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Report

The concept of Full Counting Statistics (FCS) has recently attracted intensive theoretical [1] and
experimental [2, 3, 4] attention in the field of electron transport. In the contest of mesoscopic
transport, the FCS was introduced to determine the noise properties of nanodevices [5]. Later it
was also demonstrated to be a sensitive diagnostic tool in the detection of quantum-mechanical

coherence, entanglement, disorder, and dissipation [1].

Mathematically, FCS encodes the complete knowledge of the probability distribution P(n,t)
of the transmitted particles number n during the measurement time t or, equivalently, of all
corresponding cumulants. The study of counting statistics for stochastic processes in general is
of broad relevance for a wide class of problems. For example, non-zero higher order cumulants
describe non-Gaussian behavior and contain information about rare events, whose study has
become an important topic within non-equilibrium statistics in physics, chemistry, and biology.
Efficient methods for evaluating the counting statistics of general stochastic processes are there-

fore of urgent need.

In recent years a number of important results was obtained in the Markovian Master Equation
framework. Bagrets and Nazarov have shown that the Cumulant Generating Function (CGF) is
given by the dominant eigenvalue of the Markovian master equation kernel having included the
counting field factors[6]. Flindt et al. have shown that it is possible to calculate an arbitrary

order of cumulants using an appropriate pertubative approach in the counting field[7].

For cases described by non-Markovian master equation but with a short range memory, no
power-law tails, was shown that a CGF scales linearly with time, as in Markovian processes,

and can be calculated via a peculiar non-Markovian expansion|8].

Here we present a method which unifies extending those earlier approaches[9]. We will consider

systems governed by a generic non-Markovian GME of the form [10]

d

ap(n, t) = Z /Ot dtW(n —n' t —t)p(n' t') +~v(n,t). (1)

where, the reduced density matrix has been resolved into components p(n,t) corresponding to

the number of particles n passing through the system within time-span [0, t]. The memory kernel



W describes the influence of the environment on the dynamics of the system, while the inhomo-
geneity v accounts for initial correlations between system and environment. We will consider
systems with W and v decaying with time faster than any power law, short range in memory.
The inhomogeneity v does, however, play a crucial role at finite times because take in account

of the initial correlations between the reduced system and the bath.

The probability distribution for the number of transferred charges is given by P(n,t) = Tr{p(n,t)}.
For the systems described by Eq.1 we demonstrated that the long-time limit of the CGF is de-

termined by a single dominating pole of the resolvent of the memory kernel.

We defined a recursive scheme extremely efficient in calculating high order cumulants both ana-
lytically than numerically. We tested the numerical stability of the methods for very high orders
of cumulants (> 20) on simple models. The main advantage of our method is the possibility to
evaluate the zero-frequency high order current cumulants in non-Markovian systems with many

states.

Our approach allows also to develop a general method to calculate the finite-frequency current
noise of a non-Markovian transport processes. We found the finite-frequency noise is governed
not only by the full set of poles of the resolvent of Eq.1 but also by initial system-environment
correlations «y are crucial. Such correlations can be, and have been [8, 11], neglected for non-
Markovian processes at low frequencies, but must be included at frequencies comparable with
the internal frequencies of the system. It not yet clear if it is possible to develop a similar scheme
for finite frequency cumulants of higher order. We will investigate which are the possibilities of

this extension.

We applied our methods in transport through a double quantum dot qubit coupled with a
phonon bath. In particular we studied the effects of dissipation and temperature on the current
cumulants of very high orders and the finite-frequency current noise. We will compare our re-

sults with known theories to identify the discrepancies and the role of the bath correlations.

