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Durante il periodo di Short Term Mobility l’attività di ricerca è stata svolta sugli argomenti seguenti: 

1. Modellare processi di sintesi di proteine tramite sistemi di telecomunicazione 

2. Ricerca di codifiche DNA-proteine ottimali dal punto di vista di conservazione dell’informazione 

3. Modellare interazioni genomiche che cambiano nel tempo tramite reti Bayesiane 

I risultati ottenuti sugli argomenti 1 e 2 sono stati riportati nell’articolo allegato dove è stata descritta in 

dettaglio la nostra ricerca. Questo articolo è stato sottomesso alla rivista Journal of Theoretical Biology. In 

breve: 

 Abbiamo sviluppato un modello matematico per rappresentare la sintesi di proteine che utilizza le 

teorie di Shannon.  

 Abbiamo calcolato i limiti di conservazione dell’informazione (channel capacity) sotto diversi 

modelli statistici per le mutazioni 

 Abbiamo mostrato l’andamento della perdita dell’informazione durante successive generazioni 

 Abbiamo sviluppato un algoritmo “intelligente” per cercare la codifica ottimale DNA-proteina e 

mostrato che la codifica naturale è “sotto-ottimale”. Questa osservazione dà supporto alla teoria di 

“frozen accident” di Francis Crick. 

  È stato osservato inoltre che la codifica naturale ha delle ambiguità solo nella terza posizione dei 

codoni, mentre la codifica ottimale ha delle ambiguità in tutte e tre le posizioni dei codoni. Questo 

dimostra che i codoni originali erano fatti da 2 nucleotidi e ad un certo punto, durante l’evoluzione, 

è stato aggiunto il terzo nucleotide. 

Inoltre, durante questa attività di ricerca, abbiamo fatto riunioni con altri membri dell’istituto, incluso il 

direttore Prof. Martin Vingron, su modelli delle interazioni genomiche che cambiano nel tempo e abbiamo 

identificato un nuovo approccio per le nostre future ricerche, sempre basato sul nostro lavoro già 

pubblicato recentemente: “Time varying gene network modelling using sequential Monte Carlo,” IEEE/ACM 

Transactions on Computational Biology and Bioinformatics, Novembre 2016. 

Abbiamo fatto anche riunioni con un gruppo di ricerca presso la Free University (Computational Proteomics 

di Prof Tim Conrad) di Berlino sulla implementazione di questo algoritmo su un loro super computer. 

Abbiamo deciso di preparare una proposta di progetto per Horizon2020 per finanziare questa attività di 

ricerca. 

Altri incontri sono stati fatti sulle “conformation maps” del DNA con Prof Martin Vingron ed è stato deciso 

di esplorare questa area per una collaborazione futura.  
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Abstract

We envision the molecular evolution process as an information transfer

process and provide a quantitative measure for information preservation in

terms of the channel capacity according to the channel coding theorem of

Shannon. We calculate Information capacities of DNA on the nucleotide

(for non-coding DNA) and aminoacid (for coding DNA) level using various

substitution models. We extend our results on coding DNA to a discussion

about the optimality of the natural codon-aminoacid code. We provide the

results of an adaptive search algorithm in the code domain and demonstrate

the existence of a large number of genetic codes with higher information

capacity. Our results support the hypothesis of an ancient extension from

a 2-nucleotide codon to the current 3-nucleotide codon code to encode the

various aminoacids.
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Figure 1: A generic communications system.

1. Introduction

The fundamental biochemical processes in the cell such as replication,

transcription, translation as well as cell signalling can be envisioned as in-

formation transfer processes. For some of these processes there is an original

information carrying message stored in a biological entity (the DNA) that5

needs to be transferred to following generations through a noisy medium

characterised by mutations . In the end the coding part of the DNA needs

to be decoded to a protein, i.e the biological message which is originally

stored in DNA needs to be transcribed into RNA and then translated into

an aminoacid sequence, two processes which might cause errors as well.10

The paradigm of information transfer in biological systems brings into

mind an analogy with communication systems (Figure 1) where the message

is coded into a waveform or a signal which carries the information coded in

a way that it is compact, to save on material and energy, and robust to

noise to prevent loss of information. The information carrying signal then is15

transferred over the noisy channel to be received at a receiver and decoded

to recover the information.
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This analogy was established by several researchers in the past in works

as early as [1, 2, 3, 4, 5]. A key element of the analogy is the ability to

quantify the information which is provided by the entropy as an information20

measure [6]. Numerous publications in the literature have studied the en-

tropy of the DNA [7], across the species, at protein binding sites [8, 9], etc.

