
Relazione tecnica permanenza all’estero programma Short Term Mobility 2016

Titolo: Time-variant Direct Volume Rendering

Fruitore: Fabio Ganovelli Mat. 9395

Ente Ospitante: Trinity College of Dublin

periodo: 2-23 Giugno 2017

Abstract
My activity at the Trinity College of Dublin concerned, as explained in the STM proposal,

direct volume rendering, a field of Computer Graphics where the hosting institution has been
developing a solid reputation in the last decade. Together with dr. Dingliana, we investigated
the problem of data compression for large volumes of data and designed and implemented a
novel approach that, from the tests performed so far, outperforms the current state of the art.

1 Problem statement
In the field of Volume Rendering, the word volume most commonly refers to a three-dimensional
grid of scalar values. In the case shown in Figure 1, the scalar data represents the absorption of
an X-ray beam in a Computerized Axial Tomography (CAT). The figure shows a screenshot of a
typical volume rendering application [3] where the volume of data is shown both as a sections along
the three axis, hence as a collection of 2D images, and as a 3D rendering, named Direct Volume
Rendering.

Figure 1: An example of slice-based (top let, bottom left and bottom right) and 3D direct volume
rendering (top right)

In the example above the amount of absorption of X-rays allows us to distinguish between
skin layers, fat tissues, muscles and so on. In other words it is possible to discriminate between
these parts only by looking to the scalar values in the 3D grid (and other derivate quantities).
The process of rendering the whole volume in 3D requires to decide what part of the volume is
to be seen and how (bones and kidneys in the example). The most essential tool to this task
is the use of the so called transfer functions. In its most common definition, a transfer function
is a mapping between scalar values and color and opacity value, that is tf : IR → RGBα (see
Figure 2). For example, defining a transfer function that maps scalar values corresponding to bone
to a high opacity value and all other scalar values to a 0 opacity (transparent). The result will be
a rendering that only shows the bones. In the example above the transfer function is designed so
to show bones and kidneys and to distinguish them mapping their corresponding ranges of scalar
values to different color (more reddish for the kidneys).

Direct Volume rendering (DVR) is nowadays the standard approach for interactively exploring
rectilinear scalar volumes and it is used in several contexts ranging from medical imaging to
fluid simulation analysis, where the grid are often tetra-dimensional since the scalar value is time
dependent (e.g. the local velocity of a fluid).

Even though the past several years witnessed great advancements in commodity graphics hard-
ware, long data transfer times and GPU memory size limitations are often the main limiting factors,
especially for massive, time-varying, or multi-volume visualization in both local and networked set-
tings. As it happened in so many fields of computer science, the amount of available data increases
much faster than the hardware performances. Therefore data compression is of great importance
to save storage space and bandwidth at all stages of the processing and rendering pipelines.

1



Figure 2: An example of one dimensional transfer function. The piecewise curve and the color bar
show the RGBα color value assigned to each scalar value. The histogram shows the distribution
of scalar values for a specific dataset

1.1 Volume Data Compression
The literature on volume data compression is vast and even an introduction is well beyond the
scope of the report (the interested reader may refer to [2]. In general terms, the tool-set is sim-
ilar to the one for 2D images, ranging from the simple run length encoding to frequency domain
techniques (Discrete Fourier Transform, wavelet) combined with hierarchical/multiresolution sub-
division schemes. This makes sense, since a volume can be seen just like a stack of 2D images. My
research activity has been focused precisely on what makes DVR of volume data and viewing of
2D images different: the use of transfer functions.

2 Method: Using Transfer Functions in Volume Data Com-
pression

Transfer functions are an interpretation tool that convert the information in a form that can be
more easily interpreted by humans. They are always present and they are necessary to make sense
of volume data. Furthermore, for how much counterintuitive can this be, they are very difficult
to define effectively and require an expert user. Finally, they usually need to be adjusted for each
new volume data. In practical terms this means that the transfer function to show the skeleton on
one volume dataset may not be fit to serve the same purpose on a different dataset.

The key idea behind my activity was to leverage on the fact that on each practical use volume
data must be coupled with one or more transfer functions, and hence that the latter could be
harness to better compress the data.

We proposed a weighting scheme for taking into account a set of transfer functions in volume
compression algorithms. With our scheme, the knowledge of those transfer functions is leveraged to
obtain a better compression and peak signal to noise ratio. Our method relies on the definition of
neighborhood of a transfer function, intended as the set of transfer functions that can be obtained
by the input one by making small fine-tuning modifications. We process the input dataset by
mapping its voxel values to the neighborhood of input transfer functions and analyze the result
to classify the importance of each region of the dataset. The importance of a region is then used
to weight it’s contribution to the compression error function. We tested our algorithm with well
known volume compression schemes such K-SVD and the early results shows a solid improvement
both on compression time, ratio and peak signal to noise ratio (PSNR).

2.1 Compression Scheme
We used a block-based sparse coding compression scheme. In this kind of scheme, the data is
subdivided in regular blocks of m = n3 voxels. These blocks are then regarded to as m dimensional
vectors and the compression error is defined as:

Err(D,X) =
∑
i

‖yi −Dxi‖20 , ‖xi‖0 ≤ s (1)

where Y = {yi} is the m × p original data, D is a m × k matrix called dictionary, X = {xi} is
the k × p matrix of coefficient, and s is the maximum number of non zero entries in each column

2



vector xi. In short, each yi is approximated by combining at most s vector of the dictionary: Dxi
(hence the name ’sparse coding’).

