Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloRanking of pattern recognition parameters for premature ventricular contractions classification by neural networks.
Anno di pubblicazione2004
Autore/iChristov I, Bortolan G,
Affiliazioni autoriCentre of Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria Institute of Biomedical Engineering ISIB-CNR, Padova, Italy
Autori CNR e affiliazioni
  • inglese
AbstractDetection and classification of ventricular complexes from a limited number of ECG leads is of considerable importance in critical care or operating room patient monitoring. Beat-to-beat detection allows the heart rhythm evolution to be followed and various types of arrhythmia to be recognized. A quantitative analysis is proposed of pattern recognition parameters for classification of normal QRScomplexes and premature ventricular contractions (PVC). Twentysix parameters have been defined: the width of the QRS complex, three vectorcardiogram parameters and 11 from two ECG leads. These parameters include: amplitudes of positive and negative peaks, area of positive and negative waves, various time-interval durations, amplitude and angle of the QRS vector, etc. They are measured for all QRS complexes annotated as 'normals' and 'PVCs' from the 48 ECG recordings of the MIT-BIH arrhythmia database. Neural networks (NN) are shown to be a useful instrument for the analysis of large quantities of parameters. Separate ranking of any parameter and homogeneous group ranking (amplitude, area, interval, slope and vector) were performed. From the two ECG leads, the first three ranked parameter groups for clustering of PVCs are amplitude, slope and interval, while for N clustering they are vector, amplitude and area. Considering the entire parameter set, we obtained N = 99.7% correct detection of normal QRS complexes and PVC = 98.5% of premature ventricular complexes. The study also shows that simultaneous analysis of two ECG channels yields better accuracy compared to using a single channel: the improvement is 0.1% in the classification of N beats and 4.5% for PVC beats.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da1281
Pagine a1290
Pagine totali-
RivistaPhysiological measurement (Print)
Attiva dal 1993
Editore: Institute of Physics Publishing. - Bristol
Paese di pubblicazione: Regno Unito
Lingua: inglese
ISSN: 0967-3334
Titolo chiave: Physiological measurement (Print)
Titolo abbreviato: Physiol. meas. (Print)
Numero volume della rivista24
Fascicolo della rivista-
Verificato da refereeSì: Internazionale
Stato della pubblicazione-
Indicizzazione (in banche dati controllate)
  • ISI Web of Science (WOS) (Codice:000224710800018)
  • Scopus (Codice:2-s2.0-7044263116)
Parole chiave-
Link (URL, URI)-
Titolo parallelo-
Scadenza embargo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • ISIB — Istituto di ingegneria biomedica
Moduli/Attività/Sottoprogetti CNR
  • ME.P06.014.001 : Modellazione di Sistemi Complessi Incerti
Progetti Europei-
2004_Phys_Meas (documento privato )
Tipo documento: application/download

Dati storici
I dati storici non sono modificabili, sono stati ereditati da altri sistemi (es. Gestione Istituti, PUMA, ...) e hanno solo valore storico.