The reader is referred to the paper by Fabris [10] for a critical review and

summary of earlier work and formulation of the information theory frame-

work for various related problems. Some other works study the problem25

from purely coding theory point of view and try to discover hidden coding

structures [11, 12]. Only a few works [13, 14], however, attempted at a full

analysis of the information transfer processes in the genome such as protein

coding, to derive its fundamental limits.

Calculation of the fundamental limits of transfer of information is very30

important for the understanding of biological evolution over generations as

well as the functioning of biological processes to decode the information

stored in DNA. In particular, it can tell us the expected time or number of

generations after which vital information about an organism would be lost

during molecular evolution. It can also provide us insight into understanding35

the existing natural genetic (codon-aminoacid) code and where it stands

among all possible codes, in particular, whether nature tried to optimize

the information capacity in choosing the natural code among a very large

number of possible codes.

Although various previous publications build on the communications40

system analogy, most fail to address this problem, partly due to the over-

idealisation of the analogy. In a typical communication system the messages

are encoded and transmitted over noisy channels which are to be received,

decoded and reconstructed as close as possible to the original message. It
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must be underlined that a full analogy with a communication system fails in45

the sense the encoder is lacking in a biological system. In the case of protein

coding, the decoded message is not a DNA but an aminoacid sequence. In

this case, one can at best talk of a hypothetical information source already

coded in the form of a nucleotide sequence.

In this article, utilizing the Coding Theory of Shannon, we develop theo-50

retical limits of information preservation in non-coding and aminoacid cod-

ing DNA in terms of the channel capacity. The channel noise is characterised

by various mutation models widely accepted in the literature. The quantifi-

cation of the information preservation capacity brings us to the discussion

of the optimality of the natural genetic (codon-aminoacid) code. This ques-55

tion was posed in the past by several researchers but the analyses were not

done in terms of channel capacity. Furthermore, considering other possible

codes only a very limited part of the entire space of codon-aminoacid codes

were explored. With this publication, we propose an ”intelligent” search

algorithm optimizing the channel capacity to find an optimal genetic code60

and to understand where the natural code stands with respect to an optimal

code.

The rest of this article is organised as follows: the next section provides

the fundamentals of entropy as a measure of information and of Shannon’s

coding theory and define channel capacity. We give channel capacity results65

on non-coding DNA and protein coding DNA in Section 2.2 and Section 2.3,

respectively. The optimality of the natural codon-aminoacid encoder is stud-

ied in Section 3. Conclusions and future research directions are provided in

Section 4.
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2. Methods70

2.1. Information Capacity

As in previous works on application of information theory in biology, we

quantify (the lack of) information with entropy, following the definition of

Shannon [6]:

H(p) = −
∑
i

pi log2 pi, (1)

where pi is the probability of the i-th source symbol in the dictionary of

possible symbols. As an example: for the observed human nucleotides dis-

tribution of p[A,C,G,T ] = [0.29 0.21 0.21 0.29], the entropy is calculated to be

H(p[A,C,G,T ]) = 1.9815 < 2. If the nucleotides were uniformly distributed,75

the entropy would have achieved the highest value of 2 for a dictionary

of size 4. Similarly, the entropy of the codon distribution in humans is

H(pcodons) = 5.7936 < 3 × H(p[A,C,G,T ]) = 5.9445. If all the codons were

equiprobably distributed it would have achieved the maximum value of 6.

The fact that the entropy of codons is less than 3 times the entropy of nu-80

cleotides indicates a statistical dependency between the nucleotides in the

codon.

Referring back to Figure 1, the capacity of a channel is defined as the

maximum of the mutual information between the input and the output of

the channel.

C = max
pX

I(X;Y ) = max
pX

(H(Y )−H(Y |X)) = max
pX

∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

(2)

where H(Y |X) is the conditional entropy of the output Y , given input X and

the maximum is taken over all possible input distributions pX . The Channel

Capacity provides a measure of the maximum information one can transmit85
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over a channel, the channel being characterised by p(Y |X) = p(X,Y )p(X),

the distribution of the noise in the channel.

