

•Human senses can be separated in two main groups:

Physical Senses:
tactile, sight, hear
Chemical Senses:
smell, and taste
Chemical Senses operate at incoscious level: perceptions are not fully expressed.

15 years ago the possibility to mimick the human olfaction became real
It is a big scientific challenge involving many scientific realms:

•Physics, chemistry, mathematics, neuro-sciences, electronics,...

Jan Bruegel de Velours The Smell; Madrid, Museo del Prado

The Selectivity

Odorous compounds

- Odorous compounds are very different at molecular level
- Molecular masses spans a range of 200 D
- The relation between molecular structure and odour perception is still rather obscure

Chirality and Odour

- Chiral compounds have an important role in biological interactions
- Odour perceptions and drug efficiency are strongly influenced by the spatial configuration of the molecule
- Enantioselective sensors are then important in food scent and drug control applications.

(R)-(+)-limonene odour: fresh citrus, orange-like olfaction resolution: 200 ppb

(S)-(-)-limonene harsh, turpentine-like, lemon note olfaction resolution: 500 ppb

Natural and Artificial Olfaction

- Olfaction components:
 Sampling system
 Measurement chamber
 Sensors
 Signal processing
 - •Pattern recognition

The Strategy for Qualitative Analysis with an artificial sense system

- As any other multisensor system, the data of an electronic nose are found in a multidimensional space: *the sensor space*
- A single measure is an entity in this space, namely a measure is an n-dimensional vector.
- Suitable data analysis techniques allow visualise the space as a 2D plot.
- In the sensor space odours are mapped according to their similarities and differences.

- Sensory analysis is the science of extracting human perceptions elaborating them to characterise samples.
- It is typically applied in food analysis to evaluate features like quality and freshness of products.
- Human evaluations are always qualitative.
- Generally, all the senses are integrated and cooperate to the overall evaluation.

panel evaluation of fish freshness

Sensory analysis: example: Quality Index Method for fish

Quality parameter		Description	Score
Appearance	Skin	Bright, iridescent pigmentation	0
	1000000	Rather dull, becoming discoloured	1
	10000	Dull	2
	Stiffness	In rigor	0
		Firm, elastic	1
		Soft,	2
		Very soft	3
Eves	Cornea	Clear	0
		Opalescent	1
		Milky	2
	Form	Convex	0
		Flat, slightly sunken	1
	· · · · · · · · · · · · · · · · · · ·	Sunken, concave	2
	Colour of	Black	0
	1.44	Opaque	1
	1.	Grey	2
Gills	Colour	Bright	0
		Less coloured, becoming discoloured	1
		Discoloured, brown spots	2
		Brown, discoloured	3
	Smell	Fresh, seaweedy, metallic	0
		Neutral, grassy, musty	1
		Yeast, bread, beer, sour milk	2
		Acetic acid, sulphuric, very sour	3
	Mucus	Clear	0
		Milky	1
	1.	Milky, dark, opaque	2
Fillets	Colour	Translucent, bluish	0
		Waxy, milky	1
1.1.1		Opaque, yellow, brown spots	2
Blood	Colour	Red	0
		Dark red	1
		Brown	2

- QIM involves the evaluation of various parameters in order to have a linear relationship versus the days in ice of fish.
- The method is calibrated for each species.

J. Luten, E. Martinsdottir in Evaluation of Fish Freshness, 1997

Structure of a generic solid-state chemical sensor

Chemical Sensors

Col

Co(O

Co(O

			Ē	0		a)	Ð	pi		Ð				"	and and	4.04	te de	3.4	e de la	13	5	Ø gS	300	80	\$0\$P	30	Ca.	
	n-pent	propald	pentana	methan	ethanol	toluene	benzeb	Acet. ac	DMS	tiophen	DEA	TEA	_	******		•			•	1					!!			ť
CollTPP	•	•	•		•		•			•				14 52 50 27	•••			1	•		I	•	•	1		1		9
MoTPP	•	•	•							•				-12 32	•			: :	•		•	•	•		•.			1
CuTPP	•	•	•	•	•			•	•	•				58 30 5		••		• •	-		:			-				5
FeTPP	•	•	•				•							22 23 45							I				H			
VTPP	•	-	•	-	•				•					47 35 36				-	-								1	4
NiTPP	•		•					•	•	•			l	59 60 1 1	l	•			•						l			
CrTPP		•	•				•			•				42.9	l	1		1							H	1		5
CoNO ₂	•			•			•		•	•				33,51 42		1		•	•	• •	1		I.		•			0
CoBr ₂				•	•		•		-	•				56 15 12 7	•			• •	-				1		•••			~
CoBr ₄			•				•		-	•				* 37.56					-									
o(OCH) ₃		-	•	-	-				-	-				19 40 17 49		1		13	ł			1		1	•			Y
CopBr	-	•	•	•					•	•	•			53 28 57 55		:		•			:		:	•				
CoCHO		-			I		ī			-				42 31 6		-	-	•	••••	: :	•	•			•			C
OMC)														100				G		1	1.1			D			0.0	202

Sicard and Holley; Brain Res 1984; 292:283-96

Sensor signals

Natural and Artificial Olfaction

Natural Olfaction

- Receptors
 - Non selective
 - Ultra High Redundancy (10⁸)
 - Biochemical transduction
 - Signal: pattern of spikes
- Sample Delivery
 - Actuation of sniffing
 - Two sources of odor (outside and mouth)
- Signal processing
 - Data synthesis
- Data analysis
 - Ultra Wide Database
 - Drift compensation
 - High integration with other senses

Artificial Olfaction

- Sensors
 - Non selective
 - Low Redundancy (10)
 - Chemical transduction
 - Signal: steady signal
- Sample Delivery
 - Continuous sniffing
 - One source of odour (outside)
- Signal processing
 - One sensor one signal
- Data analysis
 - Limited Database
 - Poor Drift compensation
 - Integrability with other instruments

Odour generation

- There are two main problems connected with the physico-chemical processes of odour generation:
 - 1. The differences between headspace and real sample compositions
 - 2. The dependence of the headspace measure from the sample temperature

1. Concentrations in headspace and in the samples of some compounds in olive oils

Odour sampling

- Given a certain sample (generally a liquid or a solid), the electronic nose measures its headspace.
- Odor sampling has to be reproducible and all the sample conditions have to be controlled.
- Examples of sample odour extraction

