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1. Il microcantilever come sensore

La  risposta  dinamica  di  una  levetta  di  dimensioni  micrometriche  è  influenzata
dall’ambiente circostante e, come tale, può essere utilizzata come sensore. In un tipico
setup di sensore basato su microcantilever, la sonda viene posta in oscillazione tramite
onde acustiche generate da un dither piezo montato vicino alla base. Quando la frequenza
della tensione applicata al dither piezo viene variata con continuità, si osserva un aumento
dell’ampiezza  di  oscillazioni  intorno  alla  frequenza  corrispondente  alla  risonanza
meccanica  della  levetta.  Il  microcantilever  può  quindi  essere  utilizzato  come  sensore
monitorando variazioni nella frequenza di risonanza, indotte da cambiamenti nell’ambiente
in cui opera la levetta o nella levetta stessa.

In particolare, la collaborazione tra il Dr Tiribilli and il Dr Paoletti si incentra sulla creazione
di nuove piattaforme per la misura di massa/concentrazione di molecole in soluzione e per
la misura di viscosità di liquidi. In tali piattaforme, la levetta viene posta in auto-oscillazione
tramite un circuito di feedback tra la deflessione e l’eccitazione del dither piezo. Come
descritto nella relazione STM2016 [1] e pubblicato in [2,3], tale strategia di eccitazione ha
permesso di  realizzare sensori  di  viscosità  ad alta  sensibilità  e con rapporto  segnale-
rumore molto elevato.

2. Descrizione dell’apparato sperimentale

La maggior parte degli  esperimenti  condotti  durante l'attività STM2017 sono stati svolti
utilizzando il setup gia’ descritto in  [1,3]. Tale setup era basato su un microscopio AFM
auto-costruito  costituito  da  una  meccanica  progettata  e  realizzata  dal  Dr  Tiribilli,  un
controller programmabile RHK R9 e un circuito di auto-eccitazione progettato e realizzato
in collaborazione con Elbatech srl.  Gli  elementi principali  di  tale setup sono illustrati in
Figura 2.1 e si rimanda a [3] per una descrizione dettagliata di tutti i componenti.
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Figura 2.1 – Elementi principali del setup sperimentale utilizzato per l'attività’ STM2016 e 
per misure di massa: (a sinistra) microscopio AFM;  (a destra in alto) controller RHK R9; 
(a destra in basso) circuiti per indurre auto-oscillazioni ed introdurre ritardo.



L'attività STM2016 aveva evidenziato il ruolo fondamentale giocato dal ritardo di fase tra
l’eccitazione  fornita  al  dither  piezo  e  la  deflessione  del  cantilever  nel  determinare  il
comportamento dinamico della sonda utilizzata come sensore di viscosità o di massa [1].
Purtroppo l’elettronica di  auto-eccitazione non permetteva di  controllare direttamente  il
ritardo di fase, ma solo di introdurre un ritardo variabile nell’anello.

Al  fine  di  ovviare  a  tale  limitazione  e  per  comprendere  meglio  il  comportamento  del
sistema, una nuova elettronica completamente digitale è stata progettata e realizzata in
collaborazione con Elbatech srl  e  FAB crea srl.  Uno schema funzionale del  circuito  è
riportato in Figura 2.2.

Come illustrato in Figura 2.2, il segnale di eccitazione del dither piezo viene generato da
un  integrato  Direct  Digital  Synthesis  (DDS)  indicato  come  DDS2  e  controllato  da  un
microcontrollore dsPIC in termini di frequenza e ampiezza. La deflessione delle levetta
(rilevata da un fotodiodo a quattro quadranti) viene demodulata grazie ad un secondo DDS
indicato come DDS1 nello schema, la cui frequenza viene impostata dal dsPIC in modo da
essere uguale a quella del segnale del dither piezo. Le componenti in fase e quadratura
vengono quindi filtrate e lette dal dsPIC attraverso due convertitori analogici digitali a 16bit.
Infine, il microcontrollore dsPIC comunica con una scheda Raspberry Pi che si occupa
della trasmissione dei dati tramite protocollo di rete ad un PC fornito dell’apposito software
di controllo. Una foto della scheda fisica testata è riportata in Figura 2.3.
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Figura 2.2 – Schema funzionale della nuova elettronica di auto-oscillazione.



L’introduzione di oscillatori la cui frequenza, ampiezza e fase possono essere controllati
dal dsPIC ha permesso di implementare nel microcontrollore un algoritmo di controllo volto
a mantenere la fase tra DDS1 e DDS2 (ovvero tra il segnale di deflessione e quello di
eccitazione  del  dither  piezo)  ad  un  valore  costante  impostabile  dall’utente  tramite  un
apposito  software  di  interfaccia.  Tale  controllo  era  impossibile  da  ottenere  con  la
precedente elettronica.

Infine,  per  controllare  meglio  l’introduzione  di  soluzioni  acqua-glicerolo  nella  cella  di
misura,  è stata realizzata una cella apposita fornita di  un ingresso da cui  introdurre il
liquido di interesse e da un’uscita da cui prelevare liquido. Una foto di tale setup è riportata
in Figura 2.4.
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Figura 2.3 – Nuova scheda di auto-eccitazione: componenti (sinistra) e scheda montata 
(destra).

Figura 2.4 – Setup sperimentale per misure di viscosita’: cella di misura con 
ingressi/uscite per le soluzioni da testare (sinistra) e setup completo (destra). La 
temperatura di misura e’ monitorata tramite una termocoppia montata vicino alla sonda e 
collegata al termometro da banco visibile sullo sfondo. L’ingresso/uscita delle soluzioni e’ 
regolata attraverso l’uso di siringhe e  morsetti per fermare il flusso.



3. Risultati sperimentali

In questa sezione si riporta una selezione dei dati sperimentali acquisiti durante l’attività
STM2017.  In  sezione  3.1  si  riportano  delle  misure  di  massa  ottenute  utilizzando  la
piattaforma  già’  descritta  nella  relazione  STM2016,  in  sezione  3.2  viene  descritta  la
caratterizzazione della nuova elettronica e infine nella sezione 3.3 vengono presentate le
misure preliminari di viscosità ottenute utilizzando la nuova elettronica.

3.1 - Misure di massa

Al fine di poter testare la possibilità di utilizzare levette in auto-eccitazione per misurare
variazioni  di  massa,  sono  stati  condotti  diversi  esperimenti  (in  aria,  utilizzando  la
piattaforma già descitta  in  STM 2016)  in  cui  si  attaccavano sferette  di  massa nota al
cantilever  e  si  andavano  a  misurare  le  variazioni  di  frequenza  di  oscillazione.  Una
collezione di immagini di sferette attaccate alla sonda è riportata in Figura 3.1. 

Tali misure mostrano che la frequenza di auto-oscillazione diminuisce all’aumentare della
massa  delle  sferette,  come  atteso.  Ulteriori  dettagli  su  questo  studio  sono  riportati
nell’articolo  “A  versatile  mass-sensing  platform  with  tuneable  nonlinear  self-excited
microcantilevers” sottomesso dagli autori alla rivista IEEE Transactions on Nanotechnology e
di cui si riporta il preprint in appendice A

3.2 - Caratterizzazione nuova elettronica

Le prestazioni della nuova elettronica (descritta in sezione 2) sono state caratterizzate
tramite  due  serie  di  esperimenti:  i)  andamento  e  stabilita’  della  frequenza  di  auto-
oscillazione al variare del ritardo di fase impostato tra l’eccitazione del dither piezo e il
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Figura 3.1 – Immagini delle varie sferette di polistirene o vetro attaccate alla levetta per 
misurare variazioni di frequenza dovute a cambiamenti di massa del cantilever.



segnale  di  deflessione;  ii)  studio  del  rumore  presente  nei  dati  acquisiti  dal  dsPIC  e
trasmessi dal Raspberry Pi al PC di controllo.