The analytic calculation of the Channel Capacity is not easy other than

for a limited number of special cases such as the Gaussian channel, binary

symmetric channel and binary erasure channel [15]. However, a numeri-90

cal algorithm exists for calculating the channel capacity in the other cases,

which is called the Blahut-Arimoto algorithm [16, 17]. The Blahut-Arimoto

algorithm searches iteratively the optimal input distribution leading to the

highest mutual information between the input and the output, which is a

convex optimisation problem.95

A communication channel is characterized by the noise in the channel.

In the case of the DNA channel, the noise is generated by mutations. Mu-

tations can be insertions, deletions or single nucleotide substitutions. In our

analyses we consider only substitutions since they are the prevalent source of

errors. We consider the non-coding DNA channel and coding DNA channel,100

which also includes the translation into aminoacids, separately.

2.2. Non-Coding DNA

We first calculate the information capacity for non-coding DNA. In this

case, the nucleotides are considered as independent messages and the com-

munication has a rate of 2 bits due to the four letter alphabet. For the

nucleotide channel, various substitution models have been proposed in the

literature. The simplest such model is the Jukes-Cantor model, which as-

sumes the same probability of error or mutation rate for each nucleotide [18].

Hence, the substitution matrix is characterized with only one parameter, the
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nucleotide substitution rate q. The Jukes-Cantor rate matrix is given in

QJC =


−3q q q q

q −3q q q

q q −3q q

q q q −3q

 (3)

where the row and column indices are A,C,G, T . Then, the transition prob-

ability matrix P (Y |X) for a finite time interval t can be obtained as ([19])

PJC = exp(QJCt) =


1− 3p p p p

p 1− 3p p p

p p 1− 3p p

p p p 1− 3p

 (4)

where p = (1 − exp(−4qt))/4. For m generations we have P (Y (m)|X) =

P (Y |X)m. From (2), the channel capacity afterm generations orm cascaded

channels in Figure 1 is105

Cm = max
p
I(X;Y (m)) = max

p
[H(Y (m))−H(Y (m)|X)] (5)

Since the channel is symmetric, a uniform input X leads to a uniform output

Y (m). The first term is maximized for the uniform case and is simply log |X |,

where |X | is the cardinality of X. The second term is independent of the

input and corresponds to the entropy of a row of the substitution probability

matrix (the entropy of all the rows are the same). Using these simplifying110

arguments, the capacity for each generation is calculated without the need

of the Blahut-Arimoto algorithm.

The results are given in Figure 2 which show the exponential decline of

information capacity of the non-coding DNA channel with increasing num-

ber of generations. The results show clearly that information (capacity)115
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Figure 2: Channel capacity for Jukes-Cantor non-coding DNA channel for various values

of mutation rate in units of generation length.

vanishes exponentially over generations and that the time scale is given by

the mutation rate.

In the biological context, the rates of substitutions rates for so called

transversions(purine-pyrimidine substitutions) and transitions(purine-purine

or pyrimidine-pyrimidine substitutions) are observed to be different due to

the different chemical properties of purines (Adenine and Guanine) and

pyrimidines (Cytosine and Thymine). A substitution model, which takes

care of this effect, exists due to Kimura [20]. The Kimura rate matrix has

two parameters and is given by

QKM = q


−(2 +K) 1 K 1

1 −(2 +K) 1 K

K 1 −(2 +K) 1

1 K 1 −(2 +K)

 . (6)

Due to the symmetry of the matrix, we can invoke the same arguments

as in the case of the Jukes-Cantor model and calculate the capacity from

Cm = maxp I(X;Y (m)) = maxp[H(Y (m)) − H(Y (m)|X)]. The capacity120

8



Figure 3: Channel capacity for Kimura non-coding DNA channel for various values of

transitions/transversions rate ratio K. q = 0.001.

curves are given in Figure 3. The curve of the case K = 1 corresponds to

the Jukes-Cantor model and is included to provide a comparison. Increasing

K indicates the dominance of transitions. In the limit of very large K,

practically all substitutions are transitions and interchange between A and

G or C and T , practically reducing the code to a 1-bit code rather than a125

2-bit code.

