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Abstract: In this paper we study how the pro-social impact due to the vigilance by other individuals1

is conditioned by both environmental and evolutionary effects. To this aim, we consider a known2

model where agents play a Prisoner’s Dilemma Game among themselves and the pay-off matrix3

of an individual changes according the number of neighbors which are "vigilant", i.e, how many4

neighbors watch out for her behavior. In particular, the temptation to defect decreases linearly with5

the number of vigilant neighbors. This model proved to support cooperation in specific conditions,6

and here we check its robustness with different topologies, microscopical update rules and initial7

conditions. By means of many numerical simulations and few theoretical considerations, we find in8

which situations the vigilance by the others is more effective in favoring cooperative behaviors and9

when its influence is weaker.10

Keywords: Cooperation; Prisoner’s Dilemma; Evolutionary Dynamics; Monitoring Hypothesis.11

1. Introduction12

The emergence and surviving of cooperative and, more in general, pro-social behaviors in nature13

and human societies has been one of the most debated issues in natural and social sciences since14

a long time [1–3]. Indeed, there is an apparent, yet paradoxical, contrast between the advantages15

of selfish strategies at level of individuals, which should be expected to be mostly preferred by16

natural selection, and the ubiquitous presence of cooperation and altruism at level of communities17

(not necessarily in humans) [4]. In order to solve this problem, in the last decades many different18

mechanisms have been proposed [5–7]. What emerges from all this great deal of studies is that there19

is not a single universal mechanism which enhances cooperation against defection, but that different20

phenomena have a different explanation. In particular, if we limit our discussion to the pro-social21

behaviors in human communities, it has been demonstrated how indirect reciprocity [8], partner22

selection and punishment [9,10] or gossip [11] can foster cooperative strategies in various situations.23

Another factor which has been found at work in favoring human cooperation is the vigilance24

by others: more precisely, people tend to adopt more altruistic behaviors when they are observed25

by peers [12,13], or even when they simply feel they are watched [14–16] (Monitoring Hypothesis). In26

Ref. [17], a game-theoretical model able to describe this effect was presented. In particular, the effect27

of the vigilance was considered as a reduction of the temptation to defect in a Prisoner’s Dilemma28

Game played in complex networks. As a result, the higher was the level of vigilance, the higher was29

the final degree of cooperation throughout a population. In that work, the behavior of the model30

was tested only in a few kinds of complex networks (essentially random and scale-free), with just31
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one evolutionary rule (replicator) and always with the same initial conditions (completely random).32

Anyway, as we have stressed above, the effect of the various mechanisms which determine the33

dynamics of these phenomena generally is not universal: for instance, the same topological structure34

can in some cases foster cooperation, or hinder it in different situations [7]. Therefore, in this paper35

we aim to deepen and further clarify the results reported in Ref. [17], testing the robustness of its36

results by changing different aspects and parameters of the original model. In practice, we will focus37

on three factors: the topology (that is, the network on which the population evolves), the evolutionary38

algorithm (the rule following which the individuals adapt their strategies), the initial conditions. This39

is important because in the real world communities live in different environments and evolve in40

different ways, so that a test of this type allows to evaluate better the reliability of the model and the41

entirety of its results.42

43

The paper is organized as follows: in the next section we will define the model, then in Sec. 3 we44

will present the results of the simulations and, where possible, of some theoretical analysis. Finally,45

in Sec. 4 we will discuss such results and sketch some perspectives.46

47

2. Model48

We consider a population of N individuals interacting through an evolutionary Prisoner’s49

Dilemma Game (PDG) under vigilance pressure. The population is set on a given network, which50

is equivalent to assign links between the individuals which can interact directly: according to the51

distribution of links, the topology of the system will be different. Every player is characterized by a52

strategy, C (cooperation) or D (defection), and at each elementary time step plays a round of the PDG53

with her neighbors, and her neighbors do the same on their turn. After each interaction, an individual54

i gets a payoff according to her payoff matrix:55

Cj Dj

Ci 1 0
Di Ti P

(1)

where Ci, Di are the strategies adopted by the player herself, and Cj, Dj the strategies utilized by the56

neighbor j; the total payoff collected by i in a single step of the dynamics will be the sum over all the57

payoffs collected with each neighbor. Of course, to have a PDG it must be Ti > 1 ∀i; furthermore, we58

restrict to the weak Prisoner’s Dilemma (wPDG), that is the case P = 0 [5].59

Moreover, every player can be either in a vigilant state, that is, controlling her neighbors’60

strategy, or not. Defining the variable Vi which is equal to 0 if player i is not vigilant, and equal61

to 1 if she is, a non vigilant individual can become vigilant following a Watts’ threshold rule [17,18]:62

