Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloUse of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins
Anno di pubblicazione2006
FormatoElettronico
Autore/iPiraino, Paolo; Ricciardi, Annamaria; Salzano, Giovanni; Zotta, Teresa; Parente, Eugenio
Affiliazioni autoriUniversita degli Studi della Basilicata
Autori CNR e affiliazioni
  • EUGENIO PARENTE
  • TERESA ZOTTA
Lingua/e
  • inglese
AbstractConventional multivariate statistical techniques (hierarchical cluster analysis, linear discriminant analysis) and unsupervised (Kohonen Self Organizing Map) and supervised (Bayesian network) artificial neural networks were compared for as tools for the classification and identification of 352 SDS-PAGE patterns of whole cell proteins of lactic acid bacteria belonging to 22 species of the genera Lactobacillus, Leuconostoc, Enterococcus, Lactococcus and Streptococcus including 47 reference strains. Electrophoretic data were pre-treated using the logistic weighting function described by Piraino et al. [Piraino, P., Ricciardi, A., Lanorte, M. T., Malkhazova, I., Parente, E., 2002. A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnol. Lett. 24, 1477-1482]. Hierarchical cluster analysis provided a satisfactory classification of the patterns but was unable to discriminate some species (Leuconostoc, Lb. sakei/Lb. curvatus, Lb. acidophilus/Lb. helveticus, Lb. plantarum/Lb. paraplantarum, Lc. lactis/Lc. raffinolactis). A 7 × 7 Kohonen self-organizing map (KSOM), trained with the patterns of the reference strains, provided a satisfactory classification of the patterns and was able to discriminate more species than hierarchical cluster analysis. The map was used in predictive mode to identify unknown strains and provided results which in 85.5% of cases matched the classification obtained by hierarchical cluster analysis. Two supervised tools, linear discriminant analysis and a 23:5:2 Bayesian network were proven to be highly effective in the discrimination of SDS-PAGE patterns of Lc. lactis from those of other species. We conclude that data reduction by logistic weighting coupled to traditional multivariate statistical analysis or artificial neural networks provide an effective tool for the classification and identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. © 2005 Elsevier B.V. All rights reserved.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da336
Pagine a346
Pagine totali-
RivistaJournal of microbiological methods
Attiva dal 1983
Editore: Elsevier Science Ireland - Shannon
Paese di pubblicazione: Paesi Bassi
Lingua: inglese
ISSN: 0167-7012
Titolo chiave: Journal of microbiological methods
Titolo proprio: Journal of microbiological methods.
Titolo abbreviato: J. microbiol. methods
Numero volume della rivista66
Fascicolo della rivista2
DOI10.1016/j.mimet.2005.12.007
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)
  • Scopus (Codice:2-s2.0-33746862912)
Parole chiaveArtificial neural networks, Cluster analysis, Discriminant analysis, Kohonen networks, SDS-PAGE of whole cell proteins
Link (URL, URI)http://www.scopus.com/record/display.url?eid=2-s2.0-33746862912&origin=inward
Titolo parallelo-
Licenza-
Scadenza embargo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • ISA — Istituto di Scienze dell'Alimentazione
Moduli/Attività/Sottoprogetti CNR-
Progetti Europei-
Allegati