These results show clearly the diversity in the capacity curves when

one moves from equiprobable substitutions to unequal substitution rates for

transitions and transversions.

The diversity in the capacity provided by Kimura model over Jukes-

Cantor model might tempt one to look into more complex mutation models.

We have therefore considered also the Felsenstein model [21]. The Felsen-

stein substitution rate matrix is given by:

QF =


−(πC + πG + πT ) πC πG πT

πA −(πA + πG + πT ) πC πT

πA πC −(πA + πC + πT ) πT

πA πC πG −(πA + πC + πG)

 (7)
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Figure 4: Channel capacity for Felsenstein non-coding DNA channel for two values of mu-

tation rate and comparison with Kimura channel. Kimura parameter: K = 2, Felsenstein

parameters: π1 = [0.3 0.2 0.2 0.3], π2 = [0.4 0.2 0.3 0.1]

where πA + πC + πG + πT = 1.130

In this case, there is no symmetry anymore in the substitution matrix

and there is no simplified way of calculating the capacity unlike in the Jukes-

Cantor and Kimura cases. Therefore, the capacity is calculated using the

Blahut-Arimoto algorithm. The obtained capacity curves for two different

substitution vectors [πA πC πG πT ] are given in Figure 4. As can be seen135

from the figure, although more diversity is obtained with the Felsenstein

model, the difference in the capacity curves are limited.

Although for long, the non-coding part of DNA was seen as junk, now we

have increasingly more knowledge about the function of parts of non-coding

RNA as key regulators in translational and transcriptional control. In par-140

ticular, studies have shown that long non-coding RNAs play a critical regu-

latory role in diverse cellular processes such as chromatin remodeling, tran-

scription, post-transcriptional processing and intracellular trafficking [22].

10



The channel capacity of non-coding DNA can provide us an intuition to

what extend these functions can be preserved. It must be noted, however,145

that unlike the coding DNA, these functions seem to be performed locally,

that is the location information along the DNA sequence is important. The

channel capacity calculations do not take such information into account and

a second order/multivariate analysis is needed to calculate a location depen-

dent capacity.150

2.3. Coding DNA

In the case of non-coding DNA, the capacity analysis is straightforward

since there is no obvious encoding structure. In the case of protein-coding

DNA, considering the communication channel to have as input codons and as

output aminoacids, the presence of an encoder is clear. There are 64 codons155

(each codon being made of 3 nucleotides, 43 = 64) which are mapped to 20

aminoacids and some are used as stop markers. There is redundancy in the

codon-aminoacid mapping and this redundancy is used as an error correcting

mechanism. The mapping between codons and aminoacids is given in Figure

5. This mapping can also be represented in matrix form as in Eq. (8).160
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Figure 5: The natural genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP. We indicated the

aminoacids with numbers in the table to emphasize the fact that names are only labeling

and should not affect our search for optimal codes in the sequel.
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One can define three different channels for this problem. The codon-

codon channel, the codon-aminoacid channel and the aminoacid-aminoacid

channel. In [23] and [13], Bouyanaya et al. study the information transfer

process between DNA and aminoacids, underlining the breakdown of the

communications system analogy and propose modelling the process with165

an aminoacid-aminoacid channel. That is, both the transmitted (X) and

received (Y ) signals are aminoacids assuming a virtual protein source to

DNA encoder. They characterised the communication channel using first

the PAM250 matrix due to Dayhoff et al. [24] and then by an aminoacid

transition matrix they constructed based on the assumption of Jukes-Cantor,170

equal-parameter nucleotide substitution matrix and they calculated the pro-

tein channel capacity.

Our approach differs from that of Bouyanaya et al. in that we underline

that the mutations happen on the codons rather than on aminoacids and

therefore the codon substitution matrix needs to be propagated over gen-175

erations, and not the aminoacid substitution matrix. However, one should

keep in mind that the ”meaning” of the message is in aminoacids.

Using the Kimura nucleotide substitution model, we generate the corre-

sponding codon (three-nucleotide) 64 × 64 substitution matrix. We propa-

gate the message in the form of codons over generations and then decode180

the received codon to an aminoacid and calculate the capacity based on this

channel and decoder.

