature, salinity values) or samples (e.g. cores, net hauls). Separate entries should be made for each distinct and coherent set of measurements or samples. Different modes of data collection (e.g. vertical profiles as opposed to underway measurements) should be clearly distinguished, as should measurements/sampling techniques that imply distinctly different accuracy’s or spatial/temporal resolutions. Thus, for example, separate entries would be created for i) BT drops, ii) water bottle stations, iii) CTD casts, iv) towed CTD, v) towed undulating CTD profiler, vi) surface water intake measurements, etc.

Each data set entry should start on a new line - it’s description may extend over several lines if necessary.

NO, UNITS: for each data set, enter the estimated amount of data collected expressed in terms of the number of ‘stations’; miles’ of track; ‘days’ of recording; ‘cores’ taken; net ‘hauls’; balloon ‘ascents’; or whatever unit is most appropriate to the data. The amount should be entered under ‘NO’ and the counting unit should be identified in plain text under ‘UNITS’.

<table>
<thead>
<tr>
<th>PI</th>
<th>NO</th>
<th>UNITS</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Identify, as appropriate, the nature of the data and of the instrumentation/sampling gear and list the parameters measured. Include any supplementary information that may be appropriate, e.g. vertical or horizontal profiles, depth horizons, continuous recording or discrete samples, etc. For samples taken for later analysis on shore, an indication should be given of the type of analysis planned, i.e. the purpose for which the samples were taken.</td>
</tr>
</tbody>
</table>
TRACK CHART
You are strongly encouraged to submit, with the completed report, an annotated chart illustrating the route followed and the points where measurements were taken.

GENERAL OCEAN AREA(S):
Enter the names of the oceans and/or seas in which data were collected during the cruise - please use commonly recognised names (see, for example, international Hydrography Bureau Special Publication No. 23, Limits of Oceans and Seas).

SPECIFIC AREAS
If the cruise activities were concentrated in a specific area(s) of an ocean or sea, then enter a description of the area(s). Such description may include references to local geographic areas, to sea floor features, or to geographic coordinates.
Please insert here the number of each square in which data were collected from the below given chart.
PARAMETER CODES

METEOROLOGY
- **M01** Upper air observations
- **M02** Incident radiation
- **M05** Occasional standard measurements
- **M06** Routine standard measurements
- **M71** Atmospheric chemistry
- **M90** Other meteorological measurements

PHYSICAL OCEANOGRAPHY
- **H71** Surface measurements underway (T,S)
- **H13** Bathythermograph
- **H09** Water bottle stations
- **H10** CTD stations
- **H11** Subsurface measurements underway (T,S)
- **H72** Thermistor chain
- **H16** Transparency (eg transmissometer)
- **H17** Optics (eg underwater light levels)
- **H73** Geochemical tracers (eg freons)
- **D01** Current meters
- **D71** Current profiler (eg ADCP)
- **D03** Currents measured from ship drift
- **D04** GEK
- **D05** Surface drifters/drifting buoys
- **D06** Neutrally buoyant floats
- **D09** Sea level (incl. Bottom pressure & inverted echosounder)
- **D72** Instrumented wave measurements
- **D90** Other physical oceanographic measurements

CHEMICAL OCEANOGRAPHY
- **H21** Oxygen
- **H74** Carbon dioxide
- **H33** Other dissolved gases
- **H22** Phosphate
- **H23** Total - P
- **H24** Nitrate
- **H25** Nitrite
- **H75** Total - N
- **H76** Ammonia
- **H26** Silicate
- **H27** Alkalinity
- **H28** PH
- **H30** Trace elements
- **H31** Radioactivity
- **H32** Isotopes
- **H90** Other chemical oceanographic measurements

MARINE CONTAMINANTS/POLLUTION
- **P01** Suspended matter
- **P02** Trace metals
- **P03** Petroleum residues
- **P04** Chlorinated hydrocarbons
- **P05** Other dissolved substances
- **P12** Bottom deposits
- **P13** Contaminants in organisms
- **P90** Other contaminant measurements

MARINE BIOLOGY/FISHERIES
- **B01** Primary productivity
- **B02** Phytoplankton pigments (eg chlorophyll, fluorescence)
- **B71** Particulate organic matter (inc POC, PON)
- **B06** Dissolved organic matter (inc DOC)
- **B72** Biochemical measurements (eg lipids, amino acids)
- **B73** Sediment traps
- **B08** Phytoplankton
- **B09** Zooplankton
- **B03** Seston
- **B10** Neuston
- **B11** Nekton
- **B13** Eggs & larvae
- **B07** Pelagic bacteria/micro-organisms
- **B16** Benthic bacteria/micro-organisms
- **B17** Phytocehnos
- **B18** Zoobenthos
- **B25** Birds
- **B26** Mammals & reptiles
- **B14** Pelagic fish
- **B19** Demersal fish
- **B20** Molluscs
- **B21** Crustaceans
- **B28** Acoustic reflection on marine organisms
- **B37** Taggings
- **B64** Gear research
- **B65** Exploratory fishing
- **B90** Other biological/fisheries measurements

MARINE GEOLOGY/GEOPHYSICS
- **G01** Dredge
- **G02** Grab
- **G03** Core - rock
- **G04** Core - soft bottom
- **G08** Bottom photography
- **G71** In-situ seafloor measurement/sampling
- **G72** Geophysical measurements made at depth
- **G73** Single-beam echosounding
- **G74** Multi-beam echosounding
- **G24** Long/short range side scan sonar
- **G75** Single channel seismic reflection
- **G76** Multichannel seismic reflection
- **G26** Seismic refraction
- **G27** Gravity measurements
- **G28** Magnetic measurements
- **G90** Other geological/geophysical measurements