Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloAn integrated approach to investigate climate-driven rockfall occurrence in high alpine slopes: the Bessanese glacial basin, Western Italian Alps
Anno di pubblicazione2020
Formato
  • Elettronico
  • Cartaceo
Autore/iViani C., Chiarle M., Paranunzio R., Merlone A., Musacchio C., Coppa G., Nigrelli G.
Affiliazioni autoriViani C., IRPI e UNITO Chiarle M., Nigrelli G. IRPI Paranunzio R. IRPI e ISAC Merlone A., INRIM e IRPI Musacchio C., Coppa G. INRIM
Autori CNR e affiliazioni
  • ANDREA MERLONE
  • MARTA CHIARLE
  • GUIDO NIGRELLI
  • ROBERTA PARANUNZIO
Lingua/e
  • inglese
AbstractRockfalls are one of the most common instability processes in high mountains. They represent a relevant issue, both for the risks they represent for (infra) structures and frequentation, and for their potential role as terrestrial indicators of climate change. This study aims to contribute to the growing topic of the relationship between climate change and slope instability at the basin scale. The selected study area is the Bessanese glacial basin (Western Italian Alps) which, since 2016, has been specifically equipped, monitored and investigated for this purpose. In order to provide a broader context for the interpretation of the recent rockfall events and associated climate conditions, a cross-temporal and integrated approach has been adopted. For this purpose, geomorphological investigations (last 100 years), local climate (last 30 years) and near-surface rock/air temperatures analyses, have been carried out. First research outcomes show that rockfalls occurred in two different geomorphological positions: on rock slopes in permafrost condition, facing from NW to NE and/or along the glacier margins, on rock slopes uncovered by the ice in the last decades. Seasonal thaw of the active layer and/or glacier debutressing can be deemed responsible for slope failure preparation. With regard to timing, almost all dated rock falls occurred in summer. For the July events, initiation may have been caused by a combination of rapid snow melt and enhanced seasonal thaw of the active layer due to anomalous high temperatures, and rainfall. August events are, instead, associated with a significant positive temperature anomaly on the quarterly scale, and they can be ascribed to the rapid and/or in depth thaw of the permafrost active layer. According to our findings, we can expect that in the Bessanese glacierized basin, as in similar high mountain areas, climate change will cause an increase of slope instability in the future. To fasten knowledge deepening, we highlight the need for a growth of a network of high elevation experimental sites at the basin scale, and the definition of shared methodological and measurement standards, that would allow a more rapid and effective comparison of data.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da2591
Pagine a2610
Pagine totali-
RivistaJournal of mountain science (Online)
Attiva dal 2003
Editore: Springer - Beijing
Paese di pubblicazione: Cina
Lingua: inglese
ISSN: 1993-0321
Titolo chiave: Journal of mountain science (Online)
Titolo proprio: Journal of mountain science. (Online)
Titolo abbreviato: J. mt. sci. (Online)
Numero volume della rivista17
Fascicolo della rivista-
DOI-
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)-
Parole chiaveRockfalls, Climate change, Air and rock temperature, Periglacial environment, Western Italian Alps
Link (URL, URI)https://link.springer.com/article/10.1007/s11629-020-6216-y
Titolo parallelo-
LicenzaOpen access
Scadenza embargo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IRPI — Istituto di ricerca per la protezione idrogeologica
Moduli/Attività/Sottoprogetti CNR
  • DTA.AD003.208.001 : RiST2 la ricerca continua
Progetti Europei-
Allegati