

RELAZIONE FINALE DEL PROGRAMMA DI RICERCA STM

Fruitore: Giovanna Sannino

Istituto di afferenza: Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR

qualifica Ricercatore livello III

Istituzione ospitante: University of Western Ontario, London ON, Canada.

Dipartimento di afferenza: Physics and Astronomy Department and Brain and Mind Institute - SodduLab.

Titolo del programma:

How different types of exercise affect different aspects of cognition by using the HRV

Studio di come differenti tipologie di esercizi possono influenzare le performance cognitive mediante l'uso dell'HRV.

Sintesi delle attività svolte

Lo studio avviato ha come obiettivo l'identificazione di una relazione tra attività cardio-circolatoria (HRV) e performance cognitive, ovvero l'identificazione di un modello capace di correlare i parametri all'HRV con le prestazioni cognitive ottenute su un certo numero di test cognitivi diversi. In particolare, si è interessati a sapere se l'HRV e le variazioni dei parametri dell'HRV siano associate a cambiamenti nel dominio cognitivo, ovvero se impatta su attività quali: ragionamento, memoria di lavoro e capacità verbali. Come risultato ciò fornirà informazioni importanti su quali fattori contribuiscono al sano funzionamento cognitivo in diversi domini.

Al fine di effettuare la modellazione, è stata necessaria una prima fase di raccolta dati, condotta a partire dalla definizione di un protocollo sperimentale, ovvero un documento che descrive, in maniera chiara ed esplicita, obiettivi, disegno, metodologia, considerazioni statistiche ed organizzazione dello studio.

Il protocollo redatto è stato approvato dal comitato etico della Western University, Ontario (Canada). Ad ogni partecipante sono state illustrate le finalità dello studio e sono state fornite schede informative circa il progetto, e, prima dell'avvio della sperimentazione, ogni partecipante ha firmato il consenso al trattamento dati.

Sono stati reclutati 24 soggetti sani volontari, di età compresa tra i 18 ed i 28 anni. Per il reclutamento dei soggetti sono stati previsti i seguenti criteri di inclusione:

- No atleti professionisti
- No persone che abitualmente effettuano attività fisica.

Il protocollo eseguito per la raccolta dati viene brevemente riassunto nelle seguenti fasi:

- Giorno 1:
 - Al partecipante vengono illustrate le finalità dello studio e le modalità con cui verrà condotto. Viene fornito il materiale informativo ed il partecipante viene invitato alla firma del consenso informato.
 - Al partecipante viene illustrato l'uso del dispositivo wearable che dovrà indossare durante l'attività fisica per l'acquisizione in continua del segnale elettrocardiografico (ECG), il Polar H10. Insieme al dispositivo, vengono consegnate istruzioni dettagliate su come apporre il sensore e su come utilizzarlo.
 - Al partecipante vengono illustrati i 12 test cognitivi della Cambridge Brain Sciences (CBS) che dovranno effettuare a valle di ogni esercizio fisico e viene spiegata la modalità per la compilazione online degli stessi. In dettaglio, in figura 1 vengono riportati i 12 test cognitivi utilizzati: evidenziati in verde quelli relativi alla memoria a breve termine, in blu quelli relativi alle capacità di ragionamento, e in rosso quelli relativi alle capacità verbali.

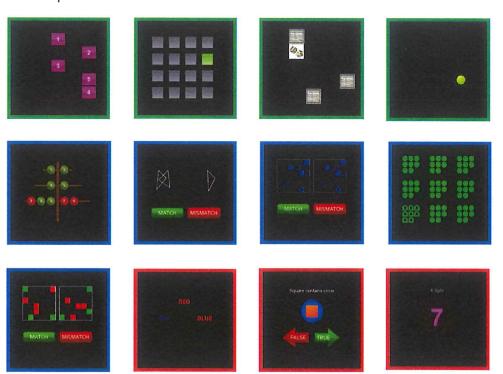
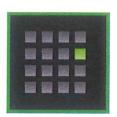
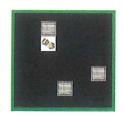
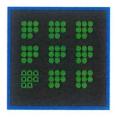



Figura 1 - CBS test utilizzati nello studio.



Visuospatial Working Memory - ID:848


Spatial Span Task - ID: 854

Paired Associates - ID: 850

Self-Ordered Search - ID: 853

Deductive Reasoning - ID: 849

Feature Match – ID: 846



Interlocking Polygons - ID: 851

Spatial Planning - ID: 855

Spatial Rotations – ID: 852

Colour word remapping - ID: 845

Verbal Reasoning – ID: 847

Digit Span - ID: 844

- o Viene fissato lo scheduling delle attività per il singolo partecipante:
 - Task1 Assessment cognitivo iniziale: giorno 1;
 - Task2 1° batteria di 12 test cognitivi: giorno 5;
 - Task3 2° batteria di 12 test cognitivi: giorno 10;
 - Task4 3° batteria di 12 test cognitivi: giorno 15;
 - Task5 4° batteria di 12 test cognitivi: giorno 20;
 - Task6 5° batteria di 12 test cognitivi: giorno 25;
 - Task7 Assessment cognitivo finale: giorno 30.

Tra un task e l'altro, il partecipante viene invitato ad effettuare un minimo di 3 ore di esercizio fisico (anche non continuative), preferibilmente 1 ora al giorno per 3 giorni. La tipologia di esercizio fisico da effettuare dipenderà dal gruppo target cui verrà assegnato, che potrà essere **aerobico** o **sforzo**. Nel caso venga assegnato al gruppo aerobico, dovrà effettuare una tipologia di esercizio cosiddetto aerobico, quali ad esempio la corsa o il ciclismo. Nel caso venga invece assegnato al gruppo sforzo dovrà effettuare una tipologia di esercizio che sia breve ma intenso, come ad esempio il sollevamento pesi, le flessioni, o i sollevamenti alla sbarra.

Viene richiesto di effettuare in loco l'Assessment cognitivo iniziale.

- Giorno 5:

 Viene richiesto l'invio delle acquisizioni ECG effettuate finora e l'esecuzione della 1° batteria di 12 test cognitivi.

Giorno 10:

 Viene richiesto l'invio delle acquisizioni ECG effettuate finora e l'esecuzione della 2° batteria di 12 test cognitivi.

Giorno 15:

 Viene richiesto l'invio delle acquisizioni ECG effettuate finora e l'esecuzione della 3° batteria di 12 test cognitivi.

Giorno 20:

 Viene richiesto l'invio delle acquisizioni ECG effettuate finora e l'esecuzione della 4° batteria di 12 test cognitivi.

Giorno 25:

 Viene richiesto l'invio delle acquisizioni ECG effettuate finora e l'esecuzione della 5° batteria di 12 test cognitivi.