V0→1
i (mi, ki) =


1 i f mi/ki > θi,

0 i f mi/ki ≤ θi ,
(2)

where mi is the number of neighbors of the node i that are already vigilant, ki is the degree of node63

i, and θi ∈ [0, 1] the personal threshold of node i above which she becomes vigilant. In this work we64

consider this threshold constant and equal for every player: θi = θ ∀i.65

The pressure due to the vigilance makes the temptation to defect effectively lower than66

in absence of any external control: actually, it has already been demonstrated that people feel67

uncomfortable if they adopt anti-social behaviors being just feeling observed [15,16]. In terms of68

the payoff matrix, we can model this phenomenon linking the temptation entry in the matrix (1) to69

the number of vigilant neighbors:70
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Ti = b− mi
ki

(b− 1) , (3)

where b is the value of the temptation in absence of vigilance.71

Evolutionary rules72

After all the individuals have played a round of the game, they update their strategies73

synchronously, according to a given rule. In this work we have studied three different update74

algorithms: replicator (REP), unconditional imitation (UI), or a mixed update rule (MUR), inspired75

by reference [19].76

Replicator − With REP we proceed as follows. Let si be the strategy the individual i is playing,77

and πi her payoff. With the proportional imitation rule, each individual i randomly choose one from78

her ki neighbors (individual j) and adopts her strategy with probability:79

pt
ij ≡ P

{
st

j → st+1
i

}
=


(πt

j − πt
i )/Φ i f πt

j > πt
i ,

0 i f πt
j ≤ πt

i ,
(4)

where Φ = max(ki, k j)[max(1, T)−min(0, S)] so that pt
ij ∈ [0, 1].80

Unconditional Imitation −With UI rule, in order to evolve her strategy every player imitates the81

one adopted by the neighbor that has obtained the best payoff, provided it is larger than her own82

(otherwise, nothing happens).83

Mixed update rule − In this case, with probability q the player simply imitates the strategy of84

one of her neighbor picked up at random, and with probability 1 − q evolves according the UI85

rule described above. While REP rule is more representative of evolutionary phenomena in biology,86

this one describes better the dynamics underlying the decision making processes of human beings:87

therefore, it depicts more realistically social phenomena [19,20].88

89

In any case, whatever the update rule is, the strategies of the individuals are updated90

synchronously. Finally, after revising their strategies, players update their vigilance status, according91

to the rule given in Eq. (2).92

93

3. Results94

We accomplished many simulations of the model defined in the previous section, with different95

parameter values, topology, and update rules, in order to generalize the results presented in Ref. [17].96

In order to characterize and analyze the behavior of the model, we will consider the quantity 〈ρ〉, that97

is, the final average cooperator density. In this way, it will be easy to discern when the cooperation98

finally invades the system, or is removed, or possible intermediate configurations.99

100

All the simulations presented here have been carried out with N = 1000 individuals. In101

case of monoplex networks, the topologies utilized in this paper are i) Erdös-Rényi (ER) random102

networks [21], ii) Barabasi-Albert (BA) scale-free networks [22], iii) regular two-dimensional lattices103

(with absorbing boundary conditions), iv) link-added small-world (LASW) random networks [23,24].104

Unless explicitly indicated, the initial conditions are totally random, so that at the initial stage of the105

dynamics, on average there are 50% of cooperators; analogously, also the initial vigilant players are106

picked up at random: therefore, if only cooperators can be vigilant, we will have at the beginning the107

25% of vigilant cooperators, otherwise, in Subsec. 3.4 the initial vigilant individuals will be the 50%108

of the population, equally distributed among cooperators and defectors.109
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3.1. Influence of the update rule110

