Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloEnhanced large-scale validation of satellite-based land rainfall products
Anno di pubblicazione2020
Autore/iChen F.1, W. T. Crow, L. Ciabatta3, P. Filippucci3, G. Panegrossi4, A. C. Marra4, S. Puca5, and C. Massari3
Affiliazioni autori1 SSAI, Inc., Lanham, MD, USA 2 USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, USA 3 Research Institute for Geo-Hydrological Protection, Italian National Research Council, Perugia, Italy 4 Institute of Atmospheric Sciences and Climate, Italian National Research Council, Rome, Italy 5 National Civil Protection Department, Rome, Italy
Autori CNR e affiliazioni
  • inglese
AbstractSatellite-based precipitation estimates (SPEs) are generally validated using ground-based rain gauge or radar observations. However, in poorly instrumented regions, uncertainty in these references can lead to biased assessments of SPE accuracy. As a result, at regional or continental scales, an objective basis to evaluate SPEs is currently lacking. Here, we evaluate the potential for large-scale, spatially continuous evaluation of SPEs over land via the application of collocation-based techniques (i.e., triple collocation (TC) and quadruple collocation (QC) analyses). Our collocation approach leverages the SM2RAIN (Soil Moisture to Rain) rainfall product, derived from the time series analysis of satellite-based soil moisture retrievals, in combination with independent rainfall datasets acquired from ground observations and climate reanalysis to validate four years of the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) H-SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management) H23 daily rainfall product. Large-scale maps of the H23 correlation metric are generated using both TC and QC analyses. Results demonstrate that the SM2RAIN product is a uniquely valuable independent product for collocation analyses, as other available large-scale rainfall datasets are often based on overlapping data sources and algorithms. In particular, the availability of SM2RAIN facilitates the large-scale evaluation of SPE products like H23 - even in areas lacking adequate ground-based observations to apply traditional validation approaches.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da-
Pagine a-
Pagine totali-
RivistaJournal of hydrometeorology (Online)
Attiva dal 2000
Editore: American Meteorological Society, - Boston, MA
Paese di pubblicazione: Stati Uniti d'America
Lingua: inglese
ISSN: 1525-7541
Titolo chiave: Journal of hydrometeorology (Online)
Titolo proprio: Journal of hydrometeorology (Online)
Titolo abbreviato: J. hydrometeorol. (Online)
Numero volume della rivista-
Fascicolo della rivista-
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)-
Parole chiaveSatellite precipitation, validation, triple colocation, EUMETSAT H SAF, SM2RAIN, Passive Microwave precipitation retrieval
Link (URL, URI)
Titolo parallelo-
Scadenza embargo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IRPI — Istituto di ricerca per la protezione idrogeologica
  • ISAC — Istituto di scienze dell'atmosfera e del clima
Moduli/Attività/Sottoprogetti CNR
  • DTA.AD004.155.001 : H SAF CDOP3
Progetti Europei-