- Giorno 30:

- Viene richiesto l'invio delle acquisizioni ECG effettuate finora e l'esecuzione in loco dell'assessment cognitivo finale.
- Il partecipante riconsegna la strumentazione ricevuta

Purtroppo non tutti i partecipanti hanno eseguito correttamente tutti i task richiesti. La maggior parte di essi hanno effettuato un totale di 4 batterie di test cognitivi (su un numero richiesto pari a 5). Inoltre, non sempre hanno correttamente indossato il sensore elettrocardiografico per tutta la durata degli esercizi fisici svolti.

Tutti i dati relativi al segnale elettrocardiografico raccolti sono stati processati mediante un software matlab-based, Kubios HRV, mediante il quale sono state estratte un set di caratteristiche relative alla variabilità della frequenza cardiaca (Heart Rate Variability – HRV) nel dominio del tempo, della frequenza, e nel dominio non lineare.

In dettaglio sono stati estratti 34 parametri caratteristici, riassunti nella tabella riportata di seguito.

	Misura	Unità	Descrizione
		J	Dominio del Tempo
1	MeanRR	ms	The mean of RR intervals
2	STDRR	ms	Standard deviation of RR (NN) intervals
3	MeanHR	1/min	The mean of heart rates values
4	STDHR	1/min	Standard deviation of heart rates values
5	RMSSD	ms	Square root of the mean squared differences between successive RR intervals
6	NN50	count	Number of successive RR interval pairs that differ more than 50 m
7	pNN50	%	NN50 divided by the total number of RR intervals
8	RRtri		The integral of the RR interval histogram divided by the height of the histogram
9	TINN	Ms	Baseline width of the RR interval histogram
			Dominio della Frequenza
10	PeakVLF	Hz	Peak frequencies of the very-low-frequency band
11	PeakLF	Hz	Peak frequency of the low-frequency (LF) band (0.04–0.15 Hz)
12	PeakHF	Hz	Peak frequency of the high-frequency (HF) band (0.15–0.4 Hz)
13	VLF	ms ²	Absolute power of the very-low-frequency band (0.0033–0.04 Hz)
14	LF	ms ²	Absolute powers of LF band, calculated with AR
15	HF	ms ²	Absolute powers of HF band, calculated with AR
16	Relative VLF	%	Relative power of the very-low-frequency band
17	Relative LF	%	Relative power of the low-frequency band
18	Relative HF	%	Relative power of the high-frequency band
19	Norm. Power LF	nu	Relative power of the low-frequency band in normal units

Norm. Power HF	nu	Relative power of the high-frequency band in normal units
Total Power	ms ²	Sum of the energy in the VLF, LF, and HF bands
LF/HF	%	Ratio between LF and HF band powers
		Dominio non lineare
SD₁	ms	The standard deviation of the Poincar´e plot perpendicular to the line of identity
SD ₂	ms	The standard deviation of the Poincar´e plot along to the line of identity
ApEn		Approximate entropy
SampEn		Sample entropy
D_2		Correlation Dimension
DFA ₁		Short-term fluctuation slope in Detrended Fluctuation Analysis
DFA ₂		Long-term fluctuation slope in Detrended Fluctuation Analysis
RPLmean	beats	Recurrent Plot (RP) mean line length
RPLmax	beats	RP maximum line length
RPREC	%	RP Recurrence Rate
RPDET	%	RP Determinism
RPShan		RP Shannon Entropy
	Total Power LF/HF SD ₁ SD ₂ ApEn SampEn D ₂ DFA ₁ DFA ₂ RPLmean RPLmax RPREC RPDET	Total Power ms² LF/HF % SD1 ms SD2 ms ApEn SampEn D2 DFA1 DFA2 RPLmean beats RPLmax beats RPREC % RPDET %

Tali caratteristiche sono state estratte da ogni acquisizione ECG relativa ad ogni run legato ad una singola sessione di esercizio fisico svolto. In pratica, facendo riferimento alla figura riportata di seguito, per ogni singola sessione di esercizio fisico (Run) è stato estratto un vettore di 34 HRV features. È stata poi effettuata la media delle caratteristiche dell'HRV relative ai run tra due successive batterie di 12 CBS test. Tali caratteristiche sono state messe in correlazione con i risultati dei test CBS effettuati a valle degli esercizi fisici.

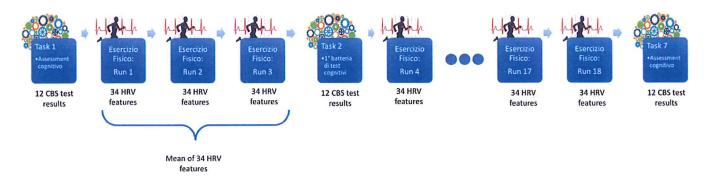


Figura 2 - Timeline esempificativa delle attività di un partecipante.

Per ogni soggetto si è dunque ottenuto un dataset come quello di seguito riportato:

sub _{id}	HRV ₁	HRV ₂	 HRV ₃₄	CBS ₁	CBS ₂	 CBS ₁₂	dove HRV _{1:34} = Media delle HRV relative ai Run 1-3
sub _{id}	HRV₁	HRV ₂	 HRV ₃₄	CBS ₁	CBS ₂	 CBS ₁₂	dove HRV _{1-:34} = Media delle HRV relative ai Run 4-6
sub _{id}	HRV ₁	HRV ₂	 HRV ₃₄	CBS ₁	CBS ₂	 CBS ₁₂	dove HRV ₁₋₃₄ = Media delle HRV relative ai Run 7-9
sub _{id}	HRV₁	HRV_2	 HRV ₃₄	CBS ₁	CBS ₂	 CBS ₁₂	dove $HRV_{1::34}$ = Media delle HRV relative ai Run 10-12
sub _{id}	HRV ₁	HRV ₂	 HRV ₃₄	CBS ₁	CBS ₂	 CBS ₁₂	dove HRV _{1-:34} = Media delle HRV relative ai Run 13-15
sub _{id}	HRV₁	HRV ₂	 HRV ₃₄	CBS ₁	CBS ₂	 CBS ₁₂	dove HRV _{1-:34} = Media delle HRV relative ai Run 16-18

Considerando che non tutti i partecipanti hanno correttamente eseguito il protocollo di acquisizione, il database finale ottenuto è composto da 86 items, di cui 32 relativi al gruppo **sforzo** e 54 relativi al gruppo **aerobico**.

Per verificare l'esistenza di una correlazione tra i dati dell'ECG e le performance cognitive valutate mediante i CBS test, è stata dapprima effettuata un'analisi statistica standard, analizzando la variabilità delle HRV features nei vari set di RUN.

Di seguito si riportano i risultati dell'analisi effettuata. I primi grafici illustrano per ciascun gruppo, **sforzo** (GROUP 1 in blu) e **aerobico** (GROUP 2 in rosso), come varia nel tempo ogni singola caratteristica dell'HRV, ovvero come essa cambia da un set di RUN all'altro. In ogni grafico è riportato il valor medio della caratteristica e la sua deviazione standard.

