Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloNeural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors
Anno di pubblicazione2019
Formato
  • Elettronico
  • Cartaceo
Autore/iBenevides, Pedro; Catalao, Joao; Nico, Giovanni
Affiliazioni autoriDGT; Univ Lisbon; CNR; State Univ SPSU
Autori CNR e affiliazioni
  • GIOVANNI NICO
Lingua/e
  • inglese
AbstractThis work presents a methodology for the short-term forecast of intense rainfall based on a neural network and the integration of Global Navigation and Positioning System (GNSS) and meteorological data. Precipitable water vapor (PWV) derived from GNSS is combined with surface pressure, surface temperature and relative humidity obtained continuously from a ground-based meteorological station. Five years of GNSS data from one station in Lisbon, Portugal, are processed. Data for precipitation forecast are also collected from the meteorological station. Spaceborne Spinning Enhanced Visible and Infrared Imager (SEVIRI) data of cloud top measurements are also gathered, providing collocated information on an hourly basis. In previous studies it was found that the time-varying PWV is correlated with rainfall and can be used to detected heavy rain. However, a significant number of false positives were found, meaning that the evolution of PWV does not contain enough information to infer future rain. In this work, a nonlinear autoregressive exogenous neural network model (NARX) is used to process the GNSS and meteorological data to forecast the hourly precipitation. The proposed methodology improves the detection of intense rainfall events and reduces the number of false positives, with a good classification score varying from 63% up to 72% and a false positive rate of 36% down to 21%, for the tested years in the dataset. A score of 64% for intense rain events classification with 22% false positive rate is obtained for the most recent years. The method also achieves an almost 100% hit rate for the rain vs no rain detection, with close to no false alarms.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da-
Pagine a-
Pagine totali14
RivistaRemote sensing (Basel)
Attiva dal 2009
Editore: Molecular Diversity Preservation International - Basel
Lingua: inglese
ISSN: 2072-4292
Titolo chiave: Remote sensing (Basel)
Titolo proprio: Remote sensing. (Basel)
Titolo abbreviato: Remote sens. (Basel)
Numero volume della rivista11
Fascicolo della rivista8
DOI10.3390/rs11080966
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)
  • ISI Web of Science (WOS) (Codice:000467646800076)
Parole chiaveglobal navigation satellite system (GNSS), precipitable water vapor (PWV), precipitation, meteorological sensors, spinning enhanced visible and infrared imager (SEVIRI), neural network, forecast
Link (URL, URI)-
Titolo parallelo-
Licenza-
Scadenza embargo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IAC — Istituto per le applicazioni del calcolo "Mauro Picone"
Moduli/Attività/Sottoprogetti CNR-
Progetti Europei-
Allegati