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I. INTRODUCTION

The present report is based on my research activity at the Department of Physics of the

University of California San Diego (UCSD), La Jolla, California, USA. I have been hosted

in the group of Prof. H. Abarbanel, which is one of the pioneer of the statistical data

assimilation methods using path integral techniques. During this research period I learned

the main aspects of the statistical data assimilation problem and I acquired the formal and

numerical recipes to solve the problem. In the following, I presented the methods that I

learned with relevant application to neural dynamics.

Making and testing models of observed time series from dynamical systems is the forefront

of nonlinear dynamics research. In this report, we studied theoretical problems in nonlinear

time series analysis and modeling [1–3]. We focused on modern methods of transferring

information from data to models, this is data assimilation ( see [1] and references therein) .

The problem of data assimilation is quite simple to state: during a measurement window

[0, T ], one makes observations at discrete time steps [t0 = 0, t1, ..., tm = T ] of some physical

quantities of a dynamical system. Given a mathematical model describing the observed

dynamical system, we want to determine the parameters entering into the model and to

estimate both the observed and unobserved physical quantities of the system during the

measurement time interval [0, T ].

The model typically has a lot of state variables, not all of which we are able to observe,

and it has some physical parameters we may to know. Furthermore, if we are able to get

good estimations of parameters and full state variables (observed and unobserved), we can

use the model to predict the behavior of the sytem for t > T , thus the prediction can be a

test of the validity of the model [1].

Adopting predictions as a metric to test model is not a simple task because a variety of

reasons can produce a wrong prediction. For example, due to a lot of amount of noise in the

data the behavior of the physical systems cannot be recovered by the model. Moreover, an

insufficient amount of data can result to a flawed data assimilation procedure or the model

is incorrect.

The problem of noisy data together with model errors makes the data assimilation a

statistical problem. Indeed, we have to calculate a probability distribution for the state of

the model, conditioned on the observations. One must start with a, known or unknown,
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initial distribution of states at t = 0 and then propagate this probability distribution using

the dynamical rule of our model to the first measurement time t1. At t1 we require a

rule letting us know how information in the measurement at that time influences the state

distribution function at that time. Then, using the dynamical model, we need to propagate

that distribution function to the next measurement time t2 > t1 and apply our information

transfer rule and so forth until we reach T (the end of the observation window). These

steps characterize the statistical data assimilation techniques and are done using a path

integral formalism allowing us to give an integral representation of the solution to the data

assimilation problem.

In the following sections we formally stated the problem and we gave an overview of

the method used to solve the statistical data assimilation problem and its applications. In

particular, we discussed a physical relevant example on neural dynamics, i.e. an Hodgkin-

Huxley model of a neuron with potassium and sodium ionic channels [1, 4, 5] , that is called

the NaKL model. Finally, we gave an outlook on a model of the telencephalic nucleus HVC

that contains neurons playing a crucial role in birdsong system[6–8] .

II. METHODS

A. Dynamical systems and data assimilation

A dynamical model of a physical system can be written in terms of a set of differential

equations in the following form:

dxa(t)

dt
= Fa (x(t),p) , (1)

where a = 1, ..., D withD defining the dimension of system and x(t) = [x1(t), x2(t), ..., xD(t)]

is a vector describing the state of the system at time t. F (x(t)) is a dynamical vector field

governing the dynamics of our system and p are the Np parameters entering into the model.

The corresponding discrete form of the dynamical Eq. 1 is

xa(tn+1) = fa (x(tn),p) . (2)

The information we wish to transfer to this model resides in the L measurements

y(tn) = [y1(tn), y2(tn), ..., yL(tn)] made at each time tn within an observation window
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[t0 = 0, t1, ..., tm = T ]. To connect the measurements yl(tn) with the solution of the dy-

namical Eq. 2, we must specify a measurement function h, as follows hl (x(tn)) = yl(tn).

The use of measurements in the observation time window [0, T ] to estimate the parameters

p and unknown states completes the model and allow us to test or validate the model using

the predictions for t > T where a selected metric compares new observations y(t > T ) to

new model outpus hl (x(tn)).

Typically, the measurement are sparse, i.e. L << D, and we must estimate both the

full (observed an unobserved) D-dimensional state x and Np parameters of the model. This

limitation makes the data assimilation problem very difficult [1, 9] .