Si evince subito come le due tipologie di attività fisica impattino in modo diverso sulle medesime caratteristiche dell'HRV.

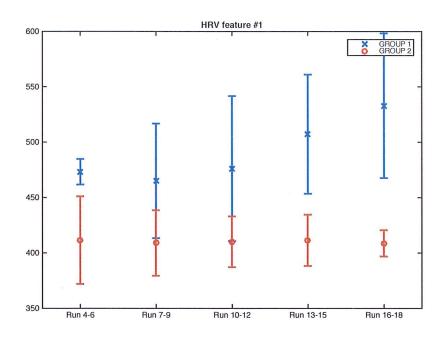


Figura 3 - Valor medio e deviazione standard dell'HRV#1: MeanRR

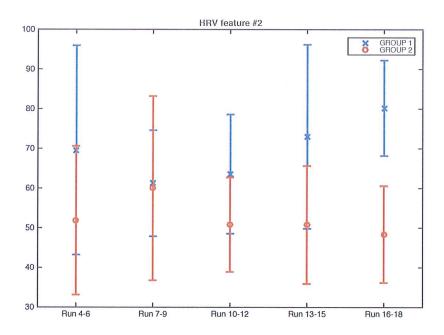


Figura 4 - Valor medio e deviazione standard dell'HRV#2: STDRR

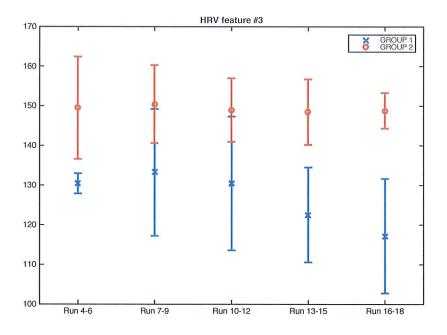


Figura 5 - Valor medio e deviazione standard dell'HRV#3: MeanHR

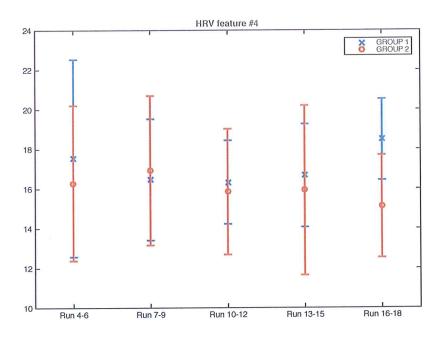


Figura 6 - Valor medio e deviazione standard dell'HRV#4: STDHR

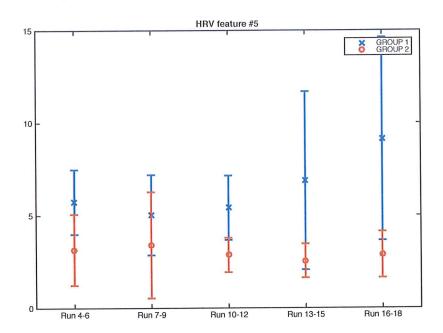


Figura 7 - Valor medio e deviazione standard dell'HRV#5: RMSSD

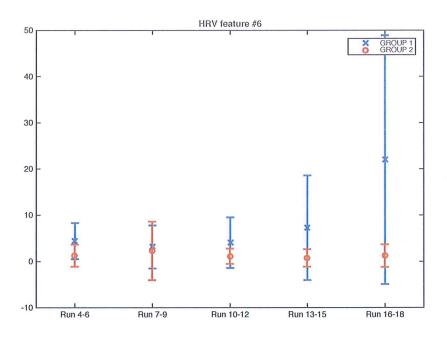


Figura 8 - Valor medio e deviazione standard dell'HRV#6: NN50

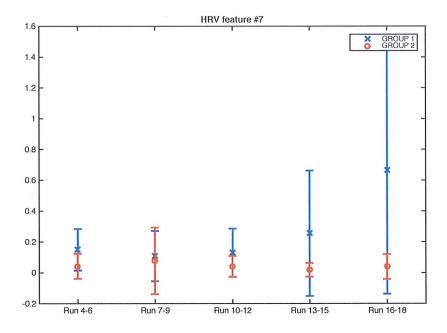


Figura 9 - Valor medio e deviazione standard dell'HRV#7: pNN50

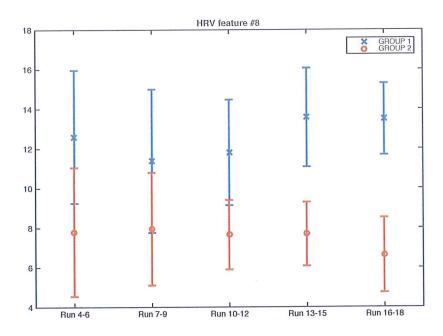


Figura 10 - Valor medio e deviazione standard dell'HRV#8: TT tri Index

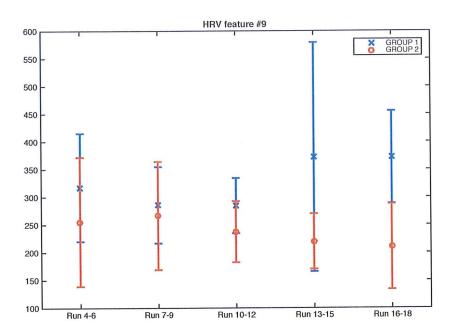


Figura 11 - Valor medio e deviazione standard dell'HRV#9: TINN

Figura 12 - Valor medio e deviazione standard dell'HRV#10: Peak frequencies VLF

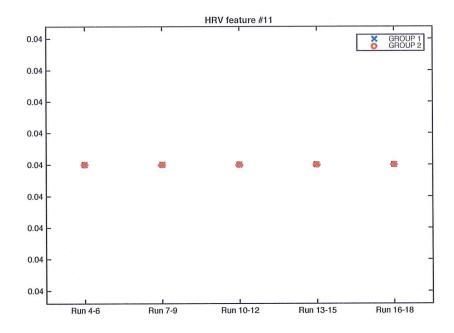


Figura 13 - Valor medio e deviazione standard dell'HRV#11: Peak frequencies LF

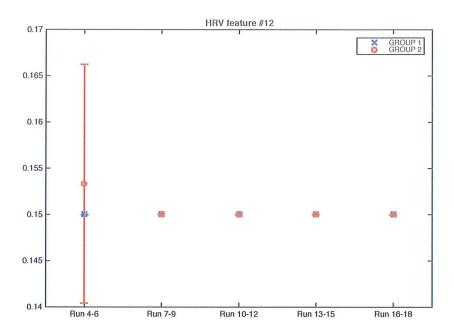


Figura 14 - Valor medio e deviazione standard dell'HRV#12: Peak frequencies HF

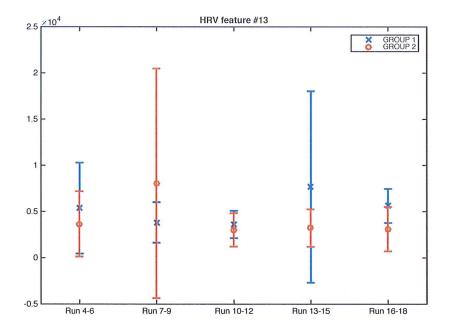