Our method may easily be applied also to other electronic (or photonic) counting systems, as

well as other counted quantities, such as heat or work, in non-equilibrium systems.
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We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum
stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole
of the resolvent of the memory kernel from which we extract the zero-frequency cumulants of the current
using a recursive scheme. The finite-frequency noise is expressed not only in terms of the resolvent, but
also initial system-environment correlations. As an illustrative example we consider electron transport
through a dissipative double quantum dot for which we study the effects of dissipation on the zero-
frequency cumulants of high orders and the finite-frequency noise.
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Full counting statistics (FCS) has recently attracted in-
tensive theoretical [1] and experimental [2] attention. The
interest stems from the usefulness of FCS as a sensitive
diagnostic tool of stochastic electron transport through
mesoscopic systems. Detectable mechanisms include
quantum-mechanical coherence, entanglement, disorder,
and dissipation [1]. Mathematically, FCS encodes the com-
plete knowledge of the probability distribution P(n, t) of
the transmitted number n of electrons or, equivalently, of
all corresponding cumulants. Nonzero higher order cumu-
lants describe non-Gaussian behavior. The study of count-
ing statistics for stochastic processes in general is of broad
relevance for a wide class of problems, also outside meso-
scopic physics. For example, rare events, whose study has
become an important topic within nonequilibrium statistics
of stochastic systems in physics, chemistry, and biology
[3], are reflected in higher order cumulants. Efficient meth-
ods for evaluating the counting statistics of stochastic
processes are therefore of urgent need.

In this Letter, we present a method which unifies and
extends a number of earlier approaches to FCS within a
generalized master equation (GME) formulation [4-6].
The earlier approaches have in practice been limited to
systems with only a few states [4,6], or only the first few
current cumulants [5]. In contrast, our theory enables
studies of a much larger class of problems: Evaluation of
zero-frequency current cumulants of very high orders for
non-Markovian systems with many states is now possible.
Furthermore, the method allows us to develop a general
approach to the finite-frequency current noise of non-
Markovian transport processes. In the case of finite-
frequency noise, we show that not only the memory kernel
but also initial system-environment correlations are cru-
cial. Such correlations can be, and have been [6,7], ne-
glected for non-Markovian processes at low frequencies,
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but must be included at frequencies comparable with the
internal frequencies of the system. We demonstrate our
methods on a system of recent experimental relevance,
namely, transport through a dissipative double quantum
dot [7,8], but they may easily be applied to other electronic
(or photonic) counting systems, as well as other counted
quantities, such as heat or work, in nonequilibrium systems
[9].

Non-Markovian GME.—Consider a nanoscale transport
system governed by a generic non-Markovian GME of the
form [10,11]

%[)(n, 1) = ;ﬁ; At Wn —n',t—)p', ') + $(n, 1).
(D

Here, the reduced density matrix of the system p(¢) has
been resolved into components p(n, £) corresponding to the
number of electrons n passing through the nanosystem
within time-span [0, 7]. The memory kernel ‘W describes
the influence of the environment on the dynamics of the
system, while the inhomogeneity ¥ accounts for initial
correlations between system and environment. Both "W
and ¥ decay with time, usually on a comparable time scale,
so that ¥ is irrelevant for the long-time limit. The inhomo-
geneity ¥ does, however, play a crucial role at finite times.
The probability distribution for the number of transferred
charges is P(n, 1) = Tr{p(n, t)}. The corresponding cumu-
lant generating function (CGF) S(yx, 1) is defined as
¢S =3 P(n, t)e"X. Tn Laplace space Eq. (1) leads to
the algebraic expression p(x, z) = G(x, 2)[p(x. t = 0) +
9(x, 2)], where G(x,z) =[z— W(x,2)]™" is the resol-
vent of the kernel, and p(x,z) =3, [§ dtp(n, 1)e™ ¥~
and similarly for $(x,z) and W(y, z). Inverting the
Laplace transformation, the CGF then becomes

© 2008 The American Physical Society
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where a is a real number, chosen such that all singularities
of the integrand are situated to the left of the vertical line of
integration. We have moreover introduced the notation
(G(x, 2)) = Tr{G(x, Dp(x, t = 0) + 7(x, 2)]}.  Equa-
tion (2) contains the full statistical information about the
charge transfer process. It is a powerful formal result, but it
also leads to useful practical schemes, as we shall now
demonstrate.