Per  il  primo  set  di  esperimenti  una  levetta  di  tipo  ACST-TL (AppNano,  USA)  è  stata
montata sulla testa di misura mostrata in Figura 2.4 e posta in auto-oscillazione in aria
utilizzando  la  nuova  elettronica.  Il  set-point  del  controller  PID  responsabile  del
mantenimento della fase tra eccitazione e deflessione è stato quindi variato tra 0 e 360
gradi a passi di 15 gradi. Come atteso, la variazione della fase comporta una variazione di
frequenza e variando la fase è possibile settare a piacere la frequenza di auto-oscillazione
intorno al picco di risonanza. Durante tali prove si è evidenziato anche un problema con
l’implementazione del controllore PID che veniva resettato tutte le volte che il  set-point
veniva cambiato, inducendo transitori significativi nel comportamento del sensore. Grazie
alla collaborazione con FAB Crea srl è stato possibile cambiare il firmware del dsPIC in
modo che tale fenomeno non avvenisse e ciò’ è risultato in un miglioramento della stabilita’
della misura.

Le prove di caratterizzazione della nuova elettronica hanno anche evidenziato la presenza
di  un rumore abbastanza elevato nei  dati  trasmessi  al  PC di  controllo.  Tale rumore si
manifesta principalmente sotto forma di picchi spuri, come mostrato in Figura 3.2.

È stata quindi condotta una campagna investigativa volta ad individuare le possibili cause
di  tali  picchi  spuri.  Tale  attività  ha  permesso  di  identificare  la  connessione  dsPIC-
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Figura 3.2 –Presenza di rumore e, soprattutto, picchi spuri nei segnali visualizzati e salvati
dal software di controllo: componente in fase (in alto) e componente in quadratura (in 
basso). Ogni unità sull’asse verticale corrisponde a circa 0.25mV



Raspberry PI come causa principale di tale fenomeno. La creazione di un nuovo cavo di
connessione e la sostituzione di un connettore ha permesso di ridurre l’ampiezza di tali
picchi,  ma  si  suggerisce  la  risaldatura  del  connettore  sulla  scheda  dsPIC  al  fine  di
eliminare tale fenomeno indesiderato.

3.3 - Misure di viscosità con nuova elettronica

Al fine di testare le prestazioni della nuova elettronica in applicazioni di micro-sensoristica,
sono stati effettuati diversi esperimenti volti a misurare cambiamenti di viscosità nel fluido
in  cui  la  levetta  opera.  In  Figura  3.3  si  riporta  la  serie  temporale  della  variazione  di
frequenza di  auto-oscillazione indotta dall’introduzione di una soluzione acqua-glicerolo
(concentrazione  glicerolo  5%  v/v)  e  alla  successiva  rimozione  della  soluzione  tramite
immissione di acqua. Dopo il primo riempimento della cella con soluzione di glicerolo (time
~100s) si nota (dati evidenziati in arancione) una variazione di frequenza Δf di circa 260Hz
rispetto  alla  condizione  operativa  iniziale  in  acqua  (dati  indicati  in  blu).  Una  seconda
immissione  di  soluzione  di  glicerolo  (time  ~ 300s)  non  altera  significativamente  la
frequenza. Infine una lavaggio (2 passaggi) in acqua ripristina le condizioni iniziali (dati
indicati in blu).

Inoltre osservando i transitori (in grigio) si nota come l’immissione di liquido nella cella
induca una riduzione della frequenza di auto-oscillazione, mentre la rimozione di liquido
comporti  un  aumento  della  frequenza.  Un’ulteriore  indagine  sperimentale  ha  infatti
evidenziato come lo spettro di risposta della levetta sia significativamente influenzato dalla
quantità di liquido presente nella cella di misura, quindi l’operatore deve porre particolare
attenzione al fatto di mantenere costante la quantità di liquido mentre effettua le misure.
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Figura  3.3  –  Andamento  della  frequenza  di  auto-oscillazione  al  variare  della
concentrazione di glicerolo presente nella cella di misura. La variazione Δf della frequenza
di auto-oscillazione risulta essere 260Hz tra acqua e soluzione glicerolo al 5% v/v.



4. Nuova piattaforma opto-meccanica

Tutta  l'attività  condotta  finora  nella  collaborazione  tra  il  Dr  Paoletti  e  il  Dr  Tiribilli  ha
utilizzato una piattaforma opto-meccanica derivata da un setup AFM standard. Sebbene
l’utilizzo di tale piattaforma abbia permesso di ottenere risultati interessanti, la creazione di
uno strumento progettato appositamente per misure di massa e viscosità comporta diversi
vantaggi  come la drastica riduzione del  costo e dell’ingombro (grazie alla rimozione di
elementi  non più  necessari,  come la movimentazione del  campione).  Parte  dell'attività
STM2017 è stata quindi rivolta alla progettazione e realizzazione di tale piattaforma. Una
foto della piattaforma realizzata è riportata in Figura 4.1.

La nuova piattaforma è composta da un laser a semiconduttore montato orizzontalmente
(in basso a destra in figura) il  cui  fascio viene immediatamente deflesso di  90 gradi e
mandato ad un beam-splitter polarizzatore che lascia passare solo la componente con
polarizzazione  orizzontale.  Il  fascio  attraversa  quindi  una  lamina  a  quarto  d’onda  per
creare un fascio a polarizzazione circolare che raggiunge la levetta attraverso un’ottica
che permette la focalizzazione e l’allineamento. Una volta riflesso, il fascio torna indietro
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Figura 4.1 – Foto della nuova piattaforma opto-meccanica progettata per misure di massa 
e viscosità.



fino al beam-splitter che lo deflette di 90 gradi verso un’ottica che indirizza il fascio laser
verso  un  fotodiodo  a  quattro  quadranti  al  fine  di  misurare  deflessione  e  torsione  del
cantilever. In Figura 4.2 si riporta un dettaglio della nuova cella di misura e dello spot laser
incidente  su  un  vetrino  durante  la  fase  di  allineamento,  prima  di  essere  deflesso  sul
fotodiodo a quattro quadranti.

Dopo la  fase di  messa a punto,  la  nuova piattaforma opto-meccanica  è  stata  testata
montando tre levette CLFC-NOCAL (Bruker, UK) aventi  frequenze di risonanza diverse
A=301,2kHz;  B=73,7  kHz;  C=18,3  kHz.  Come  mostrato  in  Figura  4.3  la  piattaforma
permette di acquisire spettri di buona qualità.
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Figura 4.2 – Nuova cella di misura stagna con portalevetta sul fondo (sinistra) e spot laser 
risultante alla fine del percorso ottico (destra).

Figura 4.3 – Spettri in frequenza ottenuti con la nuova piattaforma opto-meccanica 
utilizzando tre levette CLFC (Bruker, UK).



Purtroppo pero’ tali  prove hanno evidenziato la presenza di drift  e riflessioni spurie sul
segnale ricevuto dal  fotodiodo a quattro  quadranti,  quindi  un’ulteriore fase di  messa a
punto deve essere condotta in futuro. 

