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Durante il mio periodo di soggiorno di ricerca presso il Department of Computer Science della Middlesex
University, ho portato avanti il programma di ricerca focalizzato sull’Unsupervised detection of indoor users
habits and deviations for AAL.

L'attivita di ricerca e stata supervisionata dal prof. Juan Carlos Augusto ed ha visto lo sviluppo di un
simulatore di tracce di mobilita a partire da indicazioni di massima sulle attivita svolte dall’utente durante
I'arco della giornata.

L'utente di riferimento € una persona anziana, aspetto tipico dello scenario Ambient Assisted Living. In
guesto scenario, I'ambiente, dotato di sensori installati in maniera trasparente e non invasiva, assiste
I'utente nella sua vita quotidiana e lo monitora sul lungo periodo in modo da riconoscere eventuali
alterazioni delle sue attivita abituali. Queste alterazioni possono essere sintomo di declino fisico o cognitivo
e quindi il rilevamento dei segnali di cambiamento risulta di fondamentale importanza per I'individuazione
di tale pericolo.

Per poter preservare la privacy dell’'utente nel modellare il sistema di monitoraggio non e possible pensare
ad una raccolta dei dati di baseline in maniera invasiva (mediante uso di telecamere o annotazione
puntuale su diario). Per questo motivo si e sviluppato un simulatore che genera delle tracce di movimento
dell’utente e personalizzabili in base a possibili cambiamenti di abitudini.

E’ proprio I'informazione di mobilita all’interno della propria abitazione la base per lo sviluppo di algoritmi
di user habits detection. Questo & confermato da vari studi nello stato dell’arte [1,2,3] e da lavori pubblicati
precedentemente dal sottoscritto [4,5]. In quest’ottica e stato anche sviluppato un algoritmo di
localzzazione basato su beacon Bluetooth Low Energy installati in un ambiente di test durante il periodo di
ricerca.

Dai dati di potenza del segnale ricevuto da un nodo mobile (smartphone o smartwatch dotato di antenna
BT4.0) si & sviluppato un algoritmo range-based che, partendo dalla tecnica Min-Max, attenua il classico
rumore di multipath fading utilizzando un filtro basato sulla stigmergy.

Il lavoro prodotto in questo campo e stato sottomesso ed accettato a conferenza internazionale ed allegato
alla presente relazione.

Pisa, 10/07/2015

Firma

CHB (&



Bibliografia

[1] Mahmoud, Sawsan M., Ahmad Lotfi, and Caroline Langensiepen. "Behavioural pattern identification in a
smart home using binary similarity and dissimilarity measures." Intelligent environments (IE), 2011 7th
international conference on. IEEE, 2011.

[2] Mahmoud, Sawsan M., Ahmad Lotfi, and Caroline Langensiepen. "Abnormal behaviours identification
for an elder's life activities using dissimilarity measurements." Proceedings of the 4th International
Conference on PErvasive Technologies Related to Assistive Environments. ACM, 2011.

[3] Lotfi, Ahmad, et al. "Smart homes for the elderly dementia sufferers: identification and prediction of
abnormal behaviour." Journal of Ambient Intelligence and Humanized Computing 3.3 (2012): 205-218.

[4] Barsocchi, Cimino, Ferro, Lazzeri, Palumbo, and Vaglini. "Monitoring elderly behavior via indoor
position-based stigmergy." Pervasive and Mobile Computing, Elsevier (2015)

[5] Barsocchi, Cesta, Cortellessa, Palumbo. "Monitoring User Position in the GiraffPlus AAL Environment."
2015 IEEE International Instrumentation and Measurement Technology Conference (I12MTC), IEEE, 2015



A stigmergic approach to indoor localization using
Bluetooth Low Energy beacons

Filippo Palumbo!*, Paolo Barsocchi?, Stefano Chessa', Juan Carlos Augusto®

"Department of Computer Science, University of Pisa, Pisa, Italy
’Institute of Information Science and Technologies, National Research Council, Pisa, Italy
3Department of Computer Science, Middlesex University, London, United Kingdom

Abstract

Localization of people and devices is one of the main
building blocks of context aware systems since the user po-
sition represents the core information for detecting user’s
activities, devices activations, proximity to points of in-
terest, etc. While for outdoor scenarios Global Position-
ing System (GPS) constitutes a reliable and easily avail-
able technology, for indoor scenarios GPS is largely un-
available. In this paper we present a range-based in-
door localization system that exploits the Received Sig-
nal Strength (RSS) of Bluetooth Low Energy (BLE) beacon
packets broadcast by anchor nodes and received by a BLE-
enabled device. The method used to infer the user’s position
is based on stigmergy. We exploit the stigmergic marking
process to create an on-line probability map identifying the
user’s position in the indoor environment.