Here we consider monoplex and duplex networks, and check how the behavior of the system111

changes by varying the way the individuals evolve their strategies.112

3.1.1. Unconditional Imitation113

Let us consider an ER and a BA networks, with average degree z = 4 and z = 16. In Fig. (1) the114

final average cooperation density as a function of the temptation b is shown for different values of the115

threshold θ in the ER case, while in Fig. (2) we report the same results for a BA network.116
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Figure 1. ER network. z = 4 left, z = 16 right. Average final fractions of cooperators ρ as a function of
b for different values of θ.
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Figure 2. BA network. z = 4 left, z = 16 right. Average final fractions of cooperators ρ as a function
of b for different values of θ.

As it is easy to see, the cooperation is much more supported in ER topology than in BA.117

Comparing such results with the ones presented in Ref. [17], we notice that with REP rule the118

cooperation is favored both in ER and BA networks. Therefore, we can conclude that the presence119

of hubs hinders the emergence of cooperative behaviors with a purely deterministic evolution120

algorithm, i.e., a small amount of noise is necessary for cooperation to overcome this barrier. This121

is further confirmed by taking into consideration a duplex BA-BA network, that is when the network122

of game dynamics and the one of vigilance dynamics are separated [17], and both are BA networks123

with the same average degree. As shown in Fig. 3, the final level of cooperation remains as low as in124

the BA monoplex case.125

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8 2.0

b

<
 ρ

 >

θ
0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8 2.0

b

<
 ρ

 >

θ
0

0.2

0.4

0.6

0.8

1

Figure 3. BA-BA duplex network. z = 4 left, z = 16 right. Average final fractions of cooperators ρ as
a function of b for different values of θ.
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3.1.2. Mixed update rule126

We want now to check the robustness of the model with respect to the MUR rule, which is more127

realistic in the human interactions [20]. As shown in Figs. 4 and 5, θ (vigilance) has no effect on128

cooperation, but update rule does. When the probability of following the non-strategic imitation129

rule is low (q = 0.3), we can find some levels of cooperation, but with higher values (i.e. q = 0.5)130

cooperation is hindered as it happened in subsection 3.1.1.131
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Figure 4. Mixed update rule with q = 0.3. BA-BA duplex network. z = 4 left, z = 16 right. Average
final fractions of cooperators ρ as a function of b for different values of θ.
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Figure 5. Mixed update rule with q = 0.5. BA-BA duplex network. z = 4 left, z = 16 right. Average
final fractions of cooperators ρ as a function of b for different values of θ.

It is worth to stress the fact that increasing the weight of the non-strategic imitation hinders132

the cooperation. This could be explained by considering that, by UI rule, cooperators connected133

with other cooperators have a very high fitness and are surely imitated by a linked defector. To134

clarify this idea, let us consider a defector j with four neighbors, among which there is only one135

cooperator i. Since cooperators tend to cluster, it is likely that the three defectors are connected to136

other defectors, getting in a single game round a fitness equal to 4, whilst i will be probably linked137

to three cooperators, gaining 3b (for seek of simplicity, we assume that every individual has exactly138

4 links). So, if b > 4/3, player j will definitely turn herself cooperator if evolves by UI rule, while139

will remain a defector with probability 3/4 following the non-strategic update algorithm. Indeed, in140

Figs. 4 and 5, we see clearly that the final cooperator density practically vanishes just around b ≈ 1.3,141

coherently with the above considerations.142

3.2. Other topologies143

Up to now, we have considered the most classical examples of complex topologies, that is, ER144

and BA networks. Here we aim to check the behavior of the model on topological structures with145

different features. In particular, ER and BA networks differ mainly for the fact that in the former146

there are no hubs (nodes with much more connections with respect to the average), contrarily to147

what happens in scale-free BA networks [25]. Anyway, both have a small diameter (i.e., the average148

distance between two nodes picked up at random scales as the logarithm of the system size), and a149

small clustering coefficient (i.e., the probability that two neighbors of a third node are also neighbors150

is much smaller than 1). Therefore, it is worth to consider networks with one or both diameter and151

clustering coefficient different from ER and BA networks.152
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For this purpose, we took into consideration a Watts-Strogatz Small-World topology, which has153

the property to behave locally as a regular lattice-like network (i.e., high clustering coefficient), but as154

a random network globally (small diameter). Moreover, we built such network following a different155

procedure from the one presented in Refs. [23,26]: starting from a regular square lattice of N =156