5. Conclusioni e sviluppi futuri

L'attività  svolta  presso  l'Istituto  dei  Sistemi  Complessi  ha  permesso  di  testare  e
caratterizzare  una nuova elettronica  di  auto-oscillazione dotata  di  controllo  automatico
dello sfasamento tra deflessione e segnale di  eccitazione del dither piezo. Con questa
nuova elettronica sono state ottenute misure preliminari di viscosità 

Inoltre è stato assemblato la nuova piattaforma opto-meccanica sulla quale sono iniziati i
test preliminari che hanno dimostrato la corretta funzionalità di questa configurazione (vedi
fig 4.3),  sebbene siano state individuate alcune aree che richiedono ulteriore messa a
punto come descritto in sezione 4.

Sono state anche individuate le seguenti aree interessanti su cui si propone di continuare
la collaborazione:

• Messa a punto e ottimizzazione del nuovo set-up opto-meccanico, in particolare per
ridurre drift e riflessioni spurie.

• Progettazione e costruzione di una cella di  misura per liquido dotata di accesso
ottico.

• Progettazione e costruzione di una cella chiusa di misura per gas collegabile ad un
sistema di controllo della pressione.

• Revisione dell’hardware elettronico allo scopo di eliminare i disturbi e minimizzare il
rumore.

• Indagine teorica e sperimentale sulla possibilità di ottenere salti di frequenza indotti
da  variazioni  dei  parametri  ambientali  (massa,  viscosità)  e  sulla  possibilità  di
innescare questi salti in regioni di interesse.

• Studio  della  dinamica  della  levetta  in  fluidi  non  newtoniani  e  delle  componenti
elastica, inerziale e dissipativa della interazione fluido-cantilever.
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 

Abstract—A versatile mass-sensing platform based on the 

nonlinear dynamical response of microcantilevers embedded in a 

self-excitation feedback loop is proposed. The dynamical 

response of the microcantilevers is experimentally studied as a 

function of the delay introduced in the loop by an adjustable 

phase shifter and as a function of the mass added to the 

cantilever. It is shown that, depending on the total delay 

introduced in the loop, the frequencies and amplitudes of the self-

sustained oscillations can vary continuously or abruptly with the 

mass added to the cantilever, or, alternatively, can be made 

completely insensitive to this parameter. This behaviour is 

generic and was registered for a wide range of added masses, 

suggesting that this platform can be used in three different 

modalities according to the desired application: i) threshold 

sensor, where a sudden response is triggered by an arbitrarily 

small change of added mass; ii) continuous mass sensor, where 

the oscillation frequency smoothly responds to changes in the 

added mass to the resonator; and iii) stable microresonator, 

whose oscillation frequency is independent from the 

environmental conditions. A complete analytical model to explain 

the observed experimental results is derived and shows a strong 

agreement with the measured data. 

 
Index Terms—Mass-sensing, nonlinear oscillations self-excited 

microcantilever. 

 

I. INTRODUCTION 

Microelectromechanical systems (MEMS) have emerged in 

the last decades as the best candidates for a wide range of 

technological and scientific applications. Microresonator-

based sensors, actuators or signal processing components 

benefit from the high fundamental resonance frequencies and 

quality factors (Q) characteristic of these mechanical devices 

[1]. Their microscopic dimensions and very small active 

masses render these devices extremely sensitive to external 
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perturbations from the surrounding environment, and were 

crucial to successfully develop imaging applications [2] or 

force [3], viscosity [4], temperature [5] and mass sensors [6], 

[7]. 

In particular, micromechanical resonators used for mass 

sensing have the potential to ultimately measure the mass of 

individual molecules, being only limited by the fundamental 

noise processes [6]. Typically, the operation of 

micromechanical mass sensors relies on detecting the 

resonance frequency shift induced by an additional mass 

adsorbed on the surface of the probe. The sensitivity is known 

to be greatly improved by using smaller devices, low-noise 

motion detection and ultrahigh vacuum. An extreme 

optimization of these parameters on a single experiment 

allowed achieving a yoctogram (10
-24

 g) resolution [7]. One of 

the major concerns that must always be addressed when 

developing a mass sensor is the reduced bandwidth – often 

less than 1Hz [8] – due to the large quality factor of externally 

excited microresonators operating in air, which induces long 

transients. On the other hand, performing measurements in 

viscous fluids decreases the quality factors and the sensitivity, 

and often reveal the presence of the undesired spurious 

mechanical modes [9], [10]. When measuring the resonance 

frequency shift caused by the added mass of interest, it is 

usually assumed that the mass is distributed evenly on the 

probe surface, which is not necessarily true. In addition, when 

individual masses, such as cells or proteins, are attached, the 

response of the resonator depends on the actual position of the 

added mass [11]. Therefore, negative pressure in hollow 

cantilevers [12], mechanical traps [13] or centrifugal forces 

[14] were used to place the particles on a specific position of 

the resonator. 

More recently, strategies where the microresonator is 

embedded in a feedback loop proved to be very effective in 

achieving a more selective frequency response, which can be 

crucial to overcome the low quality factor typically associated 

with viscous media and the undesired forest of peaks. Among 

the proposed strategies are the Q-control [15], parametric 

resonance [16], [17] and self-excitation circuits [18], [19]. In 

addition, using feedback loops makes the response of the 

resonator faster, which translates to a significant increase of 

measurement bandwidth. Generally, the resonance frequency 

of the device is continuously tracked by a frequency-

modulated phase-locked loop (PLL), allowing measuring 

adsorption events in real time with sensitivities in the order of 

ato- or zeptogram (10
-18

 to 10
-21

 g) [20]-[22]. Applying the 

same concept for measuring multiple eigenmode frequencies 
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simultaneously allows the determination of position and mass 

distribution of the analytes [23].  

One of the main drawbacks of using feedback loops to 

improve sensing performance is the presence of different 

sources of nonlinearities introduced, for example, by the 

nonlinear electronic components required to process the 

signals or even by the intrinsic mechanical nonlinearities of 

the resonator. The analysis of the dynamics of microresonators 

in presence of mechanical nonlinearities have shown 

interesting and surprising phenomena, such as stable operation 

of the resonators far beyond the critical vibration amplitude 

[24], [25] or bistable regimes [26], [27]. It was also shown that 

the frequency of oscillation is strongly dependent on the delay 

affecting the feedback signal [27]-[29]. 

In this work it is shown how the nonlinear dynamics of a 

cantilever embedded in a feedback loop composed of a gain, a 

saturator and a tunable phase-shifter can be used as a high-

sensitivity or threshold mass sensor, or as a microresonator 

whose oscillation frequency can be made independent of the 

environmental conditions, by controlling its operating 

conditions. The authors have previously studied and modeled 

a similar system in [29] and proposed it as a viscosity sensor 

in [30]. Here, such model is extended to incorporate the 

presence of the added mass, and the dynamical response of the 

cantilever is theoretically and experimentally studied as 

function of the added mass (in the form of attached beads) and 

of the feedback delay that is introduced in the loop by the 

phase-shifter.  

The paper is organized as follows: in section II the 

experimental setup is discussed. Special emphasis is given to 

the description and characterization of the phase-shifter, and to 

the methods of attaching and measuring the diameters and 

mass of the beads used to change the mass of the resonator. 

Experimental results illustrating the nonlinear behavior of the 

self-excited oscillation frequency for different added masses 

and delays in the feedback loop are presented in section III. In 

section IV the nonlinear response of the cantilever is discussed 

by analyzing the phase condition for the existence of self-

sustained oscillations and an analytical model describing the 

dependence between the loop oscillation frequencies and the 

added mass is derived. Finally, some conclusions are 

discussed in section V. 

