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Abstract 

This research focused on investigating the contamination levels, sources, and potential ecological 

and human health risks associated with 16 polycyclic aromatic hydrocarbons (PAHs) present in 

surficial sediments of the Abadan freshwater resources in the northwest of the Persian Gulf. The 

concentrations of ∑16PAHs varied between 67.8 to 57748 ng/g with an average of 8222 ng/g. 

Approximately 30% of the ∑16PAHs were attributed to seven carcinogenic PAHs. The 

predominant components of the PAHs found in the sediments were the 3- and 4-ring PAHs, which 

accounted for approximately 63% of the total PAHs present in the surficial sediments. The 

diagnostic ratios and principal component analysis (PCA) indicate that the PAHs detected in the 

sediments originated from various sources, including traffic emissions, coal, and biomass 

combustion, petroleum leakage, and wastewater. According to our ecological risk assessment, 

substantial harm to the biota was observed in the Arvand River. An assessment of cancer risk 

indicated that both adults and children in Abadan area are exposed to a considerable cancer risk 

due to the presence of PAHs. In conclusion, ongoing monitoring of PAH pollution and implement 

measures to protect freshwater ecosystems near the Persian Gulf are essential.  

Keywords: Polycyclic aromatic hydrocarbons (PAHs); Surficial sediments; Arvand River; 

Petroleum; Ecological risk 
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 1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic contaminants that have become a 

major concern worldwide due to their persistence, toxic properties, and potential adverse impacts 

on both the environment and human health (Jafarabadi et al. 2019; Xu et al. 2021). PAHs are 

lipophilic contaminants containing two or more fused benzene rings, and they are formed through 

various natural and anthropogenic processes (Sun et al. 2017). PAHs are formed primarily through 

the incomplete combustion or pyrolysis of organic materials, and they are commonly associated 

with industrial activities, particularly those related to petroleum products, which contribute 

substantially to PAH pollution in the environment. (Yuan et al. 2014; Patel et al. 2020; Han et al. 

2021;). PAHs are of particular concern in river ecosystems, as rivers act as conduits for transporting 

pollutants from land-based sources to coastal areas (Men et al. 2009; Tian et al. 2013). River 

sediments, characterized by their high affinity for PAHs and their role as long-term sinks, play a 

crucial role in the accumulation and storage of these contaminants (Santana et al. 2015; Ashayeri 

et al. 2018). Sediments can act as both temporary and long-term secondary sources of PAHs, as 

they can release the adsorbed PAHs back into the water column through processes such as sediment 

resuspension (Qiu et al. 2009; Liu et al. 2016; Lin et al. 2018; Hosseinzadeh et al. 2023). This 

dynamic behavior makes river sediments an important component in the cycling and fate of PAHs 

within aquatic systems.  

PAHs can be classified into two categories based on their molecular weights: low molecular weight 

(LMW) and high molecular weight (HMW) PAHs (Abdollahi et al. 2013). LMW-PAHs typically 

consist of two to three aromatic rings, such as naphthalene and phenanthrene. These compounds 

are relatively small in size, have lower molecular weights, and are more volatile compared to 

HMW-PAHs. On the other hand, HMW-PAHs contain four or more aromatic rings, such as pyrene 
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and benzo[a]pyrene. The HMW-PAHs are larger in size compared to LMW-PAHs, have higher 

molecular weights, and are generally less volatile (Zeng et al. 2018). LMW-PAHs are more soluble 

in water and can readily enter the atmosphere, whereas HMW-PAHs tend to be more hydrophobic 

and have a greater tendency to adsorb onto particles or sediment (Niu et al. 2021). The differences 

in their physicochemical properties and behavior also contribute to variations in their toxicity and 

potential effects on human health and the environment. In aquatic ecosystems, PAHs can 

bioaccumulate in organisms, leading to adverse effects on the entire food chain (Pozo et al. 2011). 

Some PAHs have been shown to be mutagenic and genotoxic, increasing the risk of DNA damage 

and the development of various types of cancer, including lung, liver, bladder, and skin cancer (Ma 

et al. 2019; Huang et al. 2019; Ravanbakhsh et al. 2022). Certain PAH compounds have the 

potential to disrupt the endocrine system, leading to hormonal imbalances and reproductive 

disorders (Kakavandi et al. 2023; Lee and Choi, 2023). Additionally, PAH exposure during 

pregnancy may pose risks to the developing fetus, potentially causing developmental abnormalities 

and long-term health effects (Drwal et al. 2019; El-Sikaily et al. 2023). PAHs can also negatively 

impact the health of benthic organisms residing in sediment, as they can be absorbed through the 

skin and affect physiological processes (Pheiffer et al. 2018).  