1. Introduction

Localization of people and devices is one of the main
building blocks of context aware systems [1, 7] since the
user position represents the core information for detecting
user’s activities, devices activations, proximity to points of
interest, etc. It has proven useful in different scenarios span-
ning from single and multiple object tracking [16], to hu-
man behavior analysis [2], and activity detection and recog-
nition [15]. While for outdoor scenarios Global Position-
ing System (GPS) constitutes a reliable and easily available
technology, for indoor scenarios GPS is largely unavail-
able. For this reason, several systems have been proposed
for indoor localization. Each solution has advantages and
shortcomings, which, in most cases, can be summarized in
a trade-off between precision, installation complexity (thus
costs), and privacy issues. In practice, although indoor lo-
calization has been a research topic for several decades,

there is still not a de-facto standard. Among the possible
solutions presented in the last years [12], wireless sensor
network- (WSN-) and WiFi-based techniques are the most
promising, since they overcome the privacy issues related
to vision-based positioning systems.

In the case of WiFi indoor positioning, the so-called fin-
gerprinting method based on WiFi signal strength observa-
tions is generally used. It is a two-phases process: in the
first off-line phase some characteristics of the environment
are measured at different locations and the data is stored
along with a spatial reference information, in the second on-
line phase the same parameters are measured by an hand-
held device and the results are compared to the stored val-
ues. This method is very efficient if the environment is pre-
cisely surveyed and the devices accurately calibrated. How-
ever it presents several disadvantages, mainly due to the
required setup time, the costly signal strength system cal-
ibration in the off-line phase, and the high data volume to
be managed. Furthermore, any change in the configuration
such as moving a beacon or modifying the environment,
will imply creating a new database [17].

In the case of a mobile WSN-based fingerprinting sys-
tem, partial to complete updates are frequently necessary.
Because of this, when based on WSN technologies, indoor
localization systems mostly use range-based localization
methods. These systems exploit measurements of physi-
cal quantities related to beacon packets exchanged between
the mobile and the anchors (devices deployed in the envi-
ronment whose position is a priori known) [21]. In order
to guarantee a high localization precision, these systems
require dedicated hardware. This is a major drawback, in
particular for applications where low price and unobtrusive
hardware are required.

A possible solution, that overcomes the limits related to
the off-line phase of WiFi-based systems and the need of
dedicated hardware required by WSN-based solutions, is
represented by Bluetooth anchors broadcasting their pres-



ence in the indoor environment. As WiFi, this consumer
technology is largely available in personal and wearable de-
vices and as WSNSs, it can be pervasively deployed. In the
past years, practical issues mostly related to the lengthy
scan procedure, have limited the use of Bluetooth in lo-
calization and tracking applications. However, the recent
introduction of the Bluetooth 4.0 specification has poten-
tially addressed these problems by means of the Bluetooth
Low Energy (BLE, also known as Bluetooth Smart) subsys-
tem [3]. BLE devices are small, inexpensive and designed
to run on batteries for many months. It is expected that
many buildings will contain a high density of BLE devices
in the near future.

For these reasons, we present a range-based indoor local-
ization system that exploits the RSS of BLE beacon packets
broadcast by anchor nodes and received by a BLE-enabled
hand-held device. The method used to infer the position of
the user carrying the device is based on a technique success-
fully used in the field of motif discovery, called stigmergy.
This is a term derived from the research on the foraging
behavior of ants which communicate with each other ex-
changing information through the modification of the en-
vironment. Several works used this technique in order to
infer motifs in time series related to different fields, from
DNA and biological sequences [4] to intrusion detection
systems [8]. We exploit the stigmergic marking process to
create an on-line probability map identifying the user’s po-
sition in the indoor environment.