Zero-frequency  FCS.—Consider first the

frequency cumulants of the current, defined as ((I")) =

d 9"S.1)
dt (i

tem with the counting field y set to zero tends exponen-
tially to a unique stationary state determined by the 1/z
pole of the resolvent G(y = 0, z). The stationary state is
given by the eigenvector corresponding to the
zero eigenvalue of W= W(y=02z=0), ie.,
lim,_, p(¢) = p*, where p%** is the normalized solution
to Wpsat = 0. With finite values of y, an eigenvalue
Ao(x, z) develops adiabatically from the zero eigenvalue,
such that Ay(0, z) = 0, and the long-time behavior is de-
termined by the isolated pole structure 1/[z — A¢(x, z)] of
G(x, z) close to zero. This pole zy(y) solves

20 — Ao(x> 20) = 0, 3)

and goes to zero with y going to zero, i.e., zo(0) = 0.
We thus find ¢S — D(y)eoW! for large ¢, where
D(y) is a time-independent function depending on the
initial conditions and correlations. The current cumulants

then read ({I'")) = HB”;?;()/,\;) | ,—o- In the Markovian limit for
the kernel W (y, z — 0) we get zo(x) = Ao(x, 0) as found
in Refs. [4,5].

Recursive scheme.—When the involved matrices are
large, it may be nontrivial to determine the full y and z
dependence of the eigenvalue Ay(y, z), and thereafter solve
Eq. (3). Instead, we expand the eigenvalue as Ay(y, z) =

®1=0 (’])(‘—,)k 2D with ¢©L) = 0, and calculate the expan-
sion coefficients recursively using Rayleigh-Schrodinger
perturbation theory [12]:

K (K
(K.L) =
“-2)

Z€10-

| y—0,r—00s 1 = 1,2, .... We assume that the sys-

k=0 i

i(s)«ﬁlw“’”lomul>>>,

0
0%D) = R i@) ZC)[C"“” - WHjox=kL=0y),

k=0 =0

“4)
with K, L=0,1,2,.... Here, ({0| solves ({0 W =0,

while [009)) is the stationary state p*™. Moreover,
W(x,z2) = W(x,z) — W has been expanded as
Wiy, 2) = 5200 9 2 W with W = 0. Finally,
the pseudoinverse of the kernel is R = Q W' Q with

9 =1 — [0©9)(0| [13]. With the ¢&L)’s at hand we can
solve Eq. (3) for zy(x) to a given order in y, and from the
expansion zo(y) = >, %((I" ») extract the zero-
frequency cumulants of the current:
INY) = NI = 11 P(N*k,l) (k1)
() = 'kzzz"oﬁﬂ Y,

) 5)
P(K,L) — Z <<I’l>> P(K*n,L*l)

|
= n

with L =0,1,2,...,and K, N =1,2,3,.... For the aux-
iliary quantity P10, we have P& = §,( POD = 5 |
and P&~ = 0.

We illuminate the recursive scheme by evaluating the
first three cumulants of the current using Eq. (5), the mean
current, the variance (the noise), and the skewness:

() = o,
<<12>> — c(z,()) + 26(1,0)6(1,1)’
<<13>> = B0 3C(2,0)C(1,1)

+ 3¢9 (12 4 9((LD)2 4 217,

(6)

Higher order cumulants can be obtained in a similar man-
ner, analytically or numerically. Coefficients of the form
c0) are purely Markovian quantities, and the mean cur-
rent is thus not sensitive to non-Markovian effects, whereas
higher order cumulants are [6,15]. From Eq. (4) we find for

the coefficients ¢®D), eg., 1 = (G| W"? |00y,
D = (O|(W*D = WORWOY) 000y and 20 =

@IW*Y — 2 WO R W) 1000y Evaluation of the
pseudoinverse R amounts to solving matrix equations
which is feasible even with very large matrices [14].
Numerically, the recursive scheme is stable for very high
orders of cumulants ( > 20) as we have tested on simple
models.