Abadan city, located near the northwest of the Persian Gulf, hosts one of the largest oil refineries 

in the Middle East. In addition, the region has several industrial factories, and is characterized by 

high vehicle traffic loads. They both contributes to substantial PAHS pollution sources in the 

region (Mohammad Asgari et al. 2023). The petroleum emission and leakage in this area contains 

a complex mixture of organic compounds, including highly toxic PAHs, which accumulate in the 

local sediments over time and are eventually transferred downstream to Persian Gulf via sediment 

transport. Therefore, understanding the levels, distribution patterns, and sources of PAH pollution 
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in the local river sediments is crucial for assessing the environmental risks associated with these 

compounds and developing effective mitigation strategies. To the best of our knowledge, this 

research presented an updated comprehensive study on the Abadan freshwater resources 

considering three rivers and covering all potential sources of PAHs. 

Accordingly, the main research objectives are (1) quantify the concentrations of PAHs in surficial 

sediments of the freshwater resources within Abadan city; (2) analyze the spatial distribution and 

potential hotspots of PAHs contamination; (3) identify the major PAH compounds and their 

respective sources; and (4) evaluate the ecological and health risks associated with PAH pollution 

in the study area.  

Our findings are of value to policymakers, environmental authorities, and local communities in 

mitigating the risks posed by PAH pollution, protecting the freshwater ecosystems, and ensuring 

the sustainable use of these vital resources near the Persian Gulf. 

2. Materials and methods 

2.1. Study area 

Abadan, located in the southwestern region of Iran's Khuzestan province, is the largest industrial 

city in the area. Its coordinates are approximately 30° 20′ 40″ N and 48° 17′ 20″ E. As of 2016, it 

had a population of around 347,000. The climate of the study area can be described as semi-arid, 

with extremely high temperatures in the summer and mild temperatures in the winter. The annual 

precipitation is 157 mm, and the temperature ranges from -2.2°C to 52.3°C. Abadan is bordered 

by the three main rivers of Khuzestan province: the Arvand River to the west; the Bahmanshir 

River to the east; and the Karoon River to the north (Fig. 1). The Karoon River, with a length of 
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approximately 890 km and a catchment area covering around 60,000 km2, is recognized as both 

the largest and the only navigable watercourse in Iran. The Karoon River flows through the 

Khuzestan plain, forming the Bahmanshir River before converging with the Arvand River (Fig. 1). 

The Bahmanshir River, extending approximately 83 km, runs through the northern and eastern 

edges of Abadan City, ultimately debouches into the Persian Gulf. The Arvand River serves as the 

expansive boundary between Iraq and Iran and holds the distinction of being the largest river in 

the Persian Gulf as it carries the combined flow of the Euphrates and Tigris Rivers, which join 

forming the Arvand River roughly 70 km northwest of Abadan city. The Arvand River flows 

through three majors two cities, namely Al-Basre in Iraq and Abadan in Iran. For the inhabitants 

of these cities, the Arvand River serves as a vital source of seafood and drinking water. Its 

formation occurs at the convergence of the Shatt al-Arab in Iraq and the Karoon River in Iran. The 

Persian Gulf receives an annual discharge of approximately 48 tons of oil residues from the Arvand 

River. (Hosseini et al. 2013). 

 

Fig 1. Location of the Abadan freshwater resources and sampling sites 

2.2. Sample collection and chemical analysis 

A total of eight sampling sites were established in March 2023, which included one sample taken 

from the Karoon River (S1), two samples from the Bahmanshir River (S3 and S7), and five samples 

from the Arvand River (S2, S4, S5, S6, and S8). We selected these sampling sites so that they 

represent Abadan freshwater resources covering three rivers and all potential sources of PAHs. For 

each sampling location, the samples were collected in triplicate from three sub-sites, specifically 

from the river banks and middle of the channel, and combined to create a composite sample. To 

collect the surface sediment samples, a stainless steel Van Veen grab sampler was used at a depth 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



7 
 

of 10 cm. Every 0.5-kg sample was carefully placed into a pre-cleaned wide-mouth glass jar and 

kept in an ice bucket containing crushed ice until shipped back to the laboratory for further 

analysis.  