It is worth remarking that, in many cases it is found that the trajectory of the measured

variable coincide quite well with the data within the observation window. However, the

quality of the estimation of parameters and unobserved states cannot be ascertained without

further tests. In this way, the true test of the assimilation procedure is comparison of

the predictions of the state variables for t > T . Indeed, it is often found that excellent

estimations lead to unsatisfactory predictions of the measured states [1].

B. Path Integral representation for statistical data assimilation problem

As discussed in the Introduction, experimental measures are always noisy and the model

describing the observed physical system has always errors, thus the data assimilation problem

becomes a statistical problem. We do not enter into the detail of the general formulation of

the statistical data assimilation problem (see [1] and references therein for details), however

we write the general solution to the problem and we comment it in a intuitive way. For

brevity reasons, we define y(tn) = y(n) and x(tn) = x(n).

The main ingredient is the evaluation of the conditional probability P (X|Y), where

Y = [y(m),y(m− 1), ...,y(0)] are the observations and X = [x(m),x(m− 1), ...,x(0)] is

the collection of states of the system during the observation window.

It can be shown that P (X|Y) = exp[−A0(X,Y)], where A0(X,Y) is called the action

and is equal to

A0(X,Y) = −
m∑

n=0

CMI(x(n),y(n)|Y(n−1))−
m−1∑
n=0

ln [P (x(n+ 1)|x(n))]−ln [P (x(0))] . (3)
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Since usually we do not have prior information of the initial distribution of the states,

P (x(0)) is assumed to be a uniform distribution and the last term of the above equation can

be ignored as an additive constant. The term ln [P (x(n+ 1)|x(n))] contains the information

on the transition from a state at time tn to a state at time tn+1. On the other hand, the

first term of the above equation is associated with the measurement during the observation

window. It can be expressed as a conditional mutual information in the following way

CMI(x(n),y(n)|Y(n− 1)) = ln

[
P (x(n),y(n)|Y(n− 1))

P (x(n)|Y(n− 1))P (y(n)|Y(n− 1))

]
(4)

whereY(n−1) = [y(n),y(n− 1), ...,y(0)] is the collection of the measurements up to time

tn. This term contains the additional information transferred from the current measurement

y(n) to the model x(n), conditioned on the past measurements in Y(n− 1).

Our main interest is in the calculation of conditional expectation values of statistical

quantities expressed as a function of X, i.e. G(X), that can be expressed as a path integral

of the following form:

E [G(X)|Y] =

∫
dXG(X) exp[−A0(X,Y)]∫

dX exp[−A0(X,Y)]
. (5)

This is an high dimensional D(m+1) integral along the path of the model state through

the observation window [t0 = 0, t1, ..., tm = T ]. The expected path through the space of

paths during the observation window comes from selecting G(X) = X. The computation of

the RMS variation about this expected path is performed with the information contained in

G(X) = [x(0)2,x(1)2, ...,x(m)2]. Other moments about the expected path are evaluated in

the same way using different powers of the x(n).

C. Calculating the Path Integral: Annealing procedure

In the spirit of Lagrangian dynamics and perturbative field theory, one may more sys-

tematically approach the problem of calculating the integral in Eq. 5 by expanding around

stationary paths, that is, utilizing Laplace’s method (see [1] and references therein) . The
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computational difficulty of the problem is thus shifted to one of nonlinear optimization - to

finding the minima of A0(X,Y).

If one assumes both measurement noises and model error are independent and gaussian,

the action A0 in Eq. 3 has the format of

A0(X,Y) =
m∑

n=0

Rm(n)

2

L∑
l=1

[xl(n)− yl(n)]
2 +

Rf

2

m−1∑
n=0

D∑
a=1

[xa(n+ 1)− fa(x(n))]
2. (6)

where Rm and Rf are the inverse of variances for the measurement noises and model

error, respectively.

The annealing method (see [5] for details ) is based on the observation that the minima

solution Xq of A0 at Rf = 0 is xl(n) = yl(n), the other D − L components of the model

state vector are undetermined, and the solution is degenerate. As we increase Rf , the action

levels split, and depending on Rm, Rf , L and the precise form of the dynamical vector field

f(x), there will be 1,2,. . .minima of A0.

After identifying the global minima and other local minima of A0, we can employ laplace

method to approximate the expected value E [G(X)|Y] of a function G(X), i.e

E [G(X)|Y] =

∫
dXG(X) exp[−A0(X,Y)]∫

dX exp[−A0(X,Y)]
≈ G(X0). (7)

plus exponentially small corrections.