1000 nodes each one with z = 4 neighbors, we added links between non connected nodes with a157

probability p, as in the LASW model defined in Ref. [24]. In this way, by tuning the parameter p we158

can explore the lattice (p = 0), and small-world (0 < p . 2z/N) topologies. Now, as illustrated in159

Fig. 6, we see how in lattice the system cannot sustain cooperation (left graph), but increasing the160

density of short-cuts, the cooperation is mostly enhanced, even better than in ER topology (middle161

and right graphs). Interestingly, the results do not depend on θ, apart the fact that defection easily162

overcomes cooperation when θ = 1 already for small values of b.163
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Figure 6. LASW network. Pure lattice (left), lattice with 10% of pure lattice number of links added
(middle), lattice with 30% of pure lattice number of links added (right). Average final fractions of
cooperators ρ as a function of b for different values of θ.

3.3. Different initial conditions164

A simple mean-field analysis of the model suggests that the outcome of the dynamics should165

depend also on the initial conditions, in particular on the initial distribution of the vigilant players.166

Actually, the vigilance can have an effective influence on the evolution of the system only if the167

vigilant individuals are enough to make the others vigilant too, following Eq. (2). Now, considering168

a mean-field approach, the probability that an individual with k connections has initially m vigilant169

neighbors is170

P(m; k) =
(

k
m

)
am

0 (1− a0)
k−m , (5)

where a0 is the initial density of the vigilant individuals. Then, it can be easily computed the average171

density of vigilant neighbors at the beginning of the dynamics:172

〈m
k

〉
=

k

∑
m=0

m
k

P(m; k) = a0 . (6)

Therefore, the effect of vigilance should become noticeable for θ < a0: since we usually set that173

initially half of cooperators are also vigilant, we expect a transition from high cooperation to defection174

for θ larger than a critical θ∗ such that175

θ∗ ≈ ρ0

2
(7)

where ρ0 = 0.5 is the initial cooperator density. Of course, we also expect that the network176

structure changes at least partially this picture. In fact, the influence of the initial conditions is almost177

completely removed in non-trivial topologies, as we are going to show in the following.178

In Fig. 7 we present the final cooperator distribution for a system on a square lattice evolving179

by the REP rule. As it is easy to realize, if the number and distribution of initial vigilant individuals180

is such that no other player can be activated, then there will be no effect of the vigilance and the181
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cooperation vanishes already for small values of the temptation b. On the contrary, as the initial182

distribution allows, even through statistical fluctuations, that some inactive player can have enough183

vigilant neighbors to get activated, then the number of vigilant individuals soon increases and the184

system ends up in a configuration with a higher level of cooperation, independently from the initial185

number of vigilant agents.186
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Figure 7. Square lattice, different initial vigilant densities. Upper left: only one initial vigilant put in
the middle of the lattice. Upper right: initial probability for each cooperator to be vigilant equal to
0.001. Lower left: initial probability to be vigilant equal to 0.05. Lower right: initial probability to be
vigilant equal to 0.45. Average final fractions of cooperators ρ as a function of b for different values of
θ.

This is true also on ER random networks, as shown in Fig. 8: in the end, there is practically no187

effect of the initial vigilant density on the final fate of the dynamics. Indeed, as can be proven by188

comparing these results with the Fig. 1(a) of the Ref. [17], 〈ρ〉 is always very close to the value of the189

case a0 = 0.25, apart some slight differences. This same picture holds for BA networks as well: also190

with this topology the final level of cooperation does not depend on the initial distribution of the191

activated players, as reported in Fig. 9.192
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Figure 8. ER network, different initial vigilant densities. Left graphs: z = 4; right graphs: z = 16.
Upper figures: initial probability to be vigilant 0.05; lower figures: initial probability to be vigilant
0.45. Average final fractions of cooperators ρ as a function of b for different values of θ.
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Figure 9. BA network, different initial vigilant densities. Left graphs: z = 4; right graphs: z = 16.
Upper figures: initial probability to be vigilant 0.05; lower figures: initial probability to be vigilant
0.45. Average final fractions of cooperators ρ as a function of b for different values of θ.