All samples were analyzed for the 16 US EPA priority PAHs, including Naphthalene (Nap), 

Acenaphthene (Ace), Fluorene (Flu), Acenaphthylene (Acy), Phenanthrene (Phe), Anthracene 

(Ant), Fluoranthene (Fla), Pyrene (Pyr), Chrysene (Chr), Benzo[a]anthracene (BaA), 

Benzo[k]fluoranthene (BkF), Benzo[b]fluoranthene (BbF), Benzo[a]pyrene (BaP), 

Dibenzo[a,h]anthracene (DahA), Benzo[g,h,i]perylene (BghiP), and Indeno[123-cd]pyren (InP). 

PAHs were extracted from 10 g of each of the sediment samples that had been previously dried 

and homogenized using a Soxhlet extractor. The extraction process involved using 250 ml of a 

mixture of n-hexane and dichloromethane (DCM) for a duration of 8 hours. Five surrogate internal 

standards including naphthalene-d8, phenanthrene-d10, p-terphenyl-d14, chrysene-d12, and 

perylene-d12 were directly added to the samples, prior to extraction. Elemental sulfur removal was 

carried out by treating the extracted samples with activated copper. Following this, they were 

concentrated and solvent-exchanged to n-hexane. Finally, the samples were further reduced to a 

volume of 2-3 mL using a rotary evaporator. For cleaning up the extracts, a 1:2 (v/v) alumina/silica 

gel column was utilized. The extracts were subjected to a 48-hour extraction process with DCM, 

followed by drying in a muffle furnace at temperatures of 180 °C and 240 °C for 12 hours. Then, 

PAHs were eluted with 70 mL of DCM/hexane (2:3). The eluate was reduced to 0.2 mL under a 

gentle gas stream consisting of pure nitrogen. To enable instrumental quantitation of the PAHs, a 

known quantity of hexamethylbenzene was added as an internal standard for PAH analysis. Gas 

chromatography–mass spectrometry (GC-MS) (Agilent 6890N/5975 MSD), coupled with an HP-

5972 mass selective detector operating in the electron impact mode (70 eV), and equipped with a 
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DB-5 capillary column (30 m × 0.25 mm diameter, 0.25 μm film thickness) was employed. The 

GC carrier gas used was high-purity helium, flowing at a constant rate of 1.5 mL/min. The 

chromatographic parameters were set as follows: injector temperature at 270 °C, detector 

temperature at 280 °C, and oven temperature initially at 60 °C for 5 minutes, gradually increased 

to 290 °C at a rate of 3 °C min−1, and then held for 40 minutes (Xing et al. 2011; Yang et al. 2013) 

. The identification of the target compounds was accomplished by analyzing the mass spectra and 

retention time. To ensure the precision and accuracy of the analytical methods, the recovery of 

surrogate standards was monitored. The percentage recoveries of the samples varied from 93% to 

104%.  

2.3. Potential ecological risk of PAHs 

To assess the potential ecological risk of PAHs in sediment, measured concentrations were 

compared to the Effects Range Low (ERL) and Effects Range Median (ERM) standards proposed 

by Long and Macdonald (1998). Organisms' responses to PAHs are categorized based on their 

concentrations compared to the ERL and ERM benchmarks. Concentrations below the ERL are 

expected to be non-dangerous, concentrations above the ERM are identified as frequently 

dangerous, and concentrations between these benchmarks are considered harmful occasionally for 

organisms (Zhang et al. 2016; Haghnazar et al. 2023a). As single guideline values do not consider 

the toxic effects of mixtures of environmental contaminants, a mean ERM quotient (M-ERM-Q) 

was determined to estimate the ecological risk posed by the multiple toxic PAH components: 

1

i n

sample

i

iC ERM

M ERM Q
n

=

=
− − =


 

(1) 
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in which Csample is the concentration of PAHi in the sediment, ERMi is the value of ERM for the 

same PAH, i , and n refers to the number of PAHs in the study. The M-ERM-Q is classified into 

four levels with different ranges. The first level, ≤ 0.10, indicates no harmful biological effect. The 

second level, 0.11–0.50, suggests a potential adverse effect. The third level, 0.51–1.50, signifies a 

moderate adverse effect. Finally, the fourth level, > 1.50, represents a significant harmful effect 

(Lin et al. 2018). 