II. EXPERIMENTAL METHODS 

A. Experimental setup 

A schematic of the experimental setup used to study the 

dynamics of the sensor operating in air is shown in Fig. 1(a). 

Glass and polystyrene beads are individually attached to the 

cantilever to simulate attachment of analytes to the probe 

surface. The cantilever motion is acoustically excited by a 

dither piezo and optically detected by a four-quadrant detector 

connected to a R9 controller (RHK Technology). The switch S 

indicates the possibility of selecting between two different 

measuring configurations: traditional amplitude modulation 

(AM mode) or autotapping (AT mode). In AM mode, the 

dither piezo is externally excited by a function generator, 

using sinusoidal signals at different frequencies. The 

amplitude and phase of the deflection signal are measured 

using a lock-in. Both the function generator and the lock-in are 

available in the R9 controller itself. In AT mode, the 

deflection signal coming from the detector is fed into an 

electronic circuit (Elbatech srl) composed of a tunable phase-

shifter, a gain and a saturator, before being fed back to the 

excitation dither piezo as a voltage to induce self-oscillations 

of the cantilever. The amplitude and frequency of these 

oscillations are measured from reading the deflection signal 

with an external oscilloscope (Tektronix TDS-2022).  

The total delay,     , shown in Fig. 1(a) represents the intrinsic 

delay of the feedback loop, i.e. the time that the deflection 

signal naturally takes to go around the feedback loop once. 

This delay is responsible of shifting the initial sinusoidal 

deflection signal by several periods. It was shown in [29] that 

the total delay,     , results from individual contributions of 

the electronic components of the circuit (gain + saturator), 

   , the electronic elements composing the phase-shifter,    , 

and the delay caused by the propagation of the elastic waves in 

the cantilever and holder materials,    . The first two terms, 

    and    , were individually calculated in [29] by 

connecting sinusoidal signals to the inputs of these circuits and 

measuring the phase shift of the corresponding outputs. The 

last term of the total delay,    , depends on the specific 

connection between the cantilever and the holder, and must be 

measured before each experiment.  

The adjustable phase-shifter introduced in the feedback loop 

allows adding an extra phase shift to the natural phase shift 

induced by the total delay of the system. Its role is to finely 

control the phase between the cantilever deflection and the 

dither piezo excitation. Fig. 1(b) shows the electrical 

schematics of a single stage of the phase-shifter, which works 

as an all-pass filter capable of shifting the signal by at most -π 

radians. The complete phase-shifter consists of two of these 

stages connected in series (inducing a total phase shift of -2π 

radians), each stage being individually operated by adjusting a 

potentiometer which controls the value of a resistor,   , 

between 0 and 10.2 kΩ. The values of the capacitances of each 

stage,   , are fixed in the circuit and are chosen accordingly to 

the working range of frequencies, to guarantee that at least one 

of the stages can effectively reach the maximum phase shift of 

-π radians. Finally, there is also the possibility of inverting the 

polarity of the voltage signal applied to the terminals of the 

dither piezo, as shown by the parameter p = ±1 of Fig. 1(a). 

This option allows users to shift the signal by extra -π radians.
 
 

To summarize, the two stages of the phase-shifter, combined 

with the possibility of inverting the polarity of the signal that 

feeds the piezo, can be used to adjust the phase-shift of the 

signal along the feedback loop by a complete period (-2π 

radians). Note that this shift adds to the shift caused by the 

intrinsic total delay of the system. The influence of feedback 

delay on the dynamic response of the cantilever with different 

added masses will be assessed in this work. 
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Fig. 1.  a) Schematic of the experimental setup. A glass/polystyrene bead is attached to the silicon cantilever. The cantilever motion is acoustically excited by a 

dither piezo and optically detected using a four-quadrant detector. In amplitude mode (AM), the function generator sweeps the excitation driving frequency, and 

deflection amplitude and phase are recorded. In autotapping mode (AT), the deflection signal is fed back to the piezo as a voltage, after being shifted by the total 

delay and by an adjustable phase-shifter, amplified by the gain and limited by the saturator in the feedback loop. The polarity of the voltage applied to the dither 

piezo can be inverted (p = ±1). b) Detail of a single stage of the phase-shifter, capable of shifting the signal by at most -π radians. Two stages were connected in 

series. The values of C1 and C2 are 237 pF and 5.14 nF in each stage, respectively, and the two potentiometers R1 and R2 are adjustable within the range 0-10.2 

kΩ.

 

The autotapping (AT mode) configuration shown in Fig. 1(a) 

generates self-sustained stable oscillations of the cantilever 

with angular frequency     . The onset of the self-oscillations 

results from a competition between the feedback gain, which 

constantly amplifies the motion of the cantilever, and the 

presence of the nonlinear saturation, which constantly limits 

these trajectories. The system reaches a steady-state and the 

cantilever self-oscillates with a frequency and amplitude 

ensuring that the overall loop gain is unitary and that the total 

phase shift of the signal around the feedback loop is an integer 

multiple of -2π radians, see section IV [29], [30]. 

In this work, the dynamic response of the silicon ACST 

cantilever (from AppNano) vibrating in air with five different 

beads attached was characterized using the AM and AT 

configurations. The cantilever natural resonance frequency (in 

air and with no mass attached) was measured using the AM 

configuration, while its length and width were estimated from 

visual inspection on the microscope using the calibrated 

micrometer ruler shown in Fig. 2(a). Thickness, frequency and 

spring constant were estimated as described in section II. 

Table I shows the estimated geometrical and dynamical 

parameters of the cantilever.  

 

TABLE I 

GEOMETRY AND DYNAMICAL PARAMETERS OF ACST 

CANTILEVER ESTIMATED EXPERIMENTALLY 

ACST (AppNano) Estimated 

Length (μm) 160 

Width (μm) 33 

Thickness (μm) (eq. (1)) 2.91 

Frequency (kHz)  162.32 

Spring Constant (N/m) (eq. (4)) 8.92 

 

 

 

B. Attaching the beads 

Different micrometric beads of glass (Monospheres, 

Whitehouse Scientific LTD) or polystyrene (Latex beads 

polystyrene, Sigma-Aldrich) were individually attached to the 

cantilever. The beads were randomly spread on a clean 

microscope slide and put underneath a home-made AFM 

setup, in which the position and height of the cantilever 

connected to its holder can be regulated using two micrometric 

screws. An optical microscope was placed on top of this 

apparatus and focused on the beads distributed on the 

microscope slide. The tipless cantilever was then carefully 

moved down until its bottom surface went in contact with one 

single bead. A slight movement of the cantilever was then 

used to apply a small pressure to the bead and facilitate the 

attachment. This contact was perceptible on the microscope by 

the bending of the cantilever. The large ratio between surface 

and volume of the beads contribute favourably to the 

attachment of the bead to the cantilever due to surface 

electrostatic forces. To confirm the attachment, the substrate 

underneath the cantilever was substituted by a mirrored 

surface, which allowed observing the bottom side of the 

cantilever with the bead. Some images, shown in Fig. 2, were 

recorded with a camera connected to the microscope. 

To cover several orders of magnitude of added masses, five 

beads of different sizes and two different materials were 

individually attached to the tip of the cantilever: one small and 

one big bead of glass, and one small, one medium and one big 

bead of polystyrene. The diameter of each bead was measured 

by visual inspection on the microscope and is reported in 

Table II.  

