Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloA single computational model for many learning phenomena
Anno di pubblicazione2015
FormatoElettronico
Autore/iPetrosino G.; Parisi D.
Affiliazioni autoriInstitute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
Autori CNR e affiliazioni
  • DOMENICO PARISI
  • GIANCARLO PETROSINO
Lingua/e
  • inglese
AbstractSimplicity is a basic principle of science and this implies that, if we want to explain the behaviour of animals by constructing robots that behave like real animals, one and the same robot should reproduce as many behaviours and as many behavioural phenomena as possible. In this paper we describe robots that both evolve and learn in their natural environment and, in addition, learn in the equivalent of an experimental laboratory and reproduce a variety of results of experiments on learning in animals. We introduce a new model of learning in which the weights of the connections that link the units of the robots neural network are genetically inherited and do not change during the robots life but what changes during life and makes the robots learn new behaviours is the synaptic receptivity of a special set of network units which we call learning units. The robots evolve in a variety of different environments and they learn in a variety of different ways including imprinting and learning by imitating the behaviour of others. Then we test the robots in the controlled conditions of an artificial laboratory and we reproduce a number of experimental results on both operant learning and classical conditioning, including learning and extinction curves, the role of the temporal interval between conditioned and unconditioned stimuli, and the influence of motivation on learning.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da-
Pagine a-
Pagine totali-
RivistaCognitive systems research
Attiva dal 1999
Editore: ScienceDirect - New York
Paese di pubblicazione: Paesi Bassi
Lingua: inglese
ISSN: 1389-0417
Titolo chiave: Cognitive systems research
Titolo proprio: Cognitive systems research.
Numero volume della rivista-
Fascicolo della rivista-
DOI10.1016/j.cogsys.2015.06.001
Verificato da referee-
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)
  • Scopus (Codice:2-s2.0-84936806364)
Parole chiaveEvolution, Learning, Neural network, Robots
Link (URL, URI)http://www.scopus.com/inward/record.url?eid=2-s2.0-84936806364&partnerID=q2rCbXpz
Titolo parallelo-
Licenza-
Scadenza embargo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • ISTC — Istituto di scienze e tecnologie della cognizione
Moduli/Attività/Sottoprogetti CNR-
Progetti Europei-
Allegati