Among all 16 PAHs, seven PAHs including Chr, BaA, BbF, BkF, BaP, DahA, and InP are identified 

as potentially carcinogenic to humans (Miao et al. 2023). Specifically, BaP is recognized as one of 

the most hazardous PAHs, and it serves as a benchmark for assessing the relative toxicity of other 

PAH compounds (Thiombane et al. 2019). The sediment toxicity based on seven carcinogenic PAH 

(ΣC-PAHs) was determined by toxicity equivalency factors (TEFs). BaP was designated as the 

reference chemical with a value of 1, whereas other PAHs were assigned specific TEF values 

according to their relative carcinogenicity to BaP. The toxicity of sediments is calculated using the 

BaP toxic equivalent quantity (TEQBaP) as follows (Qu et al. 2018): 

7

1
ii PAH

i

i

BaPTEQ TEF C

=

=

=   (2) 

in which TEQBaP, TEF, and C are the toxic equivalent quantity based on BaP, the toxicity 

equivalency factor for PAHi, and the concentration of PHAi, respectively. According to USEPA 

(2012), TEFs for Chr, BaA, BbF, BkF, BaP, DahA, and InP were 0.01, 0.1, 0.1, 0.1, 1, 5, and 0.1, 

respectively.  

2.4. Potential human health risk of PAHs 
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The risk to human health resulting from PAH exposure was evaluated through the calculation of 

Incremental Lifetime Cancer Risk (ILCR). ILCR represents an individual's increased probability 

of developing cancer over their lifetime due to exposure to substances with carcinogenic potential 

(Han et al. 2022). Dermal contact is considered the primary pathway for PAH exposure in 

sediment. Additionally, unintentional ingestion of sediments, such as through hand-to-mouth 

intake could also contribute to exposure (Ashayeri et al. 2018; Ghasemi and Keshavarzifard, 2022). 

The ILCR due to ingestion and dermal contact are calculated using the following equations (Chen 

et al. 2022): 

3

70BaP ing ing

ing

BWTEQ CSF IR EF ED CF

ILCR
BW AT

     

=


 
(3) 

3

70BaP derm

derm

BWTEQ CSF SA AF ABS EF ED CF

ILCR
BW AT

       

=


 

(4) 

total ing derm
ILCR ILCR ILCR= +  (5) 

where TEQBaP is the toxic equivalent quantity based on BaP, CSFing and CSFderm are the 

carcinogenic slope factor for ingestion and dermal contact, respectively (mg/kg/day) (Chen et al. 

2022); BW is the average body weight, 70 kg for adults and 15 kg for children (USEPA, 2014); 

IRing is the sediment ingestion rate for receptor, 100 (mg/day) for adults and 200 (mg/day) for 

children (Grmasha et al. 2023); EF is the exposure frequency, 350 (days/year) for both adults and 

children (USEPA, 2014); ED is the exposure duration, 20 years for adults and 6 years for children 

(USEPA, 2014); CF is the conversion factor, 10-6 for both adults and children; AT is the averaging 

time for carcinogenic effects, 70 × 365 = 2550 (days) for both adults and children (Grmasha et al. 

2023); SA is the skin surface area, 5700 (cm2/day) for adults and 2800 (cm2/day)  for children 
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(USEPA, 2014); AF is the sediment to skin adherence factor, 0.07 (mg/cm2) for adults and 0.2 

(mg/cm2)  for children (USEPA, 2011); and ABS is the dermal absorption factor for PAHs, 0.13 

for both adults and children (USEPA, 2011). ILCRtotal values below 10-6 indicate a complete 

absence of risk, values between 10-6 and 10-4 suggest an acceptable level of carcinogenic risk, and 

ILCRtota values exceeding 10-4 present a risk of cancer. 

 

3. Results and discussion 

3.1. Concentration, spatial distribution, and composition of PAHs in the surficial sediments  

Descriptive statistical data and spatial distribution of 16 PAHs in the surficial sediments of Karoon, 

Bahmanshir, and Arvand rivers are presented in Table 1 and Fig. 2, respectively. The total PAHs 

concentration ranged from 67.8 to 57748 ng/g with an average of 8222 ng/g. Lower molecular 

weight PAHs (composed of two to three rings) had a mean concentration of 4673 ng/g, whereas 

higher molecular weight PAHs (with four to six rings) had a mean concentration of 3549 ng/g. Flu 

exhibited the highest mean concentration among the PAHs at 1177 ng/g, followed by Phe, Chr, 

and Acy with mean concentrations of 974, 959, and 839 ng/g, respectively. On the contrary, BbF 

had the minimum concentration in the sediments with a mean concentration of 46.4 ng/g. The 

concentrations of ΣC-PAHs ranged from 18 to 16104 ng/g, with a mean value of 2349.4 ng/g. 