 

C. Measuring mass and diameter of the beads 

1) Optical estimation of bead diameter and mass 

The diameters of the beads were estimated from the images 

acquired on the microscope. These images were processed 

using the free software Gwyddion [http://gwyddion.net/] and 

compared with the image of a calibrated micrometric ruler 

(AmScope MR095 Microscope Stage Calibration Slide). The  
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Fig. 2.  Optical images of the beads attached to bottom surface of the cantilever and the respective diameters estimated optically. a) Calibration slide used to 

estimate the dimensions of the cantilever (length and width) and diameter of beads; b) and c) big and small glass beads, respectively; d, e, f) Big, medium and 

small beads of polystyrene, respectively. All the images have the same magnification. 

 

micrometric ruler and the five beads attached with the 

respective estimated diameters are shown in Fig. 2. 

The mass of the beads was calculated from the optically 

estimated diameter of each bead, considering the density of 

the materials [31], [32] and assuming that the beads are perfect 

spheres. The results are presented in the first two columns of 

Table II.  

 

2) From the resonance frequency of the cantilever with the 

beads attached 

An alternative way of determining the mass and diameter of 

each bead is based on the resonance frequency of the 

cantilever with the beads attached (measured in AM mode). 

This method allows a more complete characterization of the 

cantilever, which is useful for the modeling performed in later 

sections.  

The cantilever thickness can be determined from the Euler-

Bernoulli beam equation with the appropriate boundary 

conditions [33], using the value of resonance frequency of the 

cantilever in air and with no added mass measured in AM 

mode (   
  

  
           ) and the estimated length of the 

beam:  

 

    
  

         
 

     

 
       .        (1) 

 

In this equation,          and               are the 

Young’s modulus and the density of the silicon, respectively. 

The calculated value of thickness is reported in Table I. 

In this work, the cantilever is modeled as a single-degree-of-

freedom damped harmonic oscillator, with an added mass and 

subject to a hydrodynamic force. This model is an extension of 

the model presented in reference [30], in which the cantilevers 

oscillate in viscous fluids. The total hydrodynamic force is 

described by an inertial and a dissipative term, which account,  

respectively, for the weight of the layer of fluid that the beam 

displaces as it moves, and for the viscous drag force exerted 

by the fluid on the moving cantilever [34]. These two terms 

can therefore be modeled as a hydrodynamic mass,       , 

and a hydrodynamic damping coefficient,       , and 

approximated by [30], [34]-[36]:    

 

          
 

 
        

  

 
 

  

  
                                    (2) 

          
 

 
      

  

 
 

  

  
 

  

  
 
  

 
 
 

 .                       (3) 

 

Both hydrodynamic parameters depend on the angular 

frequency of oscillation  , the viscosity   and density   of the 

surrounding fluid, and on the constants a1 = 1.0553, a2 = 

3.7997 and b1 = 3.8018 and b2 = 2.7364. Finally, L and W 

represent, respectively, the length and width of the cantilever 

estimated optically and shown in Table I.  

According to the harmonic oscillator model, the resonance 

frequency of the cantilever vibrating in air and with no added 

mass is given by           , where   is the spring 

constant of the cantilever and      accounts for the effective 

mass concentrated on the tip of the cantilever with no bead 

attached (the index 0 is used hereafter to denote the case 

where no bead is attached). 

This expression is used to calculate the spring constant of the 

cantilever, knowing that               and considering 

that                           [37]: 

 

    
                               .             (4) 

 
In this expression,                          is the 

total mass of the cantilever and            is substituted by 

the expression given by (2), considering the frequency    and 

the properties of the air (               and   
           [38]). The calculated value of   is presented in 

Table I. It is worth noting that the value of the spring constant 

obtained with this method (          ) is in close 
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agreement with the value obtained by the well-known 

expression   
    

   
          [33]. 

Finally, the resonance frequency of the cantilever vibrating 

with the different beads,   , (measured in each case using the 

AM mode) is used to determine the added mass of the beads, 

  , using the expression           , where       

                        is the effective mass 

concentrated on the tip of the cantilever (it is assumed that the 

bead is attached to the tip) [39] and   is the spring constant of 

the cantilever, calculated from (4) (the index A is hereafter 

used to denote the presence of an added mass). By rearranging 

the expression, one obtains: 

 

   
 

  
                      .            (5) 

 

The diameter of each bead can be calculated from its mass, 

assuming that the bead is a perfect sphere and considering the 

density of each material [31], [32]. The values of masses and 

diameters obtained with this method are shown in Table II and 

show a good agreement with the values obtained from visual 

inspection. 

 

III. EXPERIMENTAL RESULTS 

A. AM Mode – Amplitude and Phase Spectra 

Fig. 3 shows a representative example of the experimental 

amplitude and phase spectra obtained by sweeping the 

excitation frequency in the AM configuration, for the case of 

the ACST cantilever with the medium polystyrene bead 

attached. The measured amplitude spectrum is fitted to the 

amplitude of the damped harmonic oscillator model, given by 

the function [8], [40]: 

 

  
 

    
     

 
  

    
  

 
 
,              (6) 

 

where A is the measured amplitude, ω is the excitation angular 

frequency of the dither piezo,     is the angular resonance 

frequency of the cantilever with the added bead (the index A 

should be substituted by the index 0 in the case of no added 

mass), Q and H are the quality factors and amplitude of the 

resonant mode, respectively.  The parameters    ,    and H 

were used to fit the model of (6) to the experimental amplitude 

spectra, as exemplified in Fig. 3(a). The fitted values of 

resonance frequency,   , are used to calculate the mass of each 

bead using (5) and are shown in Table II, along with the 

values of   . 

Fig. 3(b) shows the phase spectra measured in AM mode, and 

used to estimate the delay due to the cantilever and its holder, 

   . This delay is the proportionality constant between the 

excitation angular frequency   and the phase shift between 

the input excitation signal fed to the piezo and the output 

deflection signal. In AM mode the feedback loop is open and 

the measured delay just contains information about the 

mechanical cantilever and holder, excluding the influence of 

all other electronic components. In fact,     is estimated from 

the slope of the phase spectrum far from the resonance (to 

avoid the characteristic jump of -π radians of this region) 

using: 

            ,                 (7) 

 

with        in radians, refer to Fig. 3(b). An average delay of 

            was obtained considering the measurements in 

AM mode of the cantilever with the different beads. 

 

 
Fig. 3.  Experimental amplitude and phase measured in AM mode for the 

cantilever with the medium- polystyrene bead attached. a) The damped 

harmonic oscillator model is fitted (red dashed-dotted line) to the measured 

amplitude (solid black line) and the parameters are extracted; b) The delay on 

the propagation of the elastic waves through the holder and cantilever 

materials is extracted from the slope of the phase spectrum away from the 

resonance. The resonance occurs at 156.65 kHz, as indicated in Table II. 

 

B. AT Mode – Oscillation frequencies as function of signal 

shift along the loop, for different added masses 

Following the characterization in AM mode, the dynamics of 

cantilever with (or without) the beads operating in the AT 

configuration was studied as a function of the phase shift,    . 

The shift of the signal around the feedback loop can be 

controlled by adjusting the two potentiometers R1 and R2 in 

the phase-shifter shown in Fig. 1 and by inverting the polarity 

of the signal fed to the dither piezo.  

A typical experimental protocol consisted in fixing the value 

of polarity (p = 1) and the value of R1, and sweeping the value 

of R2 from 0 to 10.2 kΩ. Then the value of R2 was kept 

constant while the value of R1 was swept until reaching 10.2 

kΩ. At this stage, the polarity of the piezo was inverted (p = -

1) and the potentiometers were sequentially swept back to 0 

kΩ. For each set of experimental conditions the frequency and 

amplitude of the oscillation were recorded. 