Figura 15 - Valor medio e deviazione standard dell'HRV#13: Absolute powers VLF

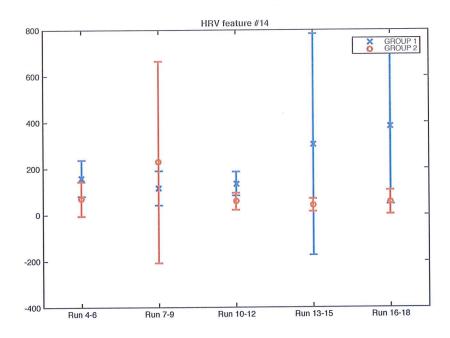


Figura 16 - Valor medio e deviazione standard dell'HRV#14: Absolute powers LF

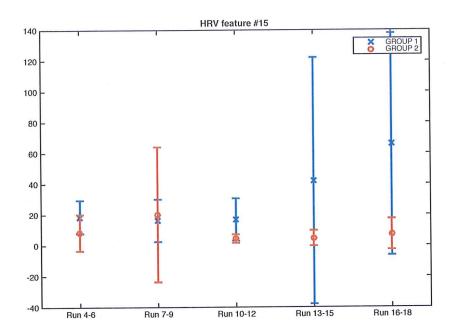


Figura 17 - Valor medio e deviazione standard dell'HRV#15: Absolute powers HF

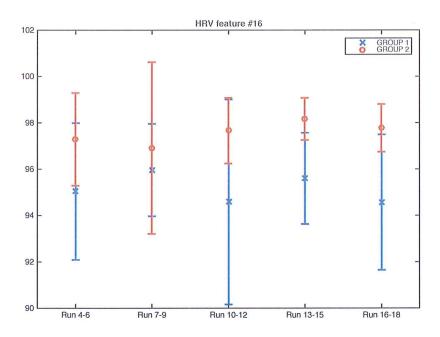


Figura 18- Valor medio e deviazione standard dell'HRV#16: Relative powers VLF

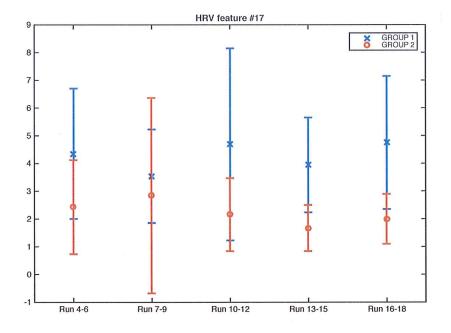


Figura 19 - Valor medio e deviazione standard dell'HRV#17: Relative powers LF

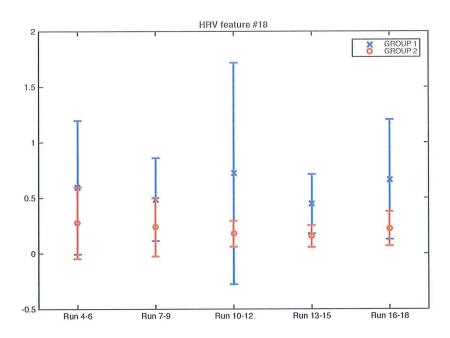


Figura 20 - Valor medio e deviazione standard dell'HRV#18: Relative powers HF

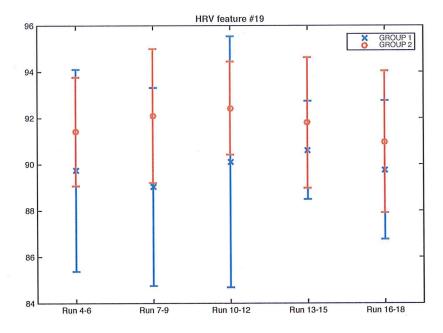


Figura 21 - Valor medio e deviazione standard dell'HRV#19: Normalized powers LF

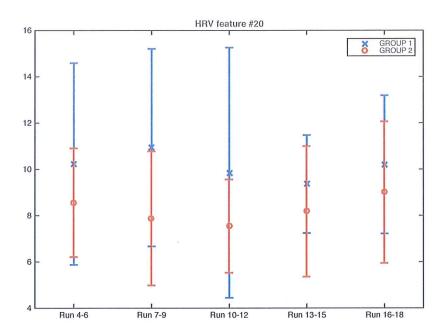


Figura 22 - Valor medio e deviazione standard dell'HRV#20: Normalized powers HF

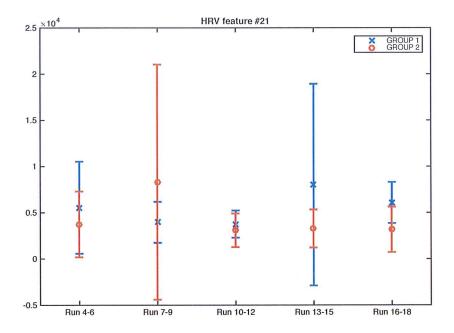


Figura 23 - Valor medio e deviazione standard dell'HRV#21: Total power

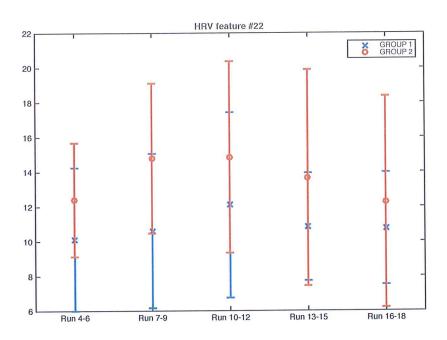


Figura 24 - Valor medio e deviazione standard dell'HRV#22: LF/HF ratio

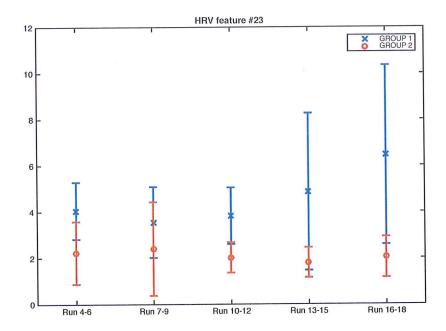


Figura 25 - Valor medio e deviazione standard dell'HRV#23: SD1

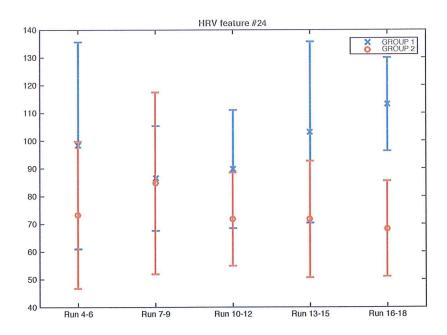


Figura 26 - Valor medio e deviazione standard dell'HRV#24: SD2

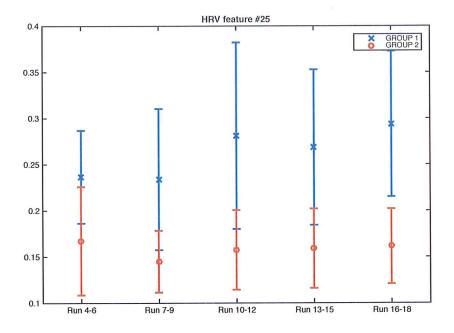


Figura 27 - Valor medio e deviazione standard dell'HRV#25: ApEn

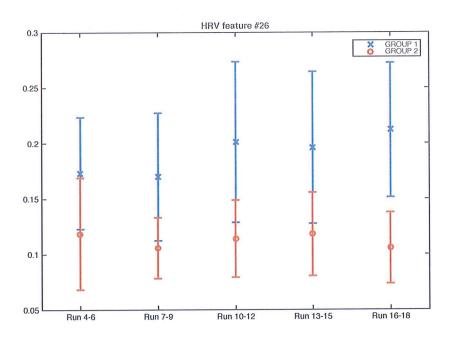