These seven carcinogenic PAHs accounted for approximately 30% of all the PAHs in the sediment, 

emphasizing the significant presence of carcinogenic compounds. The total concentration of PAHs 

in sampling sites ranked in the order of S5 (55679 ng/g) > S1 (2374.9 ng/g) > S4 (1970.6 ng/g) > 

S6 (1963.2 ng/g) > S8 (743.8 ng/g) > S2 (596 ng/g) > S3 (196.8 ng/g) > S7 (97.2 ng/g). 
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Table 1. The concentration of PAHs (ng/g) in sediments samples collected from the Abadan water 

resources. 

The highest concentration of ∑PAHs was found in sampling site S5, which is close to the Abadan 

oil refinery. The high concentration of PAHs in this sampling site is due to petrogenic 

contamination associated with the discharge of petroleum emission and leakage into the Arvand 

River. The concentration of PAHs in this sampling sites ranged from 165 to 8994 ng/g with the 

order of Flu > Chr > Phe > Acy > Ace > Nap > Pyr > Ant > DahA > BghiP > BaA > BkF > InP > 

BaP > Fla > BbF. Other highly concentrated areas were found in sampling sites S1, S4, and S6, 

which are related to effluents from a soap factory, a petrochemical complex, and downstream of 

Abadan oil refinery, respectively. According to the concentration ranges, the pollution levels of 

total PAHs can be classified into four categories: low pollution (<100 ng/g), moderate pollution 

(101-1000 ng/g), high pollution (1001-5000 ng/g), and very high pollution (>5000 ng/g) 

(Bemanikharanagh et al., 2017). Using this criterion, sampling site S7 was identified as having 

low pollution levels, sampling sites S2, S3, and S8 were found as moderately polluted, sampling 

sites S1, S4, and S6 were classified as highly polluted, and sampling site S5 was determined to be 

very highly polluted site.  

Fig. 2. Spatial distribution of PAHs in the surficial sediments 

Figure 3 illustrates the distribution of PAHs in the sediments, categorized according to the number 

of aromatic rings. PAHs can be classified into five groups, namely 2-, 3-, 4-, 5-, and 6-ring PAHs, 

and the percentages of these different PAH types are displayed in Fig. 3. According to Fig. 3, a 

larger fraction of total PAHs was composed of by 3- and 4-ring compounds (77.1%). The Abadan 

oil refinery sampling site (S5) exhibited a higher percentage (53%) of 3-ring PHAs, which can be 
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attributed to sediment pollution caused by petrogenic PAHs due to petroleum emission and 

leakage. On the other hand, the sampling site S1 had a higher percentage (43%) of 4-ring PAHs. 

This increase is likely associated with the soap-making processes at the factory. 

Fig. 3. Composition profile of total PAHs in sampling sites 

 

 

3.2. Sources of PAHs in the surficial sediments 

PAHs can originate from four main sources: geogenic, petrogenic, pyrolytic, and biogenic (Traven, 

2013). Diagnostic ratios are widely employed to determine the potential sources of PAH 

contamination in the environment (Wu et al. 2019; Ambade et al. 2023). These ratios, such as 

Ant/(Ant + Phe), Fla/(Fla + Pyr), BaA/(BaA + Chr), and InP/(InP + BghiP), have been extensively 

used to investigate the origins of PAHs. The Ant/(Ant + Phe) ratio is particularly useful for 

identifying petrogenic sources, whereas the Fla/(Fla + Pyr), BaA/(BaA + Chr), and InP/(InP + 

BghiP) ratios are more effective in identifying pyrolytic sources. According to Yunker et al. (2022), 

if the Ant/(Ant + Phe) ratio is less than 0.1, it indicates petroleum contamination as the source; 

otherwise, biomass and coal combustion are the likely sources. A Fla/(Fla + Pyr) ratio of less than 

0.4 suggests petroleum sources, whereas a ratio greater than 0.5 indicates biomass and coal 

combustion. Otherwise, petroleum combustion, including gasoline, kerosene, and crude oil, is the 

probable source. If the BaA/(BaA + Chr) ratio is below 0.2, it suggests that petroleum emissions 

are the main contributor to PAH pollution. On the other hand, a ratio exceeding 0.35 indicates that 

biomass and coal combustion are the predominant sources. When the ratio falls between these two 
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values, it signifies petroleum combustion pollution. Finally, ratios of InP/(InP + BghiP) less than 

0.2, greater than 0.5, and between 0.2 and 0.5 show petroleum, biomass and coal combustion, and 

petroleum combustion, respectively, as the sources of PAHs. As shown in Fig. 4, At all the 

sampling sites, the Ant/(Ant + Phe) ratio exceeded 0.1, suggesting the presence of biomass and 

coal combustion as a likely source of PAHs.  