By sweeping the values of the resistors and inverting the 

polarity on the piezo the original signal can be shifted by at 

least a complete period (-2π radians). 
Fig. 4 presents examples of experimental results measured 

using the cantilever with the medium polystyrene bead.   
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TABLE II 

 DIAMETERS AND MASSES OF BEADS ATTACHED OBTAINED BY THE TWO PROPOSED METHODS.  

 
 

Beads 

           

(  ) 

(optically) 

   (kg) 

(sphere) 

   (kHz) 

(Eq. (6)) 

   

(Eq. (6)) 

   (kg) 

(Eq. (5)) 

      (   ) 

(sphere) 

% error on 

D (m) 

No bead - - - 162.32 200 - -  

Polystyrene 

(ρ = 1050 kg/ m3) 

Small 3.3 1.98e-14 161.15 200 1.83e-14 3.2 3% 

Medium 10.2 5.83e-13 156.65 190 5.25e-13 9.9 3% 

Big 15.7 2.13e-12 145.65 180 1.97e-12 15.3 2.5% 

Glass 

(ρ = 2450 kg/ m3) 

Small 14.5 3.91e-12 131.35 130 4.41e-12 15.1 4% 

Big 22.7 1.50e-11 98.27 50 1.47e-11 22.5 1% 

   

Fig. 4.  Frequencies and amplitudes of the self-sustained oscillations, using the 
medium polystyrene attached to the cantilever. a) Frequencies of oscillation as 

a function of the values of the resistors in the phase-shifter, for non-inverted 

or inverted polarity. The dotted lines are guidelines to the eye; b) Amplitude 
of self-oscillations against the corresponding oscillation frequency for each set 

of experimental conditions.  

 
Fig. 4(a) shows three series of results obtained when sweeping 

R1 or R2, for two different polarities. Three distinct behaviors, 

depending on the experimental conditions, can be observed: 

the series represented by the yellow circles shows a steady 

decrease on the values of the oscillation frequencies when R1 

increases, for non-inverted polarity. Inverting the polarity, the 

red triangles show no dependence of the oscillation 

frequencies with the value of the resistor R1. Finally, the 

purple squares show a steep decrease on the values of 

oscillation frequencies for low values of increasing R2, before 

the abrupt jump from low to high frequencies is observed. 

Then, the steep decrease of oscillation frequencies resume, 

until a plateau is reached. On the right panel, the amplitude is 

plotted against the corresponding oscillation frequency, for 

each set of experimental conditions. It can be observed that 

this amplitude curve recovers the shape of the amplitude curve 

measured in the AM configuration (Fig. 3(a)) and it can also 

be fitted by the harmonic oscillator model with similar 

parameters. 

It is interesting to note in Fig. 4(b) that there are combinations 

of experimental conditions that induce bigger changes on the 

oscillation frequencies. These trends are generic and were 

observed for all cases of different beads. 

 

 

 

 

 

 

The best way to compare all the experimental data is to plot 

the self-sustained oscillation frequencies as a function of the 

shift caused by the phase-shifter, for each set of experimental 

conditions and for each bead. This is shown in Fig. 5. The 

shift induced by the phase-shifter is calculated using (8), 

explained in detail in section IV, which contains all the 

experimental parameters (  ,    and  ). The black dashed line 

represents the case of the cantilever with no added mass and 

the symbols represent the cases with the different beads 

attached. It can be observed that the position of the jump 

moves to more negative values of imposed shift as the added 

mass increases (the green series with squares, which 

represents the big glass bead, appears to the right of the initial 

jump position due to the periodicity of 360 degrees or     

radians). In addition, the values of oscillation frequency far 

from the jump correspond to the values of natural resonance 

frequency of the cantilever with each bead (see Table II). In 

fact, observing Fig. 4(b) is possible to understand that the 

measured jumps occur from the high frequency to the low 

frequency edges of the resonance peak.  

 

 
Fig. 5.  Cantilever oscillation frequencies plotted against the shift induced by 

the phase-shifter (calculated with (8)), for each set of experimental conditions. 

The position of the jump moves to more negative values of imposed shift as 
the added mass increases. The values of oscillation frequency far from the 

jump tend to the values of the natural resonance frequency of the cantilever 

with the added masses. (To improve the clarity of the figure the case of the 
small glass bead is not shown). 
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IV. ANALYTICAL MODELING AND INTERPRETATION OF THE 

EXPERIMENTAL RESULTS 

A. Phase of the cantilever vibrating in viscous fluid with an 

arbitrary added mass 

The phase of the cantilever vibrating in a viscous fluid with an 

arbitrary added mass,   , is calculated using the transfer 

function of the damped harmonic oscillator shown in (6) [30], 

[39]:                               

  

          
  

  
    

        
           

                          
 ,  (7) 

 

where     is the phase of the cantilever,  

                                   is the 

damping ratio of the cantilever with the added mass   ,   is 

the angular frequency of oscillation and     is the angular 

resonance frequency of the cantilever with the added mass (the 

index A should be substituted by the index 0 and      in 

the case of no added mass), and with        and        given 

by (2) and (3). Finally,   is the spring constant of the 

cantilever, determined from (4), and   
     

  
 is the intrinsic 

viscous damping coefficient, obtained from the fit of the 

damped harmonic oscillator model to the experimental 

amplitude of the cantilever with no attached mass in AM 

configuration [30], [39]. When the cantilever vibrates in a 

viscous medium this parameter is often negligible when 

compared with       . The dashed-dotted orange curve of Fig. 

6 represents the cantilever phase calculated numerically using 

(7), as function of the oscillation frequency, for the case of no 

added mass. The geometry of the cantilever shown in Table I 

and the rheological properties of air [38] were considered in 

the simulation. The presence of the cantilever will cause a 

shift in the interval 0 and -π radians between the excitation 

force and the mechanical deflection.  

 

B. Phase of the elements of the electronic circuit 

The elements of the electronic circuit are the gain, the 

saturator, the total intrinsic delay of the loop and the 

adjustable phase-shifter. The saturator is the only nonlinear 

block of the feedback loop. Nevertheless, the output of the 

nonlinear saturator can be well approximated by a sinusoidal 

wave having the same frequency as the input, due to the 

intrinsic band-pass filter characteristics of the resonator 

embedded in the feedback loop. In other words, the presence 

of the resonator in the feedback loop attenuates any low 

frequencies or higher harmonics of the signal caused by 

nonlinear elements. Therefore, the saturator can be substituted 

with an amplitude-dependent gain by using the describing 

function technique [29], [41]. In this case, if the amplitude of 

the input signal is smaller than the threshold σ (representing 

the saturation threshold value defined by the user and shown 

in Fig. 1(a)), the gain is unitary and the output signal is the 

same as the input. When the amplitude of the input is higher 

than σ, the output becomes smaller than the input, which 

contributes to stabilizing the signal that is constantly amplified 

by the feedback gain. The gain   and the saturator describing 

function are real functions for each value of amplitude and 

frequency of the self-sustained oscillation [29], [41]. 

Therefore, these elements act only on the amplitude of the 

signal and do not affect its phase. 

Conversely, the total delay of the setup introduces a natural 

shift of the signal given by              , with      in 

radians, where      is the angular oscillation frequency. The 

delay      is the sum of three distinct contributions, see section 

II. The first two terms were measured in [29], where this 

electronic circuit was used for the first time (           and 

          ), and the delay introduced in the loop by the 

cantilever and holder,    , was measured in section III from 

the phase curve in the AM configuration (           ). 