Figura 28 - Valor medio e deviazione standard dell'HRV#26: SampEn

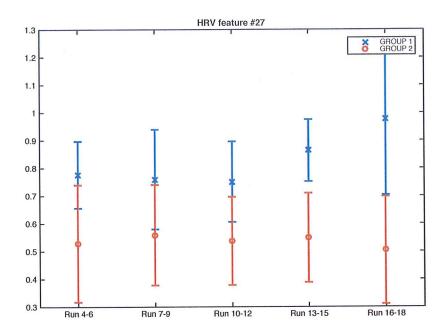


Figura 29 - Valor medio e deviazione standard dell'HRV#27: D2

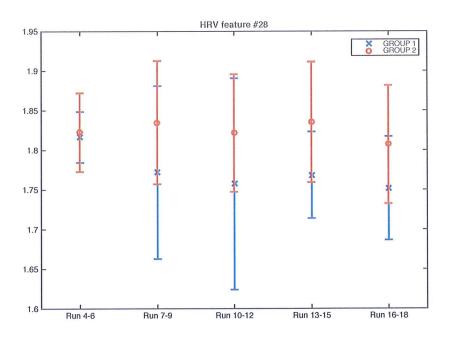


Figura 30 - Valor medio e deviazione standard dell'HRV#28: alpha1

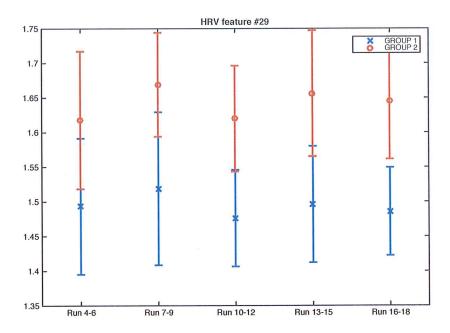


Figura 31 - Valor medio e deviazione standard dell'HRV#29: alpha2

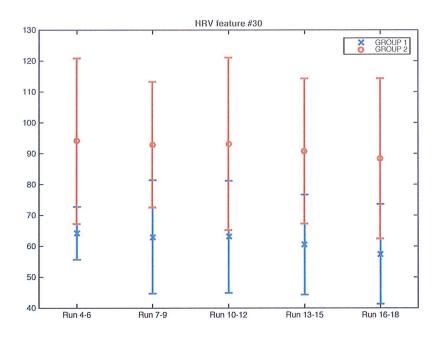


Figura 32- Valor medio e deviazione standard dell'HRV#30: Mean line length

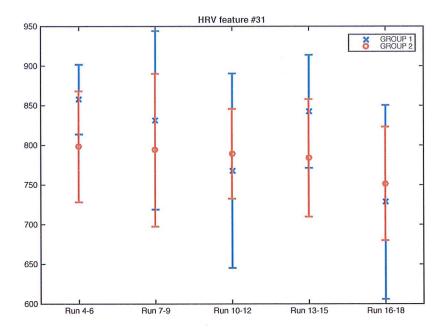


Figura 33 - Valor medio e deviazione standard dell'HRV#31: Max line length

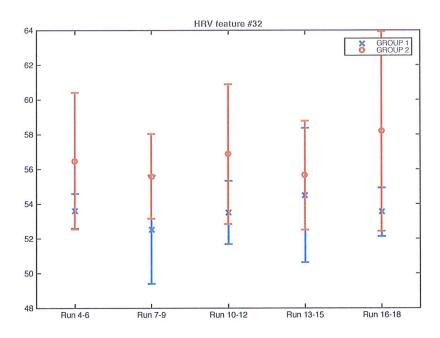


Figura 34 - Valor medio e deviazione standard dell'HRV#32: REC

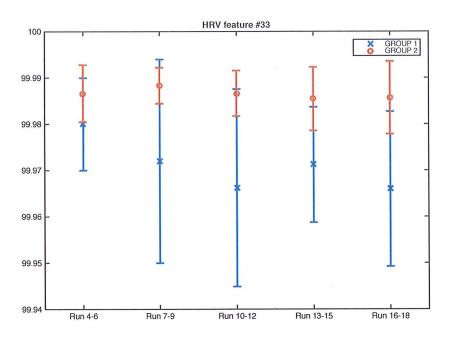


Figura 35- Valor medio e deviazione standard dell'HRV#33: DET

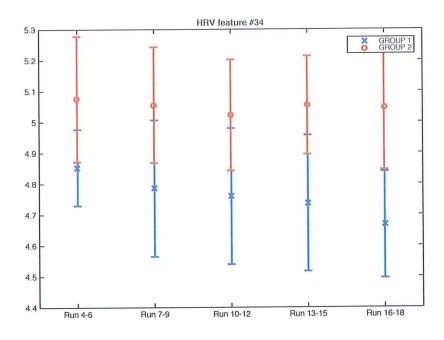


Figura 36 - Valor medio e deviazione standard dell'HRV#34: shannon entropy

Successivamente è stata effettuata un'analisi di correlazione. Infatti, al fine di esprimere in maniera *quantitativa* l'intensità del legame tra due variabili, nel nostro caso tra ogni HRV feature e ogni CBS test, è necessario calcolare un indice di correlazione. Esistono vari tipi di indici di correlazione, la cui scelta dipende in generale da vari fattori: 1) il tipo di livello di misurazione di ciascuna delle due variabili; 2) la natura della distribuzione (continua o discreta); 3) le caratteristiche della distribuzione (lineare o non lineare).