III. APPLICATION OF DATA ASSIMILATION ON NEURONAL DYNAMICS

In this section we give an example of the application of data assimilation technique to an

Hodgkin-Huxley model of a neuron with potassium an sodium channel: the NaKL model.

We started to test our data assimilation method via twin experiments. In twin exper-

iment the data are generated by a known model (in our case the NaKL model) and the

statistical data assimilation methods are tested on this model. Twin experiments are also

very important as they allow us to address questions such as how many measurements are

required for the accuracy of state and parameter estimations [1, 9] . They can be used

to identify which measurements to make. They permit us to ask how frequently in time

this number of measurements should be performed in order to make accurate estimations of

model parameters and model states. Twin experiments are also useful as a design tool for
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experiments as they may indicate properties of the stimulus or forcing of the experimental

system in order to explore the full dynamical range of its response [10].

A. NaKL model of neuron

The NaKL model based on Hodgkin-Huxley equations describes the membrane potential

of a neuron consisted by potassium an sodium ion channels. The NaKL model has four state

variables and 25 fixed parameters. The dynamical equation for the membrane potential V (t)

is

dV (t)

dt
= gL(EL − V (t)) + gKn(t)

4(EK − V (t)) + gNam(t)3h(t)(ENa − V (t)) + Iinjected (8)

where gK, EK and gNa, ENa are the conductances and the reversal potential for the potas-

sium and sodium channels, respectively. gL, EL are the conductances and the reversal po-

tential for the leak channel. Iinjected is an injected external current.

The gating variables a = m,h, n describing the activation and inactivation of a channel

are written in the following form

da(t)

dt
=

a∞(V (t))− a(t)

τa(V (t))
, a = m,h, n (9)

a∞(V (t)) =
1

2

(
1 + tanh

(
V (t)− θa

σa

))
, (10)

τa(V (t)) = τa0 + τa1

(
1− tanh 2

(
V (t)− θτa

στa

))
. (11)

These dynamical equations are used to produce virtual data xdata(t) = [Vdata(t),mdata, hdata, ndata]

that were analyzed in a twin experiment.

B. Twin experiments with NaKL model neuron

According to nowadays experimental technology, in our twin experiment the membrane

potential Vdata(t) was the observed variables, whereas the gating variables mdata, hdata, ndata
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were the unobserved state variables.

The dynamical Eq.s 8,9 of the NaKL model are integrated using a Runge-Kutta fourth

order method [11], with a time step integration of ∆t = 0.02ms, corresponding to frequency

sampling of fs = 1/∆t = 50kHz. This time step was chosen in order to achieve a good

data assimilation procedure, indeed it was found that sampling rate lower than 50 kHz

did not allow a good estimation of the parameters and variables of the model [1]. The

external injected current in Eq. 8 is shown in the top panel of Fig. 1. This is a chaotic

current that is able to stimulate all the dynamical range of the system. It was shown that

the usual step currents are not sufficient to provide good estimation of the parameters and

state of the system as well as predictions [1]. Finally, gaussian noise was added to the

data of the membrane potential, to reproduce an experimental error of ±1 mV. Thus, we

produced a virtual experimental data set of the membrane potential Vdata(t) (see bottom

panel of Fig. 1). Only Vdata(t) is presented to the the NaKL model in our twin experiments

(according to our previous notation Vdata(t) = y(t)) and the path integral was calculated

using the annealing procedure (see Sec.II C) on the first 3000 data points. The numerical

minimization problem was performed using the interior-point algorithm provided by the open

source software IPOPT [1, 5] , utilizing the ma57 linear solver library, on a standard desktop

computer. Fig. 2 shows the values of the action A0 for the paths with minimum action at

fixed Rf . The paths corresponding to the minimum asymptotic value of A0 is chosen as

the minimum action path. In our example Rf = {Rf0α
β}, where α = 2, β = 0, 1, . . . , 30,

Rf0 = 10−3, the path with minimum action corresponded to value of β = 30. The results

for the parameter estimation are very good as can be seen by the value represented in Table

I. The result for the estimated membrane voltage is shown as blue line in Fig.3, whereas

the green line indicates the prediction that is in excellent agreement with the generated

data (red line in Fig.3). Also for the unobserved gating variables of the ion channels we

achieved very good estimation and prediction (see Fig.s4,5). Overall, these results indicate

that the statistical data assimilation methods is correct showing its powerful application

both on the completion and prediction of a nonlinear dynamical system such as the NaKL

model. The twin experiment strongly suggested a design for experiment in a single neuron

in which an external chaotic current is applied and the frequency sampling of the potential

recording must be 50KHz. These requirements are crucial for the success of the statistical

data assimilation technique.
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IV. CONCLUSION AND OUTLOOK