3. Results and Discussion

It is curious that the natural genetic code (mapping) is not uniform.

While most of the aminoacids are coded by 2 different codons, some are185
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coded by 6, 4, 3 or 1 codons. A natural question to ask is whether the

natural genetic code is optimal in the information preservation, or channel

capacity sense. To have an understanding of the space of possible codon-

aminoacid mappings, we have constructed a number of alternatives to the

natural code:190

1. an extreme-1 code where each aminoacid is coded by only 1 codon and

the remaining 44 codons are stop codons (Figure 6).

2. a uniform code in which all aminoacids are coded by 3 codons (and

the stop codon by 64 − 20 × 3 = 4) which we will call the uniform 3

code (Figure 7).195

3. an almost uniform code in which the aminoacids are coded by 4 or 2

codons, which we will call the uniform 4-2-code (Figure 8).

4. a code obtained from the natural code by flipping C and G and A

and T, for which transitions on the 3rd nucleotide would change the

aminoacid for 2-fold degenerate codons. We will call this the flipped200

natural code (Figure 9).

5. similarly flipped version of the uniform 4-2 code (Figure 10).

We have calculated the channel capacities for the natural aminoacid code

as well as the alternative codes using the Blahut-Arimoto algorithm, which

are presented in Figure 11. Several observations can be made on this figure:205

The channel capacity of the natural code is surpassed only by a uniform 4-2

code which has the same transitions-transversions structure as the natural

code for K > 1. The extreme-1 code has the lowest channel capacity irre-

spective of the value of K. The flipped natural code has a higher channel

capacity when K < 1, in which case transversions rather than transitions210

on the 3rd codon do not change the aminoacid for 2 fold degenerate codons.
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Figure 6: The degenerate (extreme) genetic code (codon to aminoacid map). 1:Alanine,

2:Arginine, 3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine,

9:Histidine, 10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Pro-

line, 16:Serine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP
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Figure 7: The uniform-3 genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP
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Figure 8: The uniform-42 genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP
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Figure 9: The uniform-42 genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP
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Figure 10: The uniform-42 genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP
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The uniform-3 code has one of the lower channel capacity curves and surpass

the natural code only for very small K. These observations tell us that the

natural code favours a transitions dominant substitution model. It seems to

be better than most alternative codes, however, falls slightly behind a uni-215

form 4-2 code. This final observation emphasizes the fact that the natural

code is not necessarily the optimal code at least in terms of channel capacity

or information preservation or robustness to mutations.
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These observations make us ask the question why the natural code was

preferred to any other code. This question was asked before by several re-220

searchers including Crick who proposed the ”frozen accident” model [25].

The ”frozen accident” model was questioned by various researchers in the

literature who noted the ”superiority” of the natural code to alternatives.

For example, Freeland and Hurst [26] generated randomly 1, 000, 000 dif-

ferent configurations and taking account of the mutation biases as in the225

Kimura model and using a mean square distance measure concluded that

”the genetic code is one in a million”.

Most researchers use the polar requirement, a measure of hydrophobicity

as the error measure and try to find/produce codes that minimize this cost

function (e.g. [27]). The reader is referred to also an interesting review by230

Tlusty [28]. Our approach is different from previous work in a number of

aspects. Rather than using MSE (mean square error) on specific biochem-

ical properties such as hydrophobicity, we use an information theory based

measure which captures information on all statistics rather than only the

second order statistics. The use of an MSE measure intrinsically makes a235

Gaussian distribution assumption which is not necessarily suggested by the

nature of the data. The searches made in the literature seem to be random

picks of codes from the space of possible codes such as in [26] which gen-

erated 1, 000, 000 different configurations but as noted in [29], the explored

code structures are rather rigid. Considering that there are 2164 ∼= 4× 1084240

configurations, this is a very limited sample to draw any conclusions from.

In contrast, we propose an intelligent search algorithm which learns through

its search and searches at increasingly more promising parts of the space for

solutions. The only other work which uses a learning intelligent algorithm is

reported in [29], however, they utilize a genetic algorithm rather than sim-245
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ulated annealing and the MSE measure on polar requirement as their cost

function as opposed to the information theory based measure we use. The

reader is referred to [30] and the references therein for detailed accounts of

past research on the ”optimality” of the natural code.