Nel nostro caso è stato scelto l'indice ρ di Pearson, il cui valore numerico compreso tra -1 e 1 esprime la forza di una relazione lineare tra due variabili. Se ρ è più vicino a 1, questo indica che le due variabili sono direttamente correlate. Il valore di ρ più vicino a -1, indica che le due variabili sono inversamente correlate, diversamente se ρ è pari a 0 le variabili non sono correlate.

Di seguito si riporta la tabella contente tutti gli indici di correlazione ρ . Sono stati evidenziati in rosso tutti i coefficienti tali per cui la caratteristica HRV risulta mediamente più direttamente correlata al CBS test, viceversa, sono stati evidenziati in verde tutti i coefficienti tali per cui la caratteristica HRV risulta mediamente più inversamente correlata al CBS test.

Γ	844	845	846	847	848	849	850	851	852	853	854	855
HRV #1	0,00	-0,05	-0,01	-0,25	-0,16	-0,23	-0,11	-0,11	0,04	-0,10	-0,20	-0,02
HRV #2	0,17	0,08	-0,12	-0,31	-0,08	-0,06	0,02	0,04	0,07	0,05	-0,05	-0,01
HRV #3	0,02	0,07	-0,01	0,21	0,15	0,22	0,12	0,15	-0,05	0,12	0,22	0,03
HRV #4	0,30	0,24	-0,09	-0,21	0,13	0,15	0,16	0,21	0,13	0,15	0,15	0,07
HRV #5	-0,01	-0,13	-0,18	-0,45	-0,23	-0,18	-0,08	-0,06	-0,02	0,04	-0,12	-0,06
HRV #6	-0,02	-0,12	-0,17	-0,47	-0,23	-0,21	-0,07	0,00	0,01	0,05	-0,07	-0,06
HRV #7	-0,03	-0,13	-0,17	-0,46	-0,23	-0,21	-0,06	-0,01	0,01	0,05	-0,08	-0,06
HRV #8	-0,04	-0,08	-0,02	-0,27	-0,08	-0,10	-0,10	-0,16	0,04	-0,09	-0,18	0,02
HRV #9	0,02	-0,08	-0,17	-0,30	-0,11	-0,03	-0,06	-0,11	-0,08	-0,04	-0,12	-0,06
HRV #10	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
HRV #11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
HRV #12	0,04	-0,13	-0,15	-0,11	-0,11	-0,03	-0,01	0,02	-0,06	-0,06	-0,02	-0,10
HRV #13	0,03	-0,06	-0,15	-0,25	-0,12	-0,08	-0,02	-0,01	0,00	0,10	-0,05	-0,08
HRV #14	-0,02	-0,20	-0,15	-0,42	-0,17	-0,13	-0,05	-0,04	-0,03	0,05	-0,07	-0,06
HRV #15	-0,03	-0,16	-0,16	-0,43	-0,20	-0,17	-0,05	-0,03	-0,03	0,06	-0,07	-0,07
HRV #16	0,09	0,18	0,15	0,31	0,19	0,14	0,12	0,16	0,13	0,11	0,15	0,07
HRV #17	-0,09	-0,19	-0,15	-0,32	-0,19	-0,14	-0,12	-0,17	-0,14	-0,11	-0,16	-0,07
HRV #18	-0,09	-0,09	-0,12	-0,25	-0,15	-0,13	-0,09	-0,09	-0,09	-0,06	-0,10	-0,09
HRV #19	-0,03	-0,05	-0,01	0,19	0,00	0,15	0,04	0,09	0,01	-0,06	0,01	0,16
HRV #20	0,03	0,05	0,01	-0,19	0,00	-0,15	-0,04	-0,09	-0,01	0,06	0,00	-0,16
HRV #21	0,03	-0,07	-0,15	-0,27	-0,13	-0,09	-0,02	-0,02	0,00	0,10	-0,05	-0,08
HRV #22	-0,07	-0,06	-0,07	0,14	-0,04	0,22	0,00	0,14	0,05	-0,13	-0,05	0,16
HRV #23	-0,01	-0,13	-0,18	-0,45	-0,23	-0,18	-0,08	-0,06	-0,02	0,04	-0,12	-0,06
HRV #24	0,17	0,08	-0,12	-0,31	-0,08	-0,06	0,02	0,04	0,07	0,05	-0,05	-0,01
HRV #25	-0,07	-0,03	-0,10	-0,18	-0,17	-0,08	-0,14	-0,10	-0,04	-0,01	-0,23	0,00
HRV #26	-0,09	-0,08	-0,12	-0,18	-0,22	-0,07	-0,14	-0,09	-0,07	-0,01	-0,24	-0,05
HRV #27	-0,04	-0,09	0,05	-0,28	-0,12	-0,13	-0,15	-0,15	0,12	-0,09	-0,22	0,00
HRV #28	0,12	0,08	0,00	0,19	0,03	0,19	0,10	0,10	-0,04	0,12	0,06	0,15
HRV #29	0,07	-0,04	-0,05	0,16	-0,01	0,25	0,02	0,08	-0,10	0,07	0,04	-0,02
HRV #30	0,08	0,09	0,01	0,06	0,21	0,02	0,16	0,13	-0,01	0,05	0,27	-0,01
HRV #31	0,02	0,01	0,12	0,22	0,03	0,11	-0,03	-0,13	-0,05	-0,05	-0,07	-0,05
HRV #32	-0,01	0,00	-0,16	-0,01	0,00	0,07	0,09	0,11	-0,18	0,09	0,13	0,03
HRV #33	0,04	-0,02	0,06	0,26	0,09	0,09	0,09	0,04	-0,01	0,05	0,12	0,03
HRV #34	0,11	0,12	0,06	0,14	0,23	0,03	0,14	0,13	0,01	0,05	0,25	0,00

Figura 37 - Indici ρ di Pearson calcolati tra le caratteristiche dell'HRV e i risultati dei test cognitivi

Parallelamente, ipotizzando un legame matematico tra le caratteristiche dell'HRV ed i risultati dei CBS test, sono stati condotti studi atti all'identificazione di 12 modelli di regressione, uno per singolo CBS test, capaci di predire il risultato del test cognitivo a partire dalle caratteristiche HRV monitorate durante l'attività fisica del soggetto.

Per l'identificazione di tali modelli sono state utilizzate diverse tecniche, anche di Machine Learning, mediante l'uso del tool Weka.

In dettaglio, sono stati selezionati i seguenti algoritmi per la regressione:

- Support Vector Machine (SVM) for regression;
- MultiLayer Perceptron (MLP) Neural Network;
- RepTree;
- IBk;
- Simple Linear Regression;

Additive Regression Model;

Considerato che le due tipologie di attività fisica impattano in modo diverso sulle medesime caratteristiche dell'HRV, sono state effettuate analisi per singolo gruppo, quindi sono stati identificati 12 modelli di regressione, uno per predire un singolo CBS test result, per il gruppo **sforzo** (GROUP 1), ed altri 12 modelli di regressione per il gruppo **aerobico** (GROUP 2).