Fig. 4. Diagnostic ratios for source analysis 

Regarding the Fla/(Fla + Pyr) ratio, sampling sites S3, S4, S5, S6, and S8 exhibited values ranging 

from 0.13 to 0.37, indicating potential emissions from petroleum sources. In contrast, at sampling 

sites S2 and S7, the PAHs may originate from petroleum combustion, as the Fla/(Fla + Pyr) ratios 

fell between 0.4 and 0.5. At sampling site S1, the ratio of Fla/(Fla + Pyr) exceeded 0.5, indicating 

a source related to biomass and coal combustion. The BaA/(BaA + Chr) ratios varied from 0.18 to 

0.83, suggesting the presence of three different sources of PAHs. Sampling site S5 exhibited a ratio 

below 0.2, suggesting petroleum as a source, whereas sampling site S1 demonstrated a ratio 

exceeding 0.35, indicating biomass and coal combustion. The ratios at sampling sites S2, S3, S4, 

S6, S7, and S8 fell within the 0.2 to 0.35 range, indicating petroleum combustion. Finally, the 

InP/(InP + BghiP) ratios for all sampling sites ranged from 0.2 to 0.5, signifying petroleum 

combustion as a major source of PAHs in the study area. 

Additionally, principal components analysis (PCA) was employed to identify the potential sources 

of PAHs in the surficial sediments of the Abadan water resources (Agyeman et al. 2023; Şimşek 

et al. 2023; Haghnazar et al. 2023b). The result of PCA with eigenvalues > 1 is given in Fig. 5. 

Two principal components were extracted in the sediments, describing 94.4% of the total variance. 

The first component (PC1) explained 71.9% of the total variance and was specified by Ace, Acy, 
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Fla, Pyr, BaA, BbF, BkF, BaP, DahA, BghiP, and InP. The presence of BaP, BghiP, and InP might 

be an indicator of diesel and gasoline combustion. (Motelay-Massei et al. 2005; Araki et al. 2009; 

Montuori et al., 2016).  

Fig 5. Loading factors of PCA for the surficial sediments  

In addition, BbF, BkF, and DahA are indicators of petrol combustion, particularly diesel 

combustion (Larsen and Baker, 2003). As a result, PAHs containing 5-6 rings primarily originate 

from automobile exhaust emissions. Pry, BaA, and Fla are indicators of coal combustion and diesel 

emission sources (Yang et al. 2013). Ace and Acy are the main products of coal and biomass 

combustion (Simcik et al. 1999; Wang et al, 2013). Overall, the first principal component 

represents a source related to traffic, coal, and biomass combustion sources. The second 

component (PC2) is comprised of Nap, Flu, Phe, Ant, Chr, BaA, and BaP with 22.5% of the total 

variance. The main source of Nap is predominantly attributed to oil-related factors, which 

encompass oil leakage and the release of by-products throughout the production and transportation 

processes (Shi et al. 2022). Flu, Phe, and Ant are also associated with petrogenic sources 

(Pampanin and Sydnes 2013). In addition, Nap, Flu, and Phe, BaA are commonly detected in the 

discharge from industries and municipal wastewater (Guo et al. 2007; Gaurav et al. 2021). Overall, 

the second principal component is associated with petroleum leakage and wastewater. 

3.3. Ecotoxicological concerns and cancer risk 

The concentration of PAHs at the sampling sites was compared to the respective ERL and ERM 

values. The findings revealed that except for Ace, Flu, and Acy, the levels of other PAHs were 

below their corresponding ERL values at sampling sites S1, S2, S4, and S6. Moreover, the 

concentration of DahA at sampling sites S1 and Phe at sampling sites S4 and S6 exceeded their 
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corresponding ERL values. At sampling sites S3, S7, and S8, all PAH concentrations were detected 

below the ERL values, except for Flu and Ace at Sampling site S8. Conversely, at sampling site 5, 

all PAH concentrations were higher than the ERL values, except for BbF. Additionally, Nap, Ace, 

Flu, Acy, Phe, Ant, Pyr, Chr, DahA, BghiP, and InP concentrations surpassed their corresponding 

ERM values. Overall, the results indicate that the presence of PAHs in the sediments of the 