Firstly, we start with a more realistic estimate of the available differ-

ent configurations. We would like to partition m = 64 labelled ”items”

(codons), to n = 21 unlabelled non-empty ”sets” (aminoacids), unlabelled

since we can rename the aminoacids without loosing any biological meaning.

This a classical problem in combinatorial mathematics and is called Stirling

numbers of the 2nd kind. The number of configurations can be calculated

using the formula:

S(m,n) =
1

n!

n∑
i=0

(−1)iC(n, i)(n− i)m (9)

where C(n, i) is the combinatorial (n, i). We calculate S(64, 21) = 2.9×1064.250

We should also divide this by 4! since the order of A,C,G,T is arbitrary in

constructing the matrix which gives 1.23× 1063. This number despite being

much smaller than 2164, is still too large a number to test all configurations.

We start by doing a limited search around the natural code searching

all configurations of Hamming distance 2 to the natural code. We basically255

move a single 1 in the matrix in Eq. (8) to a new position in the same

column (hence changing only two entries in the matrix), which amounts to

remapping a codon to a new aminoacid and calculate the channel capacity

for all such generated new configurations. While doing this we ensure that

all aminoacids are encoded by at least one codon. Disregarding the case of260

rows with a single 1, 62×20 = 1240 such configurations (Hamming distance

2 neighbours of the natural code). Below in Figure 12, we provide the

histogram of the capacities of all such configurations: The natural code is

24



Figure 12: Histogram of capacities (Kimura model) the genetic codes at Hamming distance

2 from the natural code. The natural code has capacity 1.3219. K = 2, q = 0.001.

one of the best but not the best among its neighbours in terms of capacity.

We can also construct a higher capacity code at Hamming distance 4 from265

the natural code with a simple observation. We have already shown the

superiority of an 4-2 code above. When we look at the the natural code, we

see that the codons are mostly coded in groups of 4 or 2 to an aminoacid with

redundancies mostly at the third codon position and less at the first codon

position, with the exceptions of Isoleucine (ATA,ATC,ATT), Methionine270

(ATG), Tryptophan (TGG) and the STOP codons (TAA,TAG,TGA). To

keep the 4 and 2 redundancies, let’s construct a neighbouring code to the

natural code by moving TGA from STOP to Tryptophan and ATA from

Isoleucine to Methionine as depicted in Figure 13. The resulting code is at

Hamming distance 4 from the natural code. As can be seen in Figure 14,275

the channel capacity curve of this code is slightly above that of the natural

code.

We can state that there are slightly more optimal codon-aminoacid maps

in the vicinity of the natural code. Either nature did not care to optimize
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Figure 13: A genetic code 4-Hamming distance from the natural code (codon to

aminoacid map). 1:Alanine, 2:Arginine, 3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glu-

tamate, 7:Glutamine, 8:Glycine, 9:Histidine, 10:Isoleucine, 11:Leucine, 12:Lysine, 13:Me-

thionine, 14:Phenylalanine, 15:Proline, 16:Serine, 17:Threonine, 18:Tryptophan, 19:Tyro-

sine, 20:Valine, 21:STOP
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Figure 14: Comparison of channel capacities for the natural genetic code and a con-

structed genetic code at Hamming distance 4 from the natural code. Kimura channel

(K=2,q=0.001), 100 generations.

the code even further or (more likely) there are hidden costs of some changes280

which we did not include in our considerations. For instance stop codons

also play a vital role in the Nonsense Mediated Decay (NMD) pathway,

having one less stop codon certainly affects the ability to detect nonsense

errors during transcription. Further, it might be disadvantageous to have

more than 1 codon coding for the start protein start (Met).285

As mentioned above although several attempts exist to search for an

optimal code, only random non-exhaustive searches have been made cov-

ering far less than a statistically meaningful space. The searches were not

intelligent (that is not learning while progressing) leading to non-conclusive

results. To search for a global optimum, we propose to use a non-convex op-290

timization algorithm, namely Simulated Annealing algorithm [31], to do an

intelligent search of the optimal code. The Simulated Annealing algorithm

has had success in a wide variety application areas where the optimization

problem at hand is NP-hard, that is not solvable in polynomial time. These

application areas include the traveling salesman problem, graph partition-295
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ing, scheduling in operations research, VLSI circuit design in electronics,

optimal source coder design in telecommunications, etc [31, 32].