The paper is organized as follows: Section 2 surveys re-
lated work in the indoor localization area with a focus on
Bluetooth-based solutions, Section 3 describes the details
of the proposed solution from the hardware and algorith-
mic point of view, Section 4 shows the performance of our
approach, while concluding remarks are presented in Sec-
tion 5.

2. Related work

From a technological point of view, in order to build an
extensively used indoor localization system, it should ex-
ploit technologies largely available on commercial devices.
In this context WiFi and Bluetooth are the most promis-
ing. Most of existing approaches using WiFi are based
on fingerprinting of different statistical features extracted
from the received signal strength [13]. This method, how-
ever, presents several disadvantages due to long setup time,
costly calibration, and high data volume. Bluetooth, in-
stead, can be used for creating different approaches based
on the RSSI signal metric exploiting the possibility to de-
ploy a large number of battery-powered devices due to their
dimensions and cost.

Positioning systems based on pre-4.0 specification Blue-
tooth devices used various techniques, from proximity [11,
5] to trilateration [9, 22] and fingerprinting [6, 22]. How-
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Figure 1: Overall architecture of the proposed localization
algorithm.

ever, the time taken for a mobile handset to scan the nearby
Bluetooth beacons was a limiting factor. The specification
allows for a scan each ~10 seconds, during which time the
user’s position can considerably change. Consequently, po-
sitioning using old versions of Bluetooth has not proven
popular due to its latency. This problem is not present in the
BLE specification. Indeed, the standard itself incorporates
the notion of micro-location [3], which is an actual proxim-
ity feature. To date, the only study based on BLE devices is
the one proposed in [10], where authors analyze the appli-
cation of fingerprinting techniques on BLE RSS values.

From an algorithmic point of view, localization tech-
niques can be divided into two categories: range-free
and range-based. Range-free localization usually assumes
isotropic networks where the hop count between two nodes
is proportional to their distance. However, anisotropic net-
works are more realistic due to the presence of various
anisotropic factors in practice, e.g. irregular radio propaga-
tion, low sensor density, anisotropic terrain condition, and
obstacles which can detour the shortest path between two
nodes [23]. Range-based techniques, instead, assume that
the inter-node distances can be measured by ranging mod-
els. However, these models, usually based on RSS measure-
ments, suffer from the intrinsic ranging noise, which affects
the localization accuracy.

In this work we mitigate the noise of the model typically
used in range-based RSSI techniques [20] implementing a
stigmergic marking process. After a one-time channel char-
acterization, it releases a decaying mark that acts as fading
filter. The result of the algorithm is a probability map indi-
cating the position of the user.

3. The localization algorithm

The proposed solution is a modified version of a state-of-
the-art localization algorithm, namely Min-Max [14, 18]. It
exploits the features of the stigmergic process in order to
mitigate the deep multipath fades typical of BLE beaconing
technology. Figure 1 shows the various steps performed by
the algorithm. Each of these steps will be detailed in the
following subsections.
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Figure 2: Logarithmic fitting after calibration.

3.1. BLE beacons and One-Time Setup

The BLE beaconing system is a way to detect proximity
between BLE devices by means of received signal strength.
The first protocol in this sense was introduced by Apple in
the mid 2014 and was called iBeacon '. iBeacon uses Blue-
tooth low energy proximity sensing to transmit a universally
unique identifier picked up by a compatible app or operat-
ing system. Lately, Radius Networks 2 has introduced an
open standard compatible with iBeacon technology called
AltBeacon 3. In our experimentation we used RadBeacon
X2 4 devices since their compatibility with both technolo-
gies.

As range-based technique, a one-time off-line calibra-
tion phase is performed (One-Time Setup in Figure 1). In
this phase, we measure the RSSI from a reference beacon
at predefined distances with steps of ~25 cm. For each step
of distance dg.s, 100 samples are collected, then outliers
are removed (any sample that is more than 2 times the stan-
dard deviation is considered an outlier) and we compute the
mean value [igcr rssr on the resulting dataset. On the ob-
tained couples (drey, fires,RSS1). @ logarithmic interpola-
tion is applied in order to fit data with the nominal distance-
power loss law:

RSSI = —(10nlog;yd — A) (1)

From this fitting process, the parameters of the channel A
and n are obtained. Figure 2 shows the resulting semi-log
plot of the fitting line where n represents the slope and A
the intersection with the RSSI axes.