Bahmanshir River is unlikely to cause adverse biological effects. Occasionally, adverse biological 

effects were observed downstream of the Karoon River, and damage to the biota was found in the 

Arvand River. We also calculated the M-ERM-Q values to determine the toxicity of PAHs in the 

sediment samples. The values of M-ERM-Q at sampling sites ranked in the order of S5 (3.99) > 

S1 (0.13) > S6 (0.11) > S4 (0.09) > S2 = S8 (0.03) > S3 (0.01) > S7 (0.006). According to the 

values of M-ERM-Q, a substantial harmful effect for organisms was detected for sampling site S5 

(high ecological risk). Sampling sites S1 and S6 indicated a potential adverse effect (medium-low 

ecological risk), however, no harmful biological effect (low ecological risk) was found in sampling 

sites S2, S3, S4, S7, and S8. We also analyzed the values of TEQBaP for the sediments of the 

Abadan freshwater resources. The values of TEQBaP in sampling sites varied from 16 to 

12424ng/g. Among all sampling sites, the highest values of TEQBaP were detected in S5 (12424.1 

ng/g) followed by S1(904ng/g), and then S6 (701ng/g). Sampling sites S7 and S3 had the lowest 

values of TEQBaP accounting for 65and 16 (ng/g), respectively. Based on Canadian guidelines for 

soil quality, it is recommended that the TEQBaP value should not exceed 600 ng/g for both 

ecosystem and human health protection (Yu et al. 2015). In the study area, the values of TEQBaP 

for sampling sites S5, S1, and S6 were detected as higher than the permissible values, indicating 

toxicity of the surficial sediments in these areas. This observation suggests that the presence of 

industrial effluents discharged by factories, municipal wastewater, and petroleum pollution 
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contribute substantially to the toxicity levels affecting human health and aquatic organisms within 

the study region. 

A cancer risk assessment was conducted on the PAHs present in sediments of the Abadan 

freshwater resources, taking into account two main routes of exposure: ingestion and dermal 

absorption. The assessment encompassed both children and adults. The evaluation involved 

determining the toxic equivalency concentration TEQ found in the sediments. The TEQ value was 

assessed using the total BaPeq, which was calculated by applying toxic equivalence factors (TEFs) 

to each PAH. The findings indicated that children had higher ILCR valus than adults through the 

two primary pathways. Among these pathways, the dermal absorption of sediments was identified 

as the primary route of exposure for PAHs, followed by ingestion for both adults and children. 

According to Table 2, the ranking of ILCR values across sampling sites was as follows: S5 < S1 < 

S6 < S4 < S8 < S2 < S7 < S3, applicable to both adults and children. It was observed that the 

calculated cancer risk values for all sampling sites exceeded the acceptable threshold of 1 × 10−4 

for both adults and children. Consequently, the exposure to PAHs in Abadan freshwater resources 

posed a significant health risk in terms of cancer risk for both adults and children. Notably, 

although the ecological risk in the Bahmanshir River (sampling sites S3 and S7) was assessed as 

low, a substantial cancer risk was identified in this river. Overall, It is essential to mitigate the toxic 

and unintended consequences of PAHs on the river's ecological environment while also 

minimizing the potential risks to the health of nearby residents. 

Table 2:  ILCR values for adults and children exposed to sediments of the Abadan water 

resources. 

4. Conclusion 
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The present study evaluated the distribution, potential sources, and ecological/human risks 

assessment of PAHs in the surficial sediments from the Karoon, Bahmanshir, and Arvand rivers in 

the Abadan freshwater resources, of the southwestern Persian Gulf. The results indicate that the 

rivers are subjected to significant PAH pollution, with concentrations ranging from 67.8 to 57,748 

ng/g, with an average concentration of 8,222 ng/g. The presence of carcinogenic PAHs accounted 

for approximately 30% of all PAHs, indicating the presence of harmful compounds.  The dominant 

