Relazione scientifica sui risultati dell'attivita' di ricerca svolta presso l'Universita' del Golfo Persico, Bushher, Iran

Introduzione

La collaborazione con l'Universita' del Golfo Persico e' nata dal comune interesse per i metodi di estrazione del campo di vento da immagini SAR (Synthetic Aperture Radar) da satellite, e da un specifico interesse alla loro applicabilita' nel Golfo Persico. Il titolo della ricerca *Algoritmi per l'estrazione del campo di vento da immagini SAR nel Golfo Persico* sottolinea questi due aspetti. L'obiettivo generale dell'attivita' era quello promuovere l'uso delle immagini SAR per il monitoraggio della superficie marina.

L'estrazione del campo di vento da immagini SAR non si basa ancora su metodi consolidati, ma e' oggetto di ricerca e sperimentazione. La possibilita' di confrontare differenti metodologie e' di primaria importanza per le possibili applicazioni.

Attivita' di ricerca

L'attivita' di ricerca si e' concentrata sulle tecniche di estrazione della direzione del vento da immagini SAR satellitari della superficie del mare: la direzione del vento e' il parametro base per poter derivare il campo del vento attraverso I modelli che legano il radar backscatter alla velocita' del vento. Lo scopo finale sara' quello di utilizzare queste immagini per il monitoraggio delle aree di estrazione di gas e greggio nel Golfo Persico.

Il proponente (ISAC) ha sviluppato negli anni passati un metodo basato sulla trasformata wavelet bidimensionale continua (2D-CWT) (Zecchetto et al, 2008,2016), mentre l'istituzione ospitante (PGU) un metodo basato sulla trasformata countourlet (Non-subsampled Contourlet Transform, NSCT, Appendice A).

A seguito dell'isolamento internazionale dell'Iran negli anni recenti, il metodo sviluppato da PGU non era stato applicato ai dati SAR originali ma a mappe in digital numbers che avevo loro fornito (Shamshiri et al, 2013a,2013b).

Quindi lo scopo primario e' stato di verificare i risultati ottenuti nei lavori citati a dati di backscatter SAR del Golfo Persico, selezionate sulla base della disponibilita' di dati in-situ forniti da PGU. Queste sono immagini dei satelliti Envisat e Sentinel-1 dell'Agenzia Spaziale Europea, disponibili liberamente (Tabella I).

La parte iniziale del lavoro e' stata di introdurre il gruppo del Dr. Keshvarz alle tematiche relative dell'utilizzo del SAR, e dei sensori a microonde piu' in generale, sul mare. Questo e' stato fatto attraverso due seminari, Introduction to microwave radar to investigate the geophysical processes at the air-sea interface

е

Introduction to the synthetic aperture radar to investigate the geophysical processes at the air-sea interface,

che ho tenuto all'Universita' del Golfo Persico il 23 maggio.

Il lavoro seguente e' stato quello di verificare sulle immagini SAR disponibili la compatibilita' del metodo PGU con quello ISAC. I primi risultati indicano che il

metodo NSCT, quando applicato alle immagini SAR originali, ha bisogno di un ulteriore raffinamento, in quanto deve interfacciarsi con le tecniche di filtraggio usualmente utilizzate nelle immagini SAR ma non ancora da PGU sulle mappe SAR. Questo lavoro e' in via di sviluppo, ma richiedera' dei tempi di alcuni mesi per essere concluso.

Conclusioni

L'attivita' di ricerca presso l'Universita' del Golf Persico non ha ancora prodotto risultati definitivi, ma ha bensi' messo in moto un effettivo interesse che dovrebbe sfociare a breve in una comune lettera di intenti tra PGU ed ISAC per una durevole collaborazione. Nella speranza che il CNR attivi con l'Iran dei progetti bilaterali di Cooperazione Scientifica e Tecnologica come per altri paesi.

Sulla via del ritorno, ho visitato l' Iranian National Institute for Oceanography and Atmospheric Science in Tehran per due giorni (31 maggio, 1 giugno). Abbiamo individuato degli argomenti di comune interesse, che riguardano principalmente l'uso dei dati satellitari di vento nei bacini persiani, Golfo Persico e Mar Caspio, e convenuto di impostare una collaborazione per il futuro.

