Report — Short Term Mobility Program
Time-varying Machine Learning for Big-Data
Ercan Engin Kuruoglu
Fraunhofer Heinrich Hertz Institute, Machine Learning Laboratory, Berlin, Germany

Over the last decade, various fields of science and engineering have been experiencing a change

of paradigm with the increasing availability of vast amounts of data. This data explosion commonly
referred to as “Big Data” has been made possible due to the developments of sensing apparatus,
increasing computational power, data storage facilities getting cheaper due to the advances in
electronic technology and the increasing ease of sharing data. Examples include genomic data,

due to the cheaper sequencing technology of various species such as homo sapiens, primates,

yeast, agricultural plants, and cancer genome, astrophysical data such as the full sky maps of stars
and galaxies or the cosmic microwave radiation obtained by recent satellite missions, neurological
data, seismic data, environmental sensing data available from vast amounts of sensors around the
world and social networks data in the digital realm.

These vast amounts of data place new challenges, most importantly on how to derive required
information out of an ocean of data samples. In particular, the heterogeneous nature of data
pressure us to leave our system models which vision data as output of some input to the system.
Moving to multiple input multiple output (MIMO) models are not a cure either due to the loss of
track of causality in the modern data realm. Instead of causality relations now it is more pertinent to
understand relations between different variables. Again due to the nature of data which is noisy,

we are forced to do this statistically, in terms of statistical relations.

A full analysis of available data requires the building of models of statistical dependencies between
each pair of observed variables. This leads to the building of networks. Two important challenges

in building statistical networks are to avoid duplication of statistical dependence information and
keeping the network at a manageable dimension. The first requires working with conditional
dependencies and the latter requires enforcing sparsity. Various work are available in the literature
that have the objective to provide solutions to the network modelling problem. There are important
restrictions, however, how this problem has been handled in previous work. Firstly in most work the
data is assumed to be “normal,” or Gaussian that is only first and second order statistics
(correlations) are considered for modelling dependence between data variables. This is very
approximate in the sense that it assumes that correlations capture all statistical dependence

between variables. This is the case only for “normal” or Gaussian distributed data. To have a
general framework valid for any distributions, mutual information rather than statistical correlations
should be considered. This can lead to more successful models for data which are skewed and
containing rare events.

The second and more important restriction of existing work is the assumption of data being
stationary or even constant. In various application areas, such as signal processing, computational
biology, finance, seismology, climatology, telecommunications, however, the data is in the form
temporal sequences and evolve over time. In most of the cases, it is even hard to claim that the
statistical properties are stationary over time and one can at best assume piecewise stationarity.
Expanding more on the applications, in the case of genomic data as an organism is born, and
becomes an adult the gene activation levels and their relation to each other changes, similarly in
the case of circadian cycles or in the development of cancer cell we see the dynamics of gene
expression change over time. In the case of seismology data, the seismic displacement at different
locations which are related via detailed net of seismic fault lines change over time. Similarly in
climatology, weather conditions (precipitation, temperature, pressure) can be seen as a —.
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complicated network of interactions which change over time. Finally, in brain neural networks, as
evidenced with various experiments with fMRI, the connections between different parts of brain
change over time as reaction to stimulus.

Our aim has been to develop new methodologies for modelling multivariate data of big dimensions
which change over time. In contrast to the existing models in the literature the proposed models will
be stochastic and hence with potential for future predictions.

The general mathematical framework we propose is Bayesian Networks which are established
tools for efficiently modelling multivariate data. A DBN (Dynamic Bayesian Network) is an
extension of Bayesian network to temporal domain. In time domain, conditional dependencies can
be modelled between random processes as opposed to simply random variables within as well as
across time epochs. The conditional distributions in DBN are assumed to be homogeneous, i.e. the
structure and parameters of a network are maintained constant throughout the time. Taking this
into account, a DBN is simply constructed by unwrapping a Bayesian network in time domain that
causes significant simplification to the model learning procedure. At the same time, this
assumption constrains the strength of DBN in modelling non-stationary sequences, where intrinsic
relationships between different variables change in time. These non-stationary sequences are
present everywhere in the nature, for example the gene interactions in different stages of a life
cycle. Obviously, usage of a stationary statistical model is insufficient for modelling gene
expression data sequences at all time instances.

T.earning a time varying network is not a trivial problem. One may try naively to learn a
dynamically changing network independently for each time epoch. However, this is a complex task
as there are very little available observations at one time epoch for most applications in real life.
One way to overcome the problem of data scarcity is to divide temporal sequences into segments —
stationary epochs, with an assumption that in each epoch data are generated from the same
probability distribution. However, the lack of knowledge about models in each segment makes the
problem more complex. Moreover, the solution space grows exponentially with the length of time
sequence. From another point of view, since observations are most often distorted by noise,
statistics can be recovered from these modifications of signal.

To overcome all the difficulties mentioned above, one of the propositions is to expand DBN to
nonstationary scenarios by introducing various additional conditions on the type of a network and
how the network can change in time. The works done before have been mainly concentrated on
nonstationary models with static structure. One of the most popular models is the time-varying
autoregression model (TVAR). TVAR is able to describe nonstationary linear dynamic systems,
coefficients and noise variances, which continuously change with time. In order to estimate
recursively the regression parameters, normalized least squares algorithm can be used. And an
error of estimation is shown to be bounded when the model parameters change smoothly.