3.2. The on-line stigmergic map

The first step of the on-line phase of the algorithm is the
ranging. The proposed solution estimates a position with
a frequency of 1Hz. The RSSIs collected from the beacons

Uhttps://developer.apple.com/ibeacon/
Zhttp://www.radiusnetworks.com/

3http://altbeacon.org/
“http://store.radiusnetworks.com/products/radbeacon-x2

deployed in the environment are averaged and the computed
mean is used to retrieve an estimation of distances between
the mobile node and each beacon. This is done using the pa-
rameters A and n computed in the off-line phase (inverting
the Equation 1).

In the second step, a Min-Max-like algorithm is applied
on the extracted distances. MinMax [14, 18] is a very popu-
lar localization algorithm, in which the mobile node creates
an association between each beacon position and the dis-
tances previously estimated. The mobile node draws a pair
of horizontal lines and a pair of vertical lines around each
beacon, in such a way that the minimum distance between
each line and the beacon position equals the estimated node-
beacon distance. The node localizes itself in the center of
the rectangular area obtained by considering the innermost
horizontal and vertical lines (the lowest and highest among
all the horizontal lines placed above and below each bea-
con, respectively), and the leftmost and rightmost among
the vertical lines placed on the right and left hand side of
each beacon.

In the proposed approach, instead of estimating the out-
put position as the center of the rectangular area obtained,
we apply the stigmergic process on the output area from
the Min-Max in order to overcome the deep multipath fades
typical of the BLE beaconing technology. Experimental
results in [10] have shown that BLE beacons present up
to 30dB drops in the signal strength received by a mobile
node moving towards them across just 10cm. This behavior
is present in all the different radio channels used by BLE
and at different spatial positions. If the mobile node does
not collect enough measurements while computing its po-
sition, it will base its estimate on a few sharp-fade read-
ings, resulting in wrong output coordinates. For this rea-
son, we adopt the principles of the marker-based stigmergy,
which, in social insect colonies, employs chemical mark-
ers (pheromones) that the insects deposit on the ground in
specific situations. Multiple deposits at the same location
aggregate in strength. Members of the colony who perceive
pheromones of a particular flavor may change their behav-
ior. Pheromone concentrations in the environment disperse
in space and evaporate over time, because pheromones are
highly volatile substances.

In the proposed marking process (Stigmergy block in
Figure 1), a mark structure is constructed starting from the
Min-Max resulting area and it is released in the spatial en-
vironment, thus allowing the accumulation of marks. The
mark is released with intensity / and has the same size and
position of the Min-Max resulting area. At each step, the
mark evaporates and diffuses, meaning that at each step
its intensity decreases by a percentage € (called evapora-
tion) and becomes wider towards adjacent positions with a
constant diffusion rate d € [0,1] (in this work we choose
e = 10% and d = 0.3). Hence, an isolated mark after a



Figure 3: The stigmergic map during the marking process
(square: ground truth, cross: stigmergic output, circle: Min-
Max output).

certain time tends to disappear. The time that a mark takes
to disappear is longer than the period used by the system to
release a new mark. Indeed, if the mobile node is still in
a specific position, new marks will superimpose on the old
marks, thus increasing the intensity of the stigmergic map
in that point. If the node moves to other locations, consec-
utive marks will be partially superimposed and intensities
will decrease with time without being reinforced.

At each step, after a new mark is released, the proposed
algorithm creates a stigmergic map that is the sum of all the
still existing marks released in the previous steps and the
mark released in the current step. Afterwards, the widest
area with maximum intensity is computed and the resulting
output (z,y) is represented by its centroid. Figure 3 shows
the stigmergic map in a generic step of the marking process.
The square mark represents the ground truth point, while
points marked with cross and circle represent the output of
the proposed system and the classic Min-Max algorithm re-
spectively. the figure also shows the corresponding output
areas, marked with black solid line for the stigmergic output
and with white dotted line for Min-Max. It can clearly be
seen how the presence of previous marks in the stigmergic
map mitigates the multipath fade effect of the BLE tech-
nology that pushes the Min-Max algorithm to estimate an
erroneous position.