Bibliografia

Shamshiri, A., A. Keshavarz e Y. Mansouri, Ocean wind direction estimation from SAR images using countourlet analysis, IGARSS 2013a, Melbourne, Australia Shamshiri, A., A. Keshavarz e Y. Mansouri, Ocean wind direction estimation from SAR images using morphological-numerical analysis, IGARSS 2013b, Melbourne, Australia Zecchetto S. and F. De Biasio, A Wavelet Based Technique for Sea Wind Extraction from SAR Images , *IEEE Trans. of Geoscience and Remote Sensing*, 46, 10, 2983-2989, 2008 (doi: 10.1109/TGRS.2008.920967)

Zecchetto S., F. De Biasio, A. della Valle, G. Quattrocchi, E. Cadau and A. Cucco, Wind Fields from C and X band SAR images at VV polarization in coastal area (Gulf of Oristano, Italy), *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 2016 (doi:10.1109/JSTARS.2016.2538322).

Tabella I: Immagini SAR del Golfo Persico selezionate in base alla disponibilita' dei dati di vento. ASA: Envisat ASAR; S1A: Sentinel-1a

ASA_WSM_1PTDPA20030604_063303_000000732017_00020_06587_5075 ASA_WSM_1PTDPA20031022_063311_000000732021_00020_08591_5077 ASA_WSM_1PTDPA20040813_063021_000000732029_00249_12828_5078 ASA_WSM_1PTDPA20041231_063015_000000732033_00249_14832_5080 ASA_WSM_1PTDPA20050223_063309_000000732035_00020_15605_5081 ASA_WSM_1PTDPA20060312_062728_000000732045_00478_21073_5135 ASA_WSM_1PTDPA20060906_063308_000000732051_00020_23621_5083 ASA_WSM_1PTDPA20061006_183939_000000732051_00457_24058_5132 ASA_WSM_1PTDPA20080125_063010_00000732065_00249_30864_5097 ASA_WSM_1PTDPA20080616_063621_000000732069_00292_32911_5136 ASA_WSM_1PTDPA20081031_063007_000000732073_00249_34872_5101 ASA_WSM_1PTDPA20091220_183605_000000732085_00185_40820_5139 ASA_WSM_1PTDPA20100525_183336_000000732089_00414_43053_5133 ASA_WSM_1PTDPA20101012_183308_000000732093_00414_45057_5138 S1A_IW_GRDH_1SSV_20160418T142414_20160418T142443_010877_01049E_9675 S1A_IW_GRDH_1SSV_20160418T142443_20160418T142508_010877_01049E_FB95 S1A_IW_GRDH_1SSV_20160418T142918_20160418T142943_010877_01049E_FB95

Appendice A

Non-subsampled Contourlet Transform, NSCT

For the extraction of the wind direction from a SAR image of the sea surface, the first step is to set the size of the window sliding on the image. The size of the window depends on spatial resolution of image. For every region of image, the methodology sketched in the below flowchart is used for direction estimation through the Non-subsampled Contourlet Transform (NSCT transform). Second level coefficients are used at this project. In fact we suppose 3rd level coefficients is corrupted by Noise and main information about edge of image, is located at 2nd levels coefficients. Each sub-band of 2nd level, consists of according coefficient to direction of that sub-band. Two sub-bands of 2nd level of NSCT transform is shown at fig.2. So, if the direction filter of a sub-band be close to the direction of the wave of sea, edge direction of the output of this filter must be according to filter direction. By this assumption, Main direction algorithm is used to extract the edge direction of each sub-band. Input of the Main direction extraction algorithm is computed using Bradley adaptive thresholding algorithm. Output of Bradley adaptive thresholding algorithm for two sub-bands of fig. 2 is shown at fig. 3. Finally optimum direction estimation algorithm, select final direction equal to the direction of the sub-band which main direction of that is more close to its initial direction.

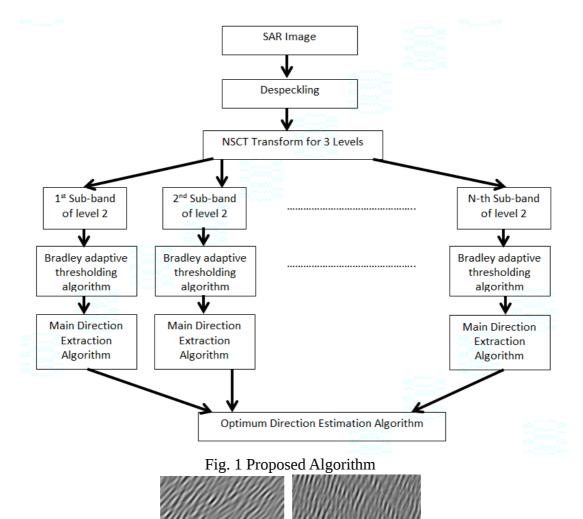


Fig. 2 Two sub-bands of 2nd level of NSCT transform

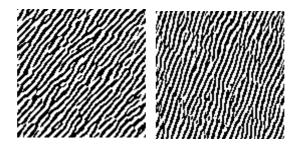


Fig. 3 Output of Bradley adaptive thresholding algorithm