The experience at the Department of Physics of the UCSD was highly formative allowing

me to enter in a new issue such as the statistical data assimilation problem. In this report,

we reviewed the main aspect of the statistical data assimilation problem and we gave the

formal and numerical recipes to solve the problem. We have shown its applications on

a relevant biophysical model of an NaKL neuron described by Hodgkin-Huxley equations.

The twin experiment performed using the NakL model was useful as a design for experiment

in a single neuron obtaining requirements on the frequency sampling and on the external

injected current. Moreover, we obtained nice estimations and prediction of both the observed

and unobserved state variables allowing us to complete the model and to explore the full

dynamics of the system.

However, twin experiment are based on the fact that we know the model generating

the data, a situation that is not possible in real data experiment in which the dynamical

model generating the system is unknown. Currently, in [12] statistical data assimilation

is performed on real data recorded from HVC neurons that play a crucial role in birdsong

system [6–8].

After the complete characterization of the biophysical properties of individual neurons,

the main goal is to build a model of the whole HVC nucleus in the avian song system

where thousands of neurons are interacting through synapses [6–8]. A relevant problem in

building such large network resides on the missing information about the connectivity of

the network. In fact, due to the sparseness of the data it is not possible to infer the exact

geometry of the network. Previous attempt to build such model (see [7]) are based on several

hypothesis which can be questionable, and the testing of its validity requires very difficult

experimental techniques [6]. In this framework, the statistical data assimilation methods

are very promising to furnish the criteria to require which type of measurements we need

to infer the connectivity of the network and then to complete the model and to test it with

the prediction metrics.
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FIG. 1. (Top panel) The chaotic injected current used to stimulate the neuron of the NaKL model.

(Bottom panel) Membrane potetial measured in twin experiment.
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FIG. 2. Action level values over increasing values of Rf = {Rf0α
β}, where α = 2, β = 0, 1, . . . , 30,

Rf0 = 10−3. Continue this process until the lowest action level path X0 produces a A0(X
0) near

expected value, which can be identified from our knowledge of measurement noises. With our

choice of parameters the limiting value of the action is 1.
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Parameter name Parameter value in the data Estimated value of the parameter

gNa 120 mS/cm2 108.3718 mS/cm2

ENa 50 mV 49.98036 mV

gK 20 mS/cm2 21.10989 mS/cm2

EK -77 mV -77.09009 mV

gL 0.30 mS/cm2 0.302808 mS/cm2

EL 54 mV -54.04558 mV

θm = θτm -40 mV -40.23915 mV

σm = στm 15 mV 14.93786 mV

τm0 0.1 ms 0.094947 ms

τm1 0.4 ms 0.411992 ms

θh = θτh -60 mV -59.43191 mV

σh = στh 15 mV 14.24096 mV

τh0 1 ms 1.032077 ms

τh1 7 ms 7.760693 ms

θn = θτn -55 mV -54.5152 mV

σn = στh 30 mV 30.49059 mV

τn0 1 ms 1.059519 ms

τn1 5 ms 4.965534 ms

TABLE I. Parameter estimation for the NaKL model. The estimation are really close to the value

of the parameters entering into the model generating the data.
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FIG. 3. Results for the observed membrane potential. The blue line represents the estimated

membrane potential during the assimilation window (3000 data points), whereas the prediction

and the true data are represented by the green and red line, respectively. As can be seen by the

figure, the prediction are excellent indicating the validity of the data assimilation methods.
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FIG. 4. Results for the unobserved gating variables of the sodium channel. The blue lines represent

the estimated gating variables m (top panel) and h (bottom panel) during the assimilation window

(3000 data points), whereas the prediction and the true data are represented by the green and red

line, respectively. Also in this case the predictions are excellent indicating the validity of the data

assimilation methods.
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FIG. 5. Results for the unobserved gating variables of the potassium channel. The blue lines

represent the estimated gating variables n during the assimilation window (3000 data points),

whereas the prediction and the true data are represented by the green and red line, respectively.

Also in this case the predictions are excellent indicating the validity of the data assimilation

methods.
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