Double quantum dot.—We illustrate our method by
considering a model of charge transport through a
Coulomb blockaded double quantum dot in a dissipative
environment [7]. Maximally one additional electron is
allowed on the double quantum dot. The Hamiltonian of
the double quantum dot is Hg = 55, + T.5,, where the
pseudospin operators are §, = |[L)XL| — |[R}R| and §, =
|LYXR| + |R)L|, respectively. The tunnel coupling be-
tween the two quantum dot levels |L) and |R) is T, while
€ is their detuning. The pseudospin system is tunnel-
coupled to left (L) and right (R) leads via the tunnel-
Hamiltonian H; = kaa:LyR(VkHé,fGIOXal + H.c.), with
both leads described as noninteracting fermions, i.e., H,, =

Zkaskaézaéka, a = L, R. Dissipation is provided by a
reservoir of noninteracting bosons that couple to the §,
component of the pseudospin. The Hamiltonian is then
H=Hg+H;+H, + Hy + Hg + V5,, where Hy =

>ihwata;and Vy = Y4 @l + a)).

150601-2
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To describe charge transport through the system we trace
out the leads following Gurvitz and Prager [16], leading to
an equation of motion for the reduced density matrix & =
(600, 1L, Orr» OLg» Or)T of the double dot and the bath
of bosons. The elements &;; are still operators in the
Hilbert space of the boson bath. Charges are assumed to
enter the left quantum dot from the left lead and leave from
the right quantum dot via the right lead with energy-
independent rates I',(e) = 27> |V, |*6(e — &, ) =T,
a = L, R. This approach is valid to all orders in the tunnel
coupling T, under the assumption of a large bias across the
system [16].

Next, we consider the electronic occupation probabil-
ities p; = Trg{d;;}, i = 0, L, R, where Try is a trace over
the bosonic degrees of freedom. A closed system of equa-
tions is obtained by assuming that the boson bath at any
time is in local equilibrium corresponding to the given
charge state: &, =p;® 6;(B), i=L, R, where
G1/p(B) = P [Trgle P}, HYY = Hy = Vi, and
B = 1/kgT is the inverse temperature (see, e.g., Sec. IV
C in Ref. [14]). This approximation is valid when the bath-
assisted hopping rates F(Bi)(z) (proportional to T2, see
below) are much smaller than I'; /. The memory kernel
for this model, with p = (py, p., pr)’, then reads

_FL 0 FReiX
W= I'. -T%@ r'“'v9 | @
0 TV -TV() T

Here, the counting field y has been introduced in the off-
diagonal element containing the rate I'y — I'zeX, corre-
sponding to counting of the number of electrons that have
been collected in the right lead. The bath-assisted hopping
rates entering the kernel are I')(z) = T2[g(")(z.) +
g7(=)] with  g() = [Fdre VTN W) =
[§ doJ(@){[1 — cos(wt)] coth(Bw/2) + i sin(wt)}/w?,
and z- = z * ie + 'y /2. The spectral function of the heat
bath is J(w) =¥ [g;|*?6(w — ), and below we show
results for Ohmic dissipation, Jo(w) = 2awe™“/%:,
when the rates can be evaluated either analytically (for
Bw,. > 1) or numerically.

In Fig. 1 we show the first three cumulants of the current
as functions of the level detuning & with different dissipa-
tions strengths a. As an illustrative example the 15th
cumulant of the current, ((I1)), is also shown. As the
dissipation strength is increased, a clear suppression of
the coherent features (with @ = 0) is seen. The increased
coupling to the heat bath tends to localize the electron to
one of the two quantum dots, thereby suppressing the
effects of the coherent coupling between them. As a result
a crossover from coherent to sequential tunneling is ob-
served with increasing «. For large «’s, the sequential
tunneling process between the two quantum dots consti-
tutes a “bottle-neck” and the cumulants consequently
approach the Poisson limit ((I"™))/{IY) =1, m =
1,2,3,.... The typical behavior of cumulants is, however,

11
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FIG. 1 (color online). Zero-frequency cumulants of the current
as functions of the level detuning & with different dissipation
strengths «. Parameters are I'=1, =13, =0.5, T. = 0.1,
kgT =0, w, =500, and 277 = 0 (full line), 0.2 (full line
with dots), 0.5 (dashed line), 1 (dashed line with dots). A large
bias is applied across the system.

factorial growth, i.e., [({I"))| = cq™m! for some constants
¢,q > 0. In the coherent case (o = 0), this behavior is
clearly seen for the 15th cumulant, demonstrating its
high sensitivity to dephasing and decoherence
mechanisms.