Therefore,                         . The dotted 

green line in Fig. 6 represents the total delay of the system 

plotted against the oscillation frequency. 

The complete transfer function of the phase-shifter is given by 

                          , where           
           

           
 is the transfer function of each stage. The phase-

shifter causes a total shift of the signal 

 

                                      ,       (8) 

 

with     in radians, and using the parameter   to model the 

inversion of polarity in the dither piezo (for convention, p = 1 

and P = 0 for non-inverted polarity and p = -1 and P = -1 for 

inverted polarity). In this work,           and    
       . Examples of the shift created by one stage of the 

phase-shifter with inverted polarity are shown in blue in Fig. 

6. 

Finally, the total shift of the signal imposed by the electronic 

circuit,      , for fixed experimental conditions results from 

contributions of all the elements and reads: 

 

                                                 .   (9) 

 

C. Phase condition for the existence of self-sustained 

oscillations 

The existence of self-sustained oscillations in the feedback 

loop implies that the deflection signal repeats itself after a 

complete loop in the self-excitation scheme. Formally, this 

condition can be stated as [28], [29]: 

 

     

                              

                             ,              (10) 

 

where      represent the probe deflection,       ,        

and          are the transfer functions of the cantilever, phase-

shifter and total delay of the setup, respectively, the parameter 

     accounts for the polarity applied on the terminals of 

the dither piezo,   represent the gain and      the describing 

function of the saturator used in the experimental feedback 

Page 7 of 11

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology



For Peer Review

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

8 

loop, with   being the amplitude of the saturator input. Given 

that the gain   and the describing function of the saturator 

     [41] are real functions and do not affect the phase of the 

signal, (10) can be decomposed into its real and imaginary 

parts: 

 

                ,                       (11) 

           ,                               (12) 

 

where                            . Equation (11) 

shows that the overall loop gain must be unitary, while (12) 

states that the total phase shift around the loop must be an 

integer multiple of 2π radians. By decomposing the total phase 

of the transfer function       and using (9), equation (12) can 

be rewritten as: 

 

                     .                                  (13) 

 

where     is the phase of the cantilever oscillating at     . 

Equation (13) describes the phase condition for the existence 

of self-sustained oscillations. It shows that the cantilever will 

adjust its phase (and hence its oscillation frequency,     ) in 

order to compensate the total phase,      , imposed by the 

phase-shifter (function of   ,    and     ), the polarity on the 

piezo (function of  ) and the total intrinsic delay of the system 

(function of      and     ).  
Fig. 6 illustrates how (13) can be used to explain the observed 

experimental results shown in section III. This figure shows 

the phase associated with each element of the circuit plotted 

against the oscillation frequency. The overall phase is then 

calculated by adding all the terms together. The values of 

frequency for which the overall phase matches a multiple of -

   radians are the solutions of (13). These solutions are 

represented by the black circles on top of the dashed-dotted 

red horizontal lines. 

Fig. 6 illustrates the effect of systematically increasing the 

values of the resistor   , as shown in Fig. 4(a) (only the first 

stage of the phase-shifter is considered with inverted polarity, 

    ). It can be observed that for a small value of    

(      , dotted line) the oscillation frequency solving (13) 

is given by             , corresponding to a total phase 

shift of     radians. This frequency is lower than the natural 

resonance frequency of the cantilever with no added mass 

(             ). An increment of    increases the shift 

introduced by the phase-shifter in the system. Therefore, the 

oscillation frequency is forced to decrease, and the magnitudes 

of the phase shifts introduced by the cantilever and total delay 

decrease as well to keep the sum constant. When this 

compensation is no longer possible (case of        , 

dashed-dotted line) the system jumps to the solution     

radians with an             . After this point, the shifts to 

lower frequencies resume (case of        , solid line, 

            ), to compensate for the larger shift introduced 

by the phase-shifter. This process describes the shifts and 

jumps experimentally observed and plotted in Fig. 4. 

 
Fig. 6.  Interpretation of the experimental results presented in section III using 

the phase condition for the existence of self-sustained oscillations. Effect of 

changing the phase introduced by the phase-shifter (by changing R1), for 
constant cantilever phase, total delay and polarity. 

 

D. Self-sustained oscillation frequency as function of added 

mass 

Equation (13) allows to calculate the phase of the cantilever 

for each set of experimental conditions (  ,   ,  ) and for a 

self-sustained oscillation with frequency     . Nevertheless, a 

systematic way of finding which multiple of     radians 

solves such phase condition is required. This task can be 

algorithmically performed by imposing the physical constraint 

that the cantilever phase must be in the range         , 

in agreement with the simple harmonic oscillator model. If the 

generic value       is written in the form           , 

with       and          , the value of the cantilever 

phase is simply given by       . Table III illustrates this 

procedure for some intervals of values of      , with specific 

examples. 

By imposing that the phase      –   of the cantilever 

oscillating in closed-loop at frequency      is the same as the 

phase of the cantilever modelled as a damped harmonic 

oscillator in (7), one obtains: 

 

 
              

      
                       

                           (14) 

 

with           , and      –  , calculated using the 

algorithm shown in Table III. Equation (14) can be rearranged 

in order to obtain an explicit dependence between the added 

mass,   , and the self-sustained oscillation frequency,     : 

 

    
          

      
 

 

      
                  .         (15)                       
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TABLE III 

PHASE OF CANTILEVER,    , WORKING IN CLOSED-LOOP AS 

FUNCTION OF       

      (radians) 
           

      and          , 

       
(radians) 

       
           
           

          
             
             

          
          

         
           
           

           
              
              

          
          

          
           
           

           
              
              

          
          

 

Finally, the expressions for the hydrodynamics mass and 

damping coefficient, (2) and (3), can be introduced in (15) and 

an analytical expression relating the oscillation frequency of 

the cantilever vibrating in the feedback loop immersed in a 

viscous fluid and with a generic added mass is obtained:      

 

    
 

      
 

 

  
 

    

 
  

  

 
 

   

    
 
  

 
         

 

        
       

 

 
           .                              (16)  

 

The intrinsic damping coefficient, c, is assumed constant for 

all range of added masses, which is an approximation (see the 

decrease of the quality factors, QA, with the increase in added 

mass in Table II). Nevertheless, while vibrating in air, the 

quality factors are high enough for this approximation to be 

reasonable. On the other hand, when the cantilever is 

immersed in a viscous fluid, c is negligible when compared 

with       . 

According to the model developed here, (16) is a necessary 

condition for the existence of self-sustained oscillations in the 

feedback loop, but it does not provide any information on the 

stability of these solutions. This fact becomes relevant due to 

the presence of the periodic parameter            in (16). 

In this case, different values of oscillation frequencies      will 

satisfy (16) for the same value of added mass   . The Nyquist 

Stability Criterion [41] can be used as a secondary criterion to 

assess the stability of the solutions: it states that the only stable 

solution of the system is the one with the highest real part of 

the transfer function                             (refer 

to [29, 30] for examples where this criterion has been 

successfully exploited to understand the stability of viscosity 

sensors). 

Equation (16) and the transfer function       are plotted in 

Fig. 7 considering a constant value of           , but a 

range of different values for    and the two different 

polarities. For comparison, the dependence between the 

resonance frequency and the added mass of the same 

cantilever working in the traditional AM mode, given by (5), 

is also plotted in Fig. 7. The geometrical and dynamical 

parameters of the cantilever are reported in Table I and the 

rheological parameters of the air [38] were used in the models.  