PAHs in the sediments were 3- and 4-ring compounds, accounting for approximately 77.1% of the 

total PAHs. The Abadan oil refinery sampling site (S5) exhibited a higher percentage (53%) of 3-

ring PAHs, indicative of sediment pollution primarily caused by petrogenic PAHs. Furthermore, 

diagnostic ratios and principal component analysis (PCA) indicated that biomass and coal 

combustion, petroleum sources, and wastewater were the primary contributors to PAH pollution 

in the study area. The highest concentration of PAHs was found in sampling site S5, suggesting 

the influence of petrogenic contamination from petroleum emission and leakage. Additionally, 

sampling sites S1, S4, and S6 exhibited high concentrations of PAHs, associated with effluents 

from a soap factory, petroleum products, and downstream of the oil refinery, respectively. Although 

some sampling sites showed concentrations below ecological risk limits, adverse biological effects 

were observed downstream of the Karoon River and in the Arvand River. Comparison of PAHs 

concentration with cancer risk limits revealed concerning findings. Specifically, the cancer risk 

assessment indicated that exposure to PAHs through ingestion and dermal absorption poses 

significant cancer risk for both adults and children in the region. Overall, the study area faces with 

high level of pollution with PAHs and remedial actions are necessary. Effective regulatory 

measures and management strategies should be implemented to control PAH pollution and 

safeguard the Abadan freshwater resources and consequently the Persian Gulf. Efforts should focus 

on reducing emissions from oil refinery/petrochemical/industrial activities, improving wastewater 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



19 
 

treatment processes, and implementing preventive measures to minimize the potential risks to 

human health and the ecological environment. 
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Fig 1. Location of the Abadan freshwater resources and sampling sites 
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Fig. 2. Spatial distribution of PAHs in the surficial sediments 
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Fig. 3. Composition profile of total PAHs in sampling sites 
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Fig. 4. Diagnostic ratios for source analysis 
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Fig 5. Loading factors of PCA for the surficial sediments  
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Table 1. The concentration of PAHs (ng/g) in sediments samples collected from the Abadan water resources. 

PAHs category No. of rings PAHs Chemical Structure Min Max Mean SD ERL-ERM 

 

LMW PAHs 
2 Nap 

 
2.32 4455 576 1567 160 - 2100 

3 Ace 
 

4.2 5586 731 1962 44 - 640 

3 Flu 
 

2.9 8994 1177 3159 19 - 540 

3 Acy 
 

2.9 6251 839 2188 16 - 500 

3 Phe 

 

7.9 6963 974 2423 240 - 1500 

3 Ant 
 

2.6 2569 376 885 853 - 1100 

 

HMW PAHs 4 Fla 

 

11.5 634 217 223 600 - 5100 

4 Pyr 

 

13.8 4142 685 1403 665 - 2600 

4 Chr 

 

9.3 7043 959 2459 384 - 2800 

4 BaA 

 

1.8 3632 527 526 261 - 1600 

5 BbF 

 

0.5 165 46.4 58.7 320 - 1880 

5 BkF 

 

2.15 1200 201 409 280 - 1620 

5 BaP 

 

2 645 111 217 430 - 1600 

5 DahA 

 

1.7 2260 334 780 63.4 - 260 

6 BghiP 

 

1.75 2050 298 710 430 - 1600 

6 InP 

 

0.55 1159 171 400 160 - 2100 

∑LMW PAHs − − − 22.8 34818 4673 − − 

∑HMW PAHs − − − 45.1 22930 3549 − − 

∑16PAHs − − − 67.8 57748 8222 − − 

Table 2:  ILCR values for adults and children exposed to sediments of the Abadan water 

resources. 

Sample Adults  Children 

 Ingestion Dermal Total  Ingestion Dermal Total 
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1 2.58E-03 4.59E-03 7.17E-03  4.33E-03 5.40E-03 9.72E-03 

2 3.45E-04 6.13E-04 9.58E-04  5.78E-04 7.20E-04 1.30E-03 

3 4.58E-05 8.13E-05 1.27E-04  7.67E-05 9.56E-05 1.72E-04 

4 1.08E-03 1.92E-03 3.00E-03  1.81E-03 2.26E-03 4.06E-03 

5 3.55E-02 6.31E-02 9.86E-02  5.95E-02 7.41E-02 1.34E-01 

6 2.00E-03 3.56E-03 5.57E-03  3.36E-03 4.19E-03 7.55E-03 

7 1.86E-04 3.31E-04 5.17E-04  3.12E-04 3.89E-04 7.01E-04 

8 7.03E-04 1.25E-03 1.95E-03  1.18E-03 1.47E-03 2.65E-03 
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Highlights: 

 

1- PAHs assessment showed high/very high pollution due to petrogenic and industrial 

contamination 

2- Biomass and coal combustion, petroleum emissions, and traffic were as the major sources of 

PAHs. 

3- Potential harm to aquatic organisms, particularly in highly polluted areas was identified.  

4- Significant health risks for both adults and children exposed to PAHs were detected. 
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