Di seguito si riportano i risultati di tali modelli in termini di tre metriche ben note in letteratura, calcolate con i valori effettivi A e i valori stimati C, vale a dire:

il coefficiente di correlazione di Pearson:

$$\rho_{C,A} = \frac{cov(C,A)}{\sigma_C \cdot \sigma_A}$$

dove cov è la covarianza tra C e A, σ_C è la deviazione standard di C e σ_A è quella di A;

l'errore assoluto medio:

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |C_i - A_i|$$

dove C_i rappresenta il valore che viene calcolato per l'elemento i-esimo del database dal modello S in esame, mentre A_i è il valore effettivo della variabile dipendente per lo stesso elemento i-esimo;

il Root Mean Square Error (RMSE) definito come

$$RMSE = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (C_i - A_i)^2}$$

CBS Test ID 844

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,8441	-0,3776	0,4973	1,7702	0,9077	2,4242
MLP	0,9925	0,0242	0,1633	1,8491	0,2629	2,6562
REPTree	0,8133	0,3302	0,7937	1,2727	0,9718	1,7159
IBk	1	0,1203	0	1,6364	0	1,954
SimpleLinear	0,4556	0,3832	1,2315	1,2202	1,4867	1,5769
Additive	0,9937	-0,2517	0,1562	1,5369	0,1878	2,341

	coefficiente di correlazione		М	AE	RMSE		
	Training	Testing	Training	Testing	Training	Testing	
SVM	0,7371	-0,1164	1,5583	1,4941	6,7659	1,9488	
MLP	0,9851	-0,1137	1,1715	3,961	1,5664	8,984	
REPTree	0	0	2,8457	1,1895	7,7245	1,5225	
IBk	1	-0,1273	0	3,6316	0	10,6697	
SimpleLinear	0,5612	0,215	3,6422	4,5567	6,3936	5,5699	
Additive	0,9978	-0,1522	0,4376	1,3099	0,5084	1,5514	

CBS Test ID 845

	coefficiente di correlazione		M	AE	RMSE		
	Training	Testing	Training	Testing	Training	Testing	
SVM	0,8504	0,2813	5,9853	14,8335	11,6004	20,0193	
MLP	0,9891	0,2326	4,0402	19,2594	4,9027	23,0744	
REPTree	0	0	14,1678	9,4286	18,5213	13,5202	
IBk	1	-0,5259	0	14,0909	0	19,5704	
SimpleLinear	0,3882	0,7946	13,4989	7,3717	17,0688	8,6553	
Additive	0,9889	0,7906	2,2557	7,8012	2,8743	9,8019	

		coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing	
SVM	0,7778	0,1529	8,1429	14,0584	17,7185	17,2612	
MLP	0,9962	0,4477	1,9591	11,6728	2,3868	15,9561	
REPTree	0	0	15,9869	9,8962	26,0881	14,4278	
IBk	1	0,6938	0	8,4211	0	10,2444	
SimpleLinear	0,5185	0,1233	16,673	15,6659	22,3081	18,8457	
Additive	0,9837	0,0978	3,6038	16,4929	4,692	20,0356	

CBS Test ID 846

	coefficiente di correlazione		М	AE	RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7728	0,2941	12,5937	41,4191	20,4943	48,373
MLP	0,9997	0,0068	0,8789	60,4357	1,1356	78,8796
REPTree	0,4982	0,5398	21,127	33,2424	26,6276	44,0311
IBk	1	0,7134	0	36,2727	0	42,2944
SimpleLinear	0,4599	0,5382	22,5577	42,0203	27,2701	47,8877
Additive	0,9897	0,479	3,7343	40,5579	4,6837	47,4997

	coefficiente di correlazione		M	AE	RMSE	
Ī	Training	Testing	Training	Testing	Training	Testing
SVM	0,5735	0,634	20,0263	36,816	33,1366	61,0194
MLP	0,9916	0,2024	8,5736	48,4009	9,9618	75,1117
REPTree	0	0	29,4286	42,7895	40,3455	72,7988
IBk	1	0,3	0	47,3158	0	72,5618
SimpleLinear	0,3186	0,1853	28,8752	41,1096	38,2428	71,3985
Additive	0,9423	-0,2716	10,6557	49,8569	13,6457	81,2769

CBS Test ID 847

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7699	0,6595	2,0692	4,2534	4,3779	5,3424
MLP	0,9999	0,516	0,0658	5,994	0,088	6,9318
REPTree	0,5195	0,2766	3,2143	5,8939	5,2232	6,9055
IBk	1	0,2167	0	6,2727	0	7,305
SimpleLinear	0,5124	0,8254	4,0864	3,5751	5,2494	4,2473
Additive	0,994	0,2791	0,4674	6,4714	0,6688	6,9902

	coefficiente di correlazione		М	AE	RMSE		
	Training	Testing	Training	Testing	Training	Testing	
SVM	0,6513	-0,1107	2,2617	6,4256	3,7257	8,1208	
MLP	0,9921	0,2704	0,719	6,5497	0,8758	7,4621	
REPTree	0,8426	0,1405	1,6848	5,6342	2,5377	7,5978	
IBk	1	0,189	0	6,2105	0	7,6089	
SimpleLinear	0,3836	0,0901	3,4678	5,5023	4,3511	6,6738	
Additive	0,9505	-0,1678	1,1231	6,9885	1,4738	8,8703	

CBS Test ID 848

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7809	0,699	0,3696	0,4258	0,6751	0,5149
MLP	1	0,5866	0,0046	0,6323	0,0057	0,8008
REPTree	0,9145	0,4348	0,2644	0,584	0,3636	0,7695
IBk	1	0,6049	0	0,4545	0	0,6742
SimpleLinear	0,4457	0,7623	0,6377	0,3466	0,8043	0,4584
Additive	0,9994	0,2147	0,0196	0,9142	0,031	1,0543

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7445	0,2534	0,6227	1,0741	1,0296	1,2921
MLP	0,9667	0,3083	0,3863	1,516	0,4353	1,7538
REPTree	0	0	1,2114	0,8632	1,5108	1,0635
IBk	1	0,4102	0	0,6842	0	1,0513
SimpleLinear	0,3542	0,0648	1,1516	0,8632	1,4129	1,188
Additive	0,9571	-0,3217	0,3515	1,3623	0,4377	1,9174

CBS Test ID 849

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,8389	0,3459	1,1795	3,1222	2,0842	3,8036
MLP	1	-0,1188	0,0307	5,2676	0,0361	7,8416
REPTree	0	0	3,3061	2,8052	3,7616	3,313
IBk	1	0,1234	0	4	0	4,729
SimpleLinear	0,4528	0,5124	2,6415	2,6902	3,3538	3,1392
Additive	0,9859	0,1687	0,4606	3,1736	0,6293	4,2812