4. Experimental results

In this section we present the experimental scenario.
Since our aim is to evaluate the possibility to use commer-
cially available BLE devices for indoor localization in small
environments, we chose to deploy 8 Radbeacon X2 devices
in a 6m x 6m office. Figure 5 shows a map of the office
with the positions of the deployed sensors and the reference
points used for the evaluation.

1 L :

Figure 5: The map of the deployed beacons and the ordered
reference points used for the experimentation.

The presence of office furniture influences the propa-
gation of the beaconing signal as highlighted in Figure 6,
where the RSSIs collected from one beacon in the consid-
ered reference points are shown. It can be seen that furniture
creates noticeable shadow zones that, together with the typ-
ical multipath fading effect of the chosen technology, make
the localization task non-trivial.

. Occupied cell

Beacon position

Figure 6: The map of the received signal strengths for one
of the deployed beacons.

We performed two measurement assessments in order to
evaluate how the performance changes with respect to the
number of deployed sensors. For each test, an actor, holding
a phone at 1.5m from the floor, performed a walk through
44 reference points numbered and marked on the floor, stop-
ping 5 seconds on each point. This in order to reproduce the
experiment in a controlled way. A mobile application was
used to collect the ground truth, allowing the actor to mark
his actual position during the trajectory performed (num-
bered reference points in Figure 5). In the first assessment,
4 beacon were used (colored in green in Figure 5), while in
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Figure 4: The resulting CDF for the a) 4 beacons setup and b) 8 beacons setup. ¢) The box-and-whisker plot of the errors’

statistics for each reference point.

the second one all the 8 beacons were used. The beacons
were placed at 3m from the floor and set-up with a transmit
power of -16dBm and an advertisement rate of 3Hz in or-
der to reduce the power consumption (battery life up to 18
months with the current settings). Figures 4a and 4b show
the obtained results in terms of accuracy. This is the classi-
cal performance measurement for localization systems, it is
based on samples of the distance between the point where
the system thinks the user is and the point where the user
really is [19]. We define the error € (equation 2) as the eu-
clidean distance (in two dimensions) between the ground
truth point (x,., y,-) and the coordinates estimated by the sys-
tem (x, ).

e= V(@ — 2+ (yr —y)? 0)

The Cumulative Distribution Function (CDF) of ¢ is the

probability that the localization error takes a value less than
or equal to e meters and it is defined in equation 3.

F(e) = P(e<e) 3)

We compared our system with the original Min-Max al-
gorithm and with two “dummy” systems, the first one giv-
ing as constant output the center of the room, and the sec-
ond one implemented as a random position estimator (uni-
form distribution of estimates over the entire area). Results
show that in 75% of the cases the localization error is lower
than 1.80m compared with the 2.75m of error obtained with
Min-Max, the 2.43m of error with first dummy system (con-
stant), and the 3.37m of error with the second dummy sys-
tem (uniform). This can be considered a promising result,
taking into account the difficulties related to small environ-
ments and the presence of obstacles. Indeed, as shown in the
box-and-whisker plot in Figure 4c, the results are strongly
influenced by the errors obtained in the points most affected
by the shadowing effect shown in Figure 6 (see points 19
and 42 as good examples). Another outcome is that, in-
creasing the number of beacons, the overall results of our
algorithm slightly degrade. This is due to the increased
number of signal received by the mobile node together with
their multipath fadings. Increasing the number of beacons
in such a small area does not represent a scalability factor,



since we are interested in reducing the required number of
beacons. The Min-Max algorithm, instead, improves his
performance due to its well known tendency to shift posi-
tion estimates towards the center of the network [18], thus
limiting the estimation error to half of the room side (it be-
haves as the first dummy system). In this case we obtain
a third quartile of 2.01m compared with the 2.31m of third
quartile error obtained by Min-Max.

5. Conclusions

In this paper we propose a range-based indoor localiza-
tion technique that uses the received signal strength of Blue-
tooth beacons. We investigate the possibility to opportunis-
tically exploit the presence of BLE beacons for localiza-
tion purposes, since their presence is supposed to become
more and more pervasive in the near future. In this regard,
we show that the technology is ready to be further used.
We also prove that the stigmergic approach presented is a
promising solution to mitigate multipath fading and shad-
owing effect of BLE beaconing.
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