Simulated Annealing is motivated by experimental solid state physics

where solids are first heated to a very high temperature and then cooled

down slowly so that all electrons settle to their lowest energy states. The300

algorithm is motivated by the earlier ideas of Ulaby and Metropolis on chem-

ical process modelling and is formulated by Kirkpatrick et al. in [31]. Simu-

lated Annealing proceeds with a series of random walks, namely Metropolis

loops during which new configurations are proposed. If the new configu-

ration leads to a better cost or energy (in our case the channel capacity),305

it is accepted. Unlike the steepest descent type of algorithms, simulated

annealing occasionally accepts also worse configurations with certain prob-

ability given by Boltzmann statistics. This provides hill-climbing potential

and the algorithm can avoid being stuck in local minima. The Boltzmann

statistics provides the analogy with the modelling of the electron distribu-310

tion in solid state physics. After each Metropolis loop, the temperature in

the acceptance ratio is dropped, so less and less proposals with higher cost

are accepted. It has been proved that if a logarithmic cooling schedule is

applied the algorithm converges to the global optimum. However, a loga-

rithmic cooling scheme can get infinitely slow and suboptimal schemes such315

as a geometric cooling scheme is applied. For detailed information on the

simulated annealing algorithm, one is referred to [33]. A brief sketch of the

algorithm is given below:

Simulated Annealing Algorithm320

• Let M = M0, where M0 is the natural code matrix,

28



• While T > Tmin

– T ← T × α α < 1

– Pick a random neighbour, Mnew ← N(M), where the neighbour

set N(.) includes all 2-Hamming distance codes from the code M325

– If P (C(M), C(Mnew), T ) ≥random(0, 1), where C(.) is the chan-

nel capacity and P (.) is the Boltzmann function,

∗ then move to the new state M ←Mnew

• Output: the final code M .

We have run the simulated annealing algorithm with geometric cooling330

scheme with a cooling coefficient of α = 0.99. The starting configuration has

been selected as the natural code. The new configurations are randomly se-

lected by moving a 1 to a 0 in the aminoacid-codon matrix. That is, changing

the mapping of one codon from one aminoacid to another aminoacid mak-

ing sure that there is at least one codon assigned to each aminoacid. We335

have assumed uniform input distributions for the codons hence bypassing

the Blahut-Arimoto algorithm. This choice was made since we do not have

any prior information about the codon distribution and wanted to see the

information preservation capability of the codes when no particular codon

was emphasized by the nature.340

Figure 15 gives the evolution of capacity with progress of the simulated

annealing algorithm to find the optimal code. It is interesting to note that

the algorithm started with a strong drop in the capacity value (the algorithm

accepted a worse code) and wild oscillations as expected in a simulated an-

nealing run (the ”temperature” is high in the beginning), then on the average345

improving the channel capacity by moving to ”better” codes. Initially the
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changes are fast, reducing slowly and then saturating to significantly better

codes or high capacity with small oscillations around the ”near-optimal”

codes. The initial drop of the capacity and the long time needed to re-

cover the capacity in the run indicates that the natural code is already at a350

good point being better than most of its competitors although clearly being

behind a large number of codes. The algorithm was rerun with different pa-

rameters such as lower initial temperature which lead to avoiding the initial

drastic drop in the capacity and with smaller temperature coefficient leading

to faster convergence. Various other starting points were chosen as well such355

as the ”extreme” code or the ”uniform 4-2” code all leading to similar if not

identical final result. The result of such a run starting with the extreme

code is given in 16. It is interesting to note that in contrast to the case with

the natural code as the starting point this Simulated Annealing run starts

with a rapid increase in the capacity values as expected since the extreme360

code is a degenerate code with only one codon mapping to each aminoacid.
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Figure 16: The capacity of the code during the evolution of a fast run of Simulated

Annealing algorithm with the extreme code as the initial code. The capacity value of the

extreme code is 0.79. Initial temperature is 0.01, temperature coefficient is 0.95.