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7956	-0,3628	1,0364	3,5517	1,7911	5,0001
MLP	0,9957	-0,2041	0,2212	4,5289	0,283	6,102
REPTree	0	0	2,3657	2,6632	2,9257	3,9494
IBk	1	-0,2902	0	3,8421	0	5,0419
SimpleLinear	0,4956	-0,3137	1,9756	3,4961	2,5411	4,7802
Additive	0,943	0,0106	0,8656	3,1316	1,0022	3,9143

CBS Test ID 850

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7273	0,529	0,3987	0,6133	0,5875	0,7464
MLP	0,9062	-0,2012	0,2544	0,9713	0,3694	1,1229
REPTree	0	0	0,7256	0,6494	0,8438	0,7937
IBk	1	-0,269	0	1,1818	0	1,3143
SimpleLinear	0,5273	0,1623	0,6145	0,7716	0,717	0,8539
Additive	0,9963	-0,1202	0,0751	1,0568	0,0954	1,2314

		coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing	
SVM	0,2992	0,0705	2,5649	1,2641	11,7451	1,5703	
MLP	0,9971	0,498	0,9555	4,1299	1,1612	7,7252	
REPTree	0	0	4,08	2,3368	11,8654	2,5686	
IBk	1	0,5809	0	4,9474	0	15,7213	
SimpleLinear	0,2261	0,5067	4,4614	2,0851	11,5581	2,7928	
Additive	0,9944	0,392	1,7158	3,7881	3,5774	11,4388	

CBS Test ID 851

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,9056	0,0027	5,0278	81,3413	10,1228	115,4501
MLP	0,9995	-0,0833	0,7385	42,5966	1,0331	53,242
REPTree	0,7317	-0,3997	12,6783	26,1434	16,0914	33,5595
IBk	1	-0,2653	0	29,5455	0	35,3026
SimpleLinear	0,5199	0,0434	16,4883	25,6819	20,1682	32,6473
Additive	0,9872	0,1059	3,245	17,6016	3,8743	23,1716

		coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing	
SVM	0,7155	0,0944	11,8196	25,2485	23,147	29,8806	
MLP	0,9947	0,0467	2,5722	33,7212	4,1475	45,4268	
REPTree	0,6201	0,0533	17,3126	20,2481	25,8974	26,4802	
IBk	1	0,3424	0	26,5789	0	35,5875	
SimpleLinear	0,3807	-0,1338	21,9369	20,1679	30,524	24,0593	
Additive	0,9474	0,1068	8,0673	23,3023	11,1122	28,9204	

CBS Test ID 852

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7716	-0,078	13,9053	52,9525	23,2938	65,0075
MLP	0,9528	0,0455	10,3663	90,6224	13,8717	145,5283
REPTree	0	0	27,3515	31,5108	34,4915	38,1314
IBk	1	0,2126	0	39,9091	0	46,1036
SimpleLinear	0,4033	-0,6996	25,0145	36,3451	31,5621	43,5564
Additive	0,9892	-0,727	3,8425	49,268	5,2902	60,9874

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7889	0,0253	11,0874	40,3809	19,0631	51,0676
MLP	0,977	-0,1052	5,7332	55,6757	7,0193	65,8663
REPTree	0,4973	-0,3698	22,1257	40,9579	26,8639	57,4614
IBk	1	-0,0729	0	48,4737	0	57,3571
SimpleLinear	0,3887	-0,3498	23,5706	40,6768	28,5282	52,7553
Additive	0.962	-0,0797	6,9311	43,5035	8,5977	53,3877

CBS Test ID 853

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7071	-0,0972	0,6123	1,808	0,9873	2,5168
MLP	1	0,134	0,0066	1,9122	0,0083	2,5521
REPTree	0	0	1,2381	1,5325	1,3851	1,9079
IBk	1	-0,0439	0	1,7273	0	2,6458
SimpleLinear	0,4864	0,1621	1,0007	1,7056	1,2102	2,0459
Additive	0,9819	0,0921	0,2011	1,9707	0,2827	2,5592

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7409	0,3947	0,9557	2,0686	1,6426	2,5188
MLP	0,9999	-0,4434	0,0466	3,5111	0,0566	4,2411
REPTree	0	0	1,9592	1,994	2,3516	2,4869
IBk	1	0,1486	0	2,1579	0	3,0522
SimpleLinear	0,2905	-0,1277	1,8673	2,1541	2,2501	2,7092
Additive	0,9474	0,348	0,5999	1,9527	0,7769	2,6899

CBS Test ID 854

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,6008	-0,1164	0,5055	0,7992	0,8085	0,949
MLP	0,9999	-0,1243	0,0157	0,8625	0,0207	1,0447
REPTree	0	0	0,8299	0,6104	0,9897	0,7522
IBk	1	-0,306	0	1	0	1,2432
SimpleLinear	0,3207	-0,2512	0,8042	0,7419	0,9375	0,8565
Additive	0,9912	0,1406	0,1049	1,0913	0,1312	1,2643

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,7194	0,0483	0,3594	2,5516	0,7453	6,7755
MLP	0,9995	-0,2624	0,0282	2,9017	0,0349	7,1428
REPTree	0,6038	0,0935	0,6857	2,4526	0,835	6,806
IBk	1	-0,1182	0	2,5789	0	7,03
SimpleLinear	0,4789	0,15	0,762	2,3259	0,9195	6,7359
Additive	0,9581	0,0091	0,251	2,4101	0,3007	6,9239

CBS Test ID 855

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,3999	0,0969	4,5001	7,8709	8,383	11,3674
MLP	0,0169	-0,1808	6,63 x 10^5	5,22 x 10^5	7,61 x 10^5	5,46 x 10^5
REPTree	0	0	6,667	7,3636	8,8962	11,2614
IBk	1	-0,1242	0	12,0909	0	15,6176
SimpleLinear	0,1921	0,2812	6,6476	7,2733	8,7306	10,7353
Additive	0,9894	0,2111	1,2446	8,5988	1,5782	10,9298

	coefficiente di correlazione		MAE		RMSE	
	Training	Testing	Training	Testing	Training	Testing
SVM	0,5608	0,2107	5,7881	10,2393	9,296	13,3517
MLP	0,0666	0	6,15 x 10^5	6,12 x 10^5	6,22 x 10^5	6,12 x 10^5
REPTree	0	0	8,9143	9,4316	11,2	12,918
IBk	1	-0,1418	0	14,6316	0	21,2479
SimpleLinear	0,2968	0,072	8,3048	9,6318	10,6953	12,983
Additive	0,922	-0,055	3,676	12,2005	4,4125	15,1208

Come prosecuzione del lavoro, si intende avviare uno studio che utilizzi un approccio basato sulla programmazione genetica e/o sul deep learning per la predizione del risultato di ogni singolo CBS test a partire dalle caratteristiche dell'HRV.

Napoli, 09/07/2018

In Fede

Ovally

Giovanna Sannino, Ph.D.