Therefore, we can finally state that the dynamics turns out to be robust with respect to varying193

the initial conditions, so that what has been presented in the previous subsections can be considered194

as general results with respect to the initial configuration of the system.195

3.4. Case of vigilant defectors196

Until now, we have set that only cooperators can be also vigilant players. In fact, in a PDG197

also defectors have interest to be connected with cooperators, so it is plausible to consider a situation198

where also who is not a cooperator can be vigilant. In practice, in human interactions also who adopts199

anti-social behaviors can force the others to behave fairly [11,27,28].200

Therefore, we considered the case in which every player, independently from the fact that she201

is either a cooperator or a defector, can be a vigilant one. We show the results for this case only on202

square lattice, because here the effect is magnified with respect to the remaining topologies. Actually,203

as shown in Fig. 6(left), in this topology cooperation is mostly hindered.204

In Fig. 10 we see that already a very small probability $0 to be an initial vigilant (upper left205

graph) helps cooperation to invade the population already for not-too-high vigilance θ . 0.5, and,206

from $0 & 0.05 on (upper right and lower graphs), also for θ = 0.6 the final cooperator density does207

not vanishes even at higher values of b. This is of course an expected result, since allowing more208

individuals to activate as vigilant ones decreases much more the average temptation of every player,209

according to the Eq. (2). This outcome holds also in different topologies.210
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Figure 10. Lattice, vigilance independent from strategy. Left: initial probability to be vigilant 0.001;
middle: initial probability to be vigilant 0.05; right: initial probability to be vigilant 0.45. Average final
fractions of cooperators ρ as a function of b for different values of θ.

211

212
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4. Discussion and Conclusions213

The model of vigilance firstly presented in Ref. [17], and further developed here, treats the214

pro-social effect due to the control (be it real or just perceived) by peers as a decreasing of the215

temptation to defect: the more neighbors watch out for the behavior of a subject, the less is the216

probability that the latter adopts a selfish strategy. Even though the preliminary results of this217

approach turned out to be promising, before considering it a viable way to describe this phenomenon218

it was necessary to test its full validity. Therefore, in this paper we have aimed to ascertain that the219

main features of the model are basically robust: that is, we verified that, through the mechanism of220

vigilance proposed here, cooperation is actually fostered for a broad values of the parameters at stake221

and in different environmental configurations. In particular, we showed that the beneficial influence222

of the vigilance works in more realistic configurations, allowing us to hypothesize that what has been223

repeatedly observed in experiments and field observations can be actually explained as a smaller224

temptation to defect in presence of controllers.225

The results which in our opinion allow us to consider the model realistic are the following:226

• vigilance needs the small-world effect (the presence of short-cuts connecting individuals227

physically far away from each other) to be efficient in fostering cooperation (in regular lattices,228

Fig. 6, it does not help), and the small-world property is ubiquitous in most real social systems;229

• vigilance works not only when the individuals update their strategy by means of an essentially230

evolutionary rule (REP), but also when they evolve through more typically "social" mechanisms231

as pure imitation (at least on ER networks); moreover, considering the mixed rule, which takes232

into account the intrinsic non-strategic component of humans’ decision making processes, we233

found that the cooperation can tolerate the influence of irrationality only when this is low (q <234

0.5), coherently with the results of Ref. [20];235

• the results do not depend sensitively on the initial conditions (at least on complex topologies):236

this is a fundamental feature of the model since it is usually hard to determine the initial237

conditions for real social systems; on the other hand, in complete graphs (i.e. in mean-field238

approximation), this is not true, but only small human communities can be described in this239

way, and in such cases different dynamical mechanisms are at work [29].240

Of course, further investigations are needed to validate definitively the model, in particular241

experiments explicitly aimed to check if this peculiar kind of phenomenon (decreased temptation242

in a PDG) takes actually place when subjects play in the laboratory. This kind of studies are already243

planned for the next future.244
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