Finite-frequency noise.—The expression for the CGF,
Eq. (2), allows us also to study the finite-frequency spec-
trum of the second cumulant of the current, the (symme-
trized) current noise [17], expressed by MacDonald’s
formula as Sy(w) = w [§ disin(w)((I*)(1) [18-20],

where (I2))(r) = €4 £5W0) y—0- We then find

dr a(iy)?
w?>  9?
Su(w) = —— WRG(X’ z=iw) + (0 = —)]l—

)

In order to evaluate this expression, we need to choose
p(x,t = 0) appropriately and find the inhomogeneity
9(x,z) as they enter the definition of {(G(y,z)).
Following Ruskov and Korotkov [21] we assume that the
system evolves from ¢, = —oo, such that the electronic
occupation probabilities at t = 0, where electron counting
begins, have reached the stationary state, i.e., p(n, t =
0) = 8,,0p™. For this model the inhomogeneity is inde-
pendent of the counting field [12]:

W — W()(=0,Z)p
Z

#(2) = ©)

We see that the effects of the initial correlations accounted

150601-3
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FIG. 2 (color online). Finite-frequency current noise spectrum
for different temperatures (left figure) and dissipation strengths
(right figure). Left figure: a = 0.005, kzT = 0 (full line), 1 (full
line with dots), 2 (dashed line), 5 (dashed line with dots). Right
figure: kpT = 0, and o = 0.01 (full line), 0.02 (full line with
dots), 0.03 (dashed line), 0.05 (dashed line with dots). Other
parameters are [, =T, =0.01, 7T.=3, =10, A=
Jer + (2T.)%, and w, = 500. A large bias is applied across
the system.

for by 9(z) vanish in the long-time limit. Moreover, since
Wit =0, we find (G(x,2) =Tr{G(x, )G " (x =
0,z)p*4}/z from which we can calculate the finite-
frequency current noise. We note that only the proper
inclusion of the inhomogeneity ensures a correct finite-
time behavior, such as proper normalization of Tr{p(r)} =
(G(x =0, 1)) = Tr{p*™} = 1 at all times.

Displacement currents (due to finite capacitances be-
tween quantum dots and leads) can be included in the
finite-frequency current noise via the Ramo-Shockley
theorem [22]. Evaluating the full current noise spectrum
then requires an additional counting field accounting for
tunneling from the left lead [20]. For the shown results we
have included displacement currents and assumed identical
capacitances between the left (right) quantum dot and the
left (right) lead. In Fig. 2 we show the finite-frequency
current noise Sy(w) at frequencies around the hybridiza-

tion energy A = +/e? + (2T,)?, where signatures are ex-
pected in the current noise spectrum [7,19,22]. Resonances
are not observed exactly at the “bare* value w = A, but
are shifted towards lower frequencies. This renormaliza-
tion occurs due to coupling to the heat bath which dresses
the eigenspectrum of the electronic degrees of freedom,
similar to the Lamb shift in atomic physics. The left figure
shows how the signatures due to the coherent coupling
between the two quantum dots are washed out with in-
creasing temperature. In the right figure, we show how the
frequency shift increases with increasing dissipation
strength, which simultaneously reduces the effect of the
coherent coupling. For larger a’s ( ~ 0.1) a change of line
shape is observed (not shown).

In conclusion, we have presented a general theory for
current fluctuations in non-Markovian quantum transport
systems. Our methods allow us to calculate recursively
zero-frequency current cumulants of very high orders,
governed by a single dominating pole of the resolvent of

the memory kernel, as well as the finite-frequency current
noise, which is given not only by the resolvent, but also
initial correlations. As an illustrative example of our ap-
proach, we have considered transport through a dissipative
double quantum dot for which we have studied the effects
of dissipation and temperature on the current cumulants of
very high orders and the finite-frequency current noise.
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the Czech Science Foundation.
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