The best configuration found in the simulations is given in Figure 17

although some other codes exist with almost the same capacity value. It is

very interesting to note that as in the case of the natural code, the codons

producing the same aminoacid are close in the table and have ambiguities365

in the nucleotides. The ambiguities in this optimal code are in the first (10

of them), second (8) and third (13) places. This is in contrast with the

ambiguities seen in the natural code which are mostly at the third position

(20) with some ambiguities also at the first position (2) but not at the second

(0) position.370

We provide a comparison of capacity profiles of this near optimal code

with the natural code in Figure 18. To give a scale of comparison, the capa-

city curves of the degenerate code (one codon synthesizing one aminoacid)

and a random 4-2 code are also plotted on the same figure. The figures

show the channel capacity values at a certain number of generations for375

various values of the parameter K in the Kimura model corresponding the

ratio of transitions/transversions. It can be seen that the near-optimal code
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Figure 17: The uniform-42 genetic code (codon to aminoacid map). 1:Alanine, 2:Arginine,

3:Asparagine, 4:Aspartate, 5:Cysteine, 6:Glutamate, 7:Glutamine, 8:Glycine, 9:Histidine,

10:Isoleucine, 11:Leucine, 12:Lysine, 13:Methionine, 14:Phenylalanine, 15:Proline, 16:Ser-

ine, 17:Threonine, 18:Tryptophan, 19:Tyrosine, 20:Valine, 21:STOP
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obtained by the Simulated Annealing algorithm has significantly higher in-

formation capacity then the natural code. The difference is at the same

scale as the difference between the natural code and the degenerate code380

and hence can be considered very significant. It is also worth noting that it

is also significantly higher than the random 4-2 code discussed before con-

structed with ambiguities in the third place as in the case of the natural

code.
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These observations need a discussion on the biological significance. In385

particular, they underline clearly that the natural codon-aminoacid code/map

is far from being optimal although being better than most possible codes.

The natural code can be ”one in a million” [26]; however, considering that

there are more than 1063 possible configurations, being one in a million is

not selective enough, it would mean still 1057 competitors. There are many390

other codes that have far better information preservation capabilities.

This observation may indirectly give support to three hypotheses.

1. that the genetic code co-evolved to a point that it would have been

too disruptive to change anymore [25, 30], so its evolution was stopped

prematurely.395

2. that it is not completely an accidental code in that it is indeed an

error-correcting code better than a large number of competitors [34]

3. that at some point in the past the codons were composed of 2 nu-

cleotides only and the third nucleotide was acquired afterwards. This

may be the reason why the natural code does not seem to be optimized400

for 3-codons and that almost all redundancies are in the third position

[35, 29].

Another biological problem to be discussed is whether the use of channel

capacity as the optimality criterion of the protein code is justified. A higher

capacity code definitely preserves the genetic information better over the405

generations; however, it also means less possibility for diversity. The error-

correcting mechanism in the coding DNA is a sword with two edges. A

completely preserved information would not allow diversity and selection.
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4. Conclusions

In this paper, we have provided a complete modelling of the evolution410

process borrowing an analogy with communications, in terms of Shannon’s

coding theorems. Our model is different from previous work in that we

consider a codon-aminoacid channel rather than aminoacid-aminoacid or

codon-codon channels as studied by researchers in the literature. We use

the channel capacity as a measure of information preserving capability of415

the code and use it as a cost function to test the optimality of the natural

protein (codon to aminoacid) code. Given this cost function, we demon-

strate the suboptimality of the natural code without any space for doubt.

Its channel capacity is significantly below that of various other codes. Un-

like previous work, we have extended our search space (close to 60 million420

tested configurations, that is almost 2 orders of magnitude higher than those

reported in the literature) but more importantly we have done our search

not ”blindly” but ”intelligently” using a non-convex learning/optimisation

algorithm, namely Simulated Annealing. The method has indicated a large

number of mappings different from the natural code and with redundancies425

in all three nucleotide positions while the natural code has redundancies

mostly in the third place and never in the second place. This observation

may be interpreted as a support for the hypothesis that once the codons

were formed of 2-nucleotides only and that the third nucleotide was acquired

later. The presented formulation, which places the information capacity as430

a measure of the robustness of the genetic code, provides a mathematical

framework for studying further biological questions.
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