The error is found as the sum of approximation errors in for each each block and the dictionary
D and the coefficients X are learned through the minimization of Err(D,X).

We focused on the idea of weighting the contribution of each block so to concentrate the
accuracy in those parts that are involved in some of the transfer functions that will be used in the
specific type of dataset. Referring the the first practical example: if we know that the transfer
function showing bones will be used on the dataset, all the block of data that do not correspond
to bones will have a smaller weight.

2.2 Transfer functions-based block weighting
Given a transfer function t : IR → RGBα we define a function ωt : IR

m → IR that determines
the weight of the vector/block i in the error function Err. Defining ωt was (and is) part of our
research. One simple definition relies the average and variance of the opacity value:

ωt : E(t(v)α) µ(t(v)α) (2)

In this way, blocks with low average opacity and small variance are considered less important. A
slightly more involved formulation is:

ωt : E(t(v)α) µ(t(v)α) rd(t(v)) (3)

where

rd = radius of the smallest enclosing sphere of{t(v)|RGB}

that penalizes also color-uniform blocks.
We have been experimenting with a few of these definitions and tested on a benchmark (see

section 2.3.
However, the case of a single fixed transfer function is too limiting, for two reasons:

• in any practical use, several distinct transfer functions are used in the same type of volume
data

• most of the times, every transfer function needs to be adjusted for every new dataset

Therefore we extended the idea of block weighting in two directions. First, we defined the
neighborhood of a transfer function as:

N (tf(v)) = [tf(v)− δ(v), tf(v) + δ(v)]

that is, each scalar value is mapped to an interval, a range of values, that accounts for adjustment
of the transfer function tf . Then, the weigth ω is redefined accordingly. Second, given a set of
transfer function T = {tfi}, the weight is defined as the maximum weight over all the weights
calculated using each transfer function separately:

ωi = max{ω(tf0), . . . , ω(tfh)}

2.3 Benchmark and Results
Unfortunately there seemed not to be already organized benchmark data of such type. Given the
effort that must be spent on building good sets of transfer functions, expertes and practitioners
who design them are not willing to give them away lightly. Therefore part of the activity was on
creating the benchmark to try our solution, consisting of several of volume data of various type
and size with associated sets of transfer functions. We found a number of volume data and transfer
presets from existing visualization software example datasets, such Slicer [3] and imagevis3d [4]
and from the Visisble Human Dataset [1]. These data (both volume and transfer functions) come
in a pletora of different format, so a conversion software had to be implemented in order to use
them with our application.

As for the compression code, we involved the Visual Computing Group of Consorzio Ricerche
Sardegna 4, who are relevant players in the field of volume visualization, who granted a version

3



of the source code of one of their previous works [5] that we could extend with our algorithms.
Furthermore, following this first project, CRS4 is also willing to collaborate both with CNR and
Trinity College in this topic.

Figure 3: Example dataset Melanix, 512 × 512 × 1203 rendered with 3 different tranfer functions
to evidentiate bones, muscles and skin.

dataset rmse* rmse PSNR* PSNR time* time
melanix
512 ×
512 ×
1203

0.00136625 0.00435422 57.2894 47.2218 21.1 170

tooth 256
× 256 ×
161

0.00740672 0.00715468 42.6075 42.9082 0.4 2.5

head 0.00913644 0.0206525 40.7845 33.7005 15.5 6.5

3 Conclusions
Although we are still continuing the development phase, striving to bring the algorithm to live to its
potential, the tests conducted so far have been successful and, as they are, already provide a solid
result deserving publication. Our transfer function sensitive approach outperforms current state
of the art approaches. It has to be said that the the previous work do not assume the knowledge
of the transfer functions that will be applied at visualization time, therefore this kind of outcome
was somehow grated beforehand. Nonetheless, our approach is general and can be applied to many
existing volume compression algorithms, provided that they work with a subdivision of the volume
in blocks, which essentially amount to most of the existing algorithms.

References
[1] The visible human project. https://lhncbc.nlm.nih.gov/project/

visible-human-project.

[2] M. Balsa Rodríguez, E. Gobbetti, J.A. Iglesias Guitián, M. Makhinya, F. Marton, R. Pajarola,
and S.K. Suter. State-of-the-art in compressed gpu-based direct volume rendering. Computer
Graphics Forum, 33(6):77–100, 2014.

[3] Andriy Fedorov, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-Christophe
Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jennings, Fiona Fennessy, Milan Sonka,
John Buatti, Stephen Aylward, James V. Miller, Steve Pieper, and Ron Kikinis. 3d slicer as an
image computing platform for the quantitative imaging network. Magnetic Resonance Imaging,
30(9):1323 – 1341, 2012. Quantitative Imaging in Cancer.

[4] Thomas Fogal and Jens Kruger. Tuvok, an Architecture for Large Scale Volume Rendering.
In Proceedings of the 15th International Workshop on Vision, Modeling, and Visualization,
November 2010.

4

https://lhncbc.nlm.nih.gov/project/visible-human-project
https://lhncbc.nlm.nih.gov/project/visible-human-project


[5] Enrico Gobbetti, José Antonio Iglesias Guitián, and Fabio Marton. Covra: A compression-
domain output-sensitive volume rendering architecture based on a sparse representation of
voxel blocks. Computer Graphics Forum, 31(3pt4):1315–1324, 2012.

5


	Problem statement
	Volume Data Compression

	Method: Using Transfer Functions in Volume Data Compression
	Compression Scheme
	Transfer functions-based block weighting
	Benchmark and Results

	Conclusions