The methodology that we propose to learn dynamical Bayesian networks is sequential Monte Carlo
(or particle filtering). Sequential Monte Carlo iteratively solves a stochastic filtering problem where
the hidden variables are estimated using a priori information and observable quantities. Sequential
Monte Carlo has reached important level of success in tracking problems in computer vision and
radar signal processing. It has several advantages to rival models: 1. It is general, it does not
assume linearity or Gaussianity. It is valid also for nonlinear systems/interactions and non-
Gaussian populations. 2. It incorporates prior information about variables in the form of prior pdfs
which allows one to use the method adaptively with the arrival of new data. Old posteriors become
new priors. It is hence a seamless learning method. 3. It is specifically easy to develop for
regression models. 4. As new data samples arrive, it provides incremental updates to the model
avoiding from scratch calculation unlike most other Bayesian methods or machine learning
methods. 5. Recently, it has also been extended to multi-object tracking and therefore has a ready
mathematical framework.




We used this mathematical framework in tracking the statistical dependencies between various
variables. The observables are the absolute values of the variables that is the node values in the
network while the algorithm learns the branch values, that is, the correlations or statistical
dependences between variables. We have made an initial implementation on genetic data [3] and
obtained very promising results.

There are several ways this approach needs to be developed and during my visit in the Fraunhofer-
Heinrich Hertz Institute, we made progress on two aspects.

1. Network Structure Optimization:

The main problem with network modelling using stochastic models is the explosion of
model volume (geometric increase) with the increasing number of variables. We need new
methods that predict before hand the important variables in the network and concentrate
only on them. This cannot be a simple preprocessing step since due to the time varying
nature of the data, new variables can gain importance and some can lose importance. The
new method should be able to adapt to this and allow on and off data models. This issue is
an open problem and requires a concentrated research effort carrying some of the existing
(but unknown to other fields) methods from mathematics, jump Markov processes in
particular.

In addition to the problem of deciding which nodes are important in a network, it is also important
to decide which edges or branches are important in a network. While the nodes describe the
variables, the edges or brances describe the relations between them. It is important to consider these
two problems in combination rather than separately. The combined problem is in general non-
convex and therefore steepest descent type methods do not lead to global optimal solutions.

We have developed two approaches to solve the joint problem of node and edge optimization. The
first of the methods does random walks starting from a sub-optimal solution. The random walks are
defined on the structure of the network. Better solutions are accepted immediately and worse
solutions are accepted according to some Boltzmann statistics allowing the algorithm to do hill-
climbing and avoid local minima.

The second method makes a global Bayesian modelling of the nodes and the edges by assigning a
multivariate distribution and then executing random walks with the aim of finding maximum a
posterior solution.

2. Network Compression:

Even when the important variables are detected, fully connected networks are expensive, we should
develop efficient thresholding methods that remove unimportant connections. Sparsity enforcing
priors are a common approach but generally this is done without much conscience into the
assumptions these priors embody. We propose an alternative approach based on Information Theory
of Shannon, in particular the Rate-Distortion theory. Using Rate-Distortion theory, we can compress
networks controlling the loss of information. Various other methods are possible for compressing
networks; however, the rate-distortion theory provides a well-established theory that gives the
estimate of distortion in the modelling performance of the network due to compression before hand.
One can hence find the optimal network given the level of distortion one can tolerate in a
disciplined way. —
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3. Applications:

The methodology which we started to develop has two main application areas. Firstly for modelling
interaction networks. Interaction networks are important modelling devices for applications such as
gene-interaction networks, protein-protein networks, seismology networks, meteorological
networks, financial networks, brain networks, etc. In the future, we would like to apply the
methodology on these applications.

The other main avenue for applications is deep learning neural networks. The above described
methodologies can be applied also for compression of deep neural networks on which my host Dr
Samek has important work and also on the optimization of the structure. As first step we have
worked on stationary networks, and now we are looking into time-varying networks.

As future work, we will extend Dr Samek’s work on rate distortion based compression of deep
learning neural networks to the time varying deep learning neural networks.

4. Publications:

Once the works are complete, we plan to make international journal publications on:
a. “Deep Neural Network structure optimization by Bayesian Methods” in IEEE Transactions on

Neural Networks and Learning
b. “Deep Neural Network structure optimization by Annealing Methods” in IEEE Transactions on

Neural Networks and Learning
c. “Interaction Network Compression using Rate-Distortion Theory” in IEEE Transactions on

Signal Processing on Graphs
5. Other activities during STM

A seminar was given in Fraunhofer-Heinrich Hertz Institute with title “Is the Gaussian Distribution
Normal? Data Analysis with alpha-Stable Distributions”. Motivated by this seminar, a PhD student
from the Machine Learning Laboratory has started working on image synthesis using Levy flights.

Potsdam Institute of Climate Change was visited as the guest of the Director of the Institute, Prof
Kurths and a seminar was given with title Is the Gaussian Distribution Normal? Data Analysis with
alpha-Stable Distributions”. Further meetings were held on time varying network modelling and a
number of researchers were motivated to collaborate on the application of time varying network
modelling to climatology problems.