In general, it can be observed that the oscillation frequencies 

decrease with the increase of the added mass, for the three 

different curves (           ,            and    
       , respectively green, orange and purple lines). In 

addition, the solutions of (16) are shown to be periodic, with 

branches of solutions for different ranges of oscillation 

frequencies. The sudden jumps of the oscillation frequencies 

observed experimentally correspond to a change of the 

solution branch, for a particular set of conditions. As 

explained, the real part of the transfer function       is 

shown as an inset of the figure, to decide the stability of each 

solution branch. The values of oscillation frequencies 

measured experimentally using the same conditions than those 

used to plot (16) are presented in Table IV. This experimental 

data is added to Fig. 7 as colored circles and show a very good 

agreement with the respective modeled results.  

Fig. 7(a) shows the case of non-inverted polarity (   ). In 

this case, the solution of (16) is univocal for small added 

masses and there are no possibilities for jumps. Then, for an 

added mass of mA ~ 2.0 x 10
-12

 kg a second branch of 

solutions appears at lower frequencies. A possible jump is 

illustrated for mA ~ 4.0 x 10
-12

 kg (purple squares on top of the 

purple line of            ). In this case, the real part of the 

transfer function       becomes larger for the solution at 

             than the solution at             , and the 

former becomes the stable branch. 

Fig. 7(b) shows the case of inverted polarity (    ). The 

first thing that can be noted is that the solutions of oscillation 

frequencies are complementary to those shown in Fig. 7(a). In 

this case, the modeled operation conditions allow the 

occurrence of a jump at very small added masses (mA ~ 2.0 x 

10
-14

 kg). This is the jump observed experimentally in Fig. 5 

for the case of the small polystyrene bead (red circles). In 

addition, the jump shown in Fig. 5 for the case of the big glass 

bead (green squares) is also presented, for mA ~ 1.5 x 10
-11

 kg. 

Both jumps are indicated by the orange squares. 

Fig. 7 shows that the results predicted by the proposed 

analytical model are in close agreement with the experimental 

measurements and that the model describes each aspect of the 

dynamical response of the system observed in Figs. 4 and 5. A 

deeper analysis of the model and data presented in this figure 

suggests the possibility of using this platform in three distinct 

ways, by adjusting the behavior of the sensor via   ,    and  . 

The first possibility is to use this device as a continuous mass 

sensor, whose oscillation frequency depends on the added 

mass to the cantilever. 

 

TABLE IV 

EXPERIMENTAL DATA PLOTTED IN FIG. 7 AS COLORED CIRCLES 

R1 = 0.02 kΩ 

R2 (kΩ) 

 

No mass 

 

Small Poly 

~ 2 x 10-14 

kg 

Medium Poly 

~ 5 x 10-13 

kg 

Big Poly 

~ 2 x 10-12 

kg 

Big Glass 

~ 1.5 x 10-11 

kg 

p = 1 

0.02 - - 154.82 kHz - - 

0.32 159.33 kHz 160.56 kHz - 146.23 kHz - 

10.12 - - - - 85.19 kHz 

p = -1 

0.02 - 150.59 kHz - - - 

0.32 166.98 kHz - 165.09 kHz 139.57 kHz - 

10.12 - - 158.3 kHz - 99.23 kHz 
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Fig. 7.  Predictions of (16), showing the self-sustained oscillation frequencies 

as function of the mass added to the cantilever. Predictions from a simple 

externally excited harmonic oscillator given by (5) are shown with dashed 

lines, for comparison. a) Non-inverted polarity, p = 1; b) Inverted polarity, p = 

-1. Insets on the right panel: real part of the transfer function       

                     , used to identify the stable solution according to the 

Nyquist Stability Criterion. The coloured circles indicate the respective 

experimental measurements (Table IV), while the squares indicate possible 

jumps. Three potential working modalities (continuous sensor, threshold 

sensor and stable resonator) are illustrated.  

 

It is shown that, by playing with the operating conditions, the 

response of this sensor follows the response of the 

microresonator working in open-loop (given by the dashed-

dotted magenta line representing (5)). Thus, the ultimate 

sensitivity of the sensor working in closed-loop is the same as 

the microresonator working in open-loop, but with better 

signal-to-noise ratio and resolution, typical of the closed-loop 

setups. In the case of this work, added masses of the order of 

10
-14

 kg (small polystyrene bead) were easily detected with a 

shift in frequency of around 150 Hz. Note that such added 

mass is well within the “flat” region of the AM mode, where 

small resonance frequency variations are difficult to detect due 

to the poor signal-to-noise ratio. The second possibility is to 

use this platform as a threshold sensor, in which a small 

variation of mass causes a sudden jump on the oscillation 

frequencies. Furthermore, it is shown that the location of the 

abrupt jump can be positioned in the range of added masses of 

interest by controlling the operating conditions, and in 

particular by tuning the potentiometers    and    in the phase 

shifter. Finally, the third possible way of operating this 

platform is as a stable microresonator, whose oscillation 

frequency is basically independent of the added mass. Fig. 7 

shows regions where the oscillation frequency of the resonator 

completely deviates from the response characteristic of the 

open-loop, and is almost constant for a wide range of added 

masses. A resonator insensitive to environmental conditions 

can be used for applications where, for example, a stable 

signal is required for precision timing and frequency 

references [42]. In reference [30] it was shown that, for 

specific operation conditions of this platform, the 

microresonator can also be insensitive to the viscosity of the 

medium. Such a device could be used to decouple the effect of 

simultaneous external factors acting on the resonator, for 

example a chemical reaction where the added mass to the 

cantilever and the viscosity of the medium change 

simultaneously [43].   

V. CONCLUSIONS 

The dynamical response of a microcantilever self-oscillating 

in a feedback loop is experimentally studied as a function of 

the mass added to the cantilever and as a function of the phase 

shift of the signal along the loop. An analytical model capable 

of explaining the observed phenomena is proposed by 

describing the microcantilever as a variable mass harmonic 

oscillator immersed in a viscous fluid and by exploiting a 

phase condition for the existence of self-sustained oscillations. 

The experimental and modeled results suggest that this 

platform can be used in three distinct modes, according to the 

chosen operation conditions. The first working mode is 

continuous mass sensing. In this case, the oscillation 

frequency changes smoothly with the mass added to the 

cantilever, in a similar fashion and with the same ultimate 

sensitivity as the cantilever working in traditional AM mode. 

Nevertheless, the closed-loop scheme allows obtaining a better 

resolution and signal-to-noise ratio than the traditional open-

loop technique. The second working mode is threshold mass 

sensing. In this case, an arbitrarily small added mass can 

induce a sudden jump on the oscillation frequency. 

Furthermore, the location of the abrupt jump can be positioned 

in the range of added masses of interest by controlling the 

phase of the cantilever with the adjustable phase-shifter. This 

feature can be extremely useful in applications such as point-

of-care diagnosis, where the presence of an analyte of interest 

above a certain concentration must be assessed. Finally, this 

platform can also work as a stable microresonator, whose 

oscillation frequency is independent of some environmental 

condition (added mass, viscosity or density). This feature can 

prove to be extremely important in applications where a stable 

resonance frequency, independent of the external factors, is 

required, or to decouple the effect of competing external 

parameters on the dynamical response of the resonator. These 

degrees of flexibility are not available with current 

microcantilever-based mass sensors. 
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