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In this report we briefly describe the analysis developed during the three weeks spent by P.V. at the
Turku Centre for Quantum Physics (TCQP - Department of Physics and Astronomy of the Turku
University, Finland) in the framework of the CNR-stm program mentioned in the title. Besides
highlighting the obtained results, we also describe the research lines that have been identified as
possibly leading to further advancements in our understanding of the quantum measurement process.

I. INTRODUCTION

An open quantum system (OQS) is a quantum system
Γ (with Hilbert space HΓ), interacting with an equally
quantum environment Ξ (with Hilbert space HΞ). The
total system Ψ = Γ∪Ξ has Hilbert space HΨ = HΓ⊗HΞ.

The dynamics of OQS has recently emerged as a crucial
topic in the study of quantum devices that require a con-
trolled action on their components, due to the fact that
such action is implemented by apparatuses playing the
role of quantum, albeit ”big”, environments. The specific
attention consequently payed to the quantum evolution
of a system interacting with its macroscopic environment
has made clear that it is indeed in the peculiarities of one
such evolution that the most debated issues in the the-
ory of quantum mechanics might find their solution. This
is the case, in particular, of what is usually dubbed as
emergence of classicality, i.e. the mechanism that makes
us to observe a classical reality, despite the fundamental
laws of physics being quantum mechanical.

The idea that the emergence of classicality be related
with the peculiar features of the quantum measurement
process already appears in the very first discussions on
the foundations of quantum mechanics. However, tak-
ing apart the neverending diatribe between different in-
terpretations of such theory, the idea has been given a
formal content only some decades ago, after the defini-
tion of proper mathematical to ols for the analysis of the
OQS dynamics. In fact, it is nowadays recognized that a
quantum measurement is a dynamical process involving a
principal system Γ (the observed object) and its environ-
ment Ξ (the measuring apparatus), and that the original
scheme w proposed by von Neumann[1–3] for describing
quite a specific type of measurement in terms of the uni-
tary propagator relative to the isolated system Ψ = Γ∪Ξ,
can indeed be replaced by a more general treatment,
where completely-positive trace-preserving (CPTP) dy-
namical maps are used for analysing the evolution of
Γ[2, 4]. The latest developments in the field have made it

clearer, though not unanimously accepted, that we expe-
rience a classical reality due to the continuous interaction
between each microscopic component of any physical sys-
tem and its environment, to be considered macroscopic
as far as it contains ourselves as observers. The above
argument, and its several formal expressions, still leaves
two fundamental questions open:
i) why should the infinitely many different types of in-

teraction between Γ and Ξ give always rise to a measure-
like dynamics, and
ii) why different observers, even if extracting informa-

tion from different sections of Ξ, actually see the same
world.

In order to better grasp the meaning of the above ques-
tions and analyse a phenomenon recently proposed[5]
for providing them with a formal answer, namely the
”quantum darwinism”, in Sec. II we describe what is
usually meant by measure-like dynamics, in Sec. III we
show how quantum darwinism can emerge as a generic
phenomenon, both from an information-theoretic and a
more physical viewpoint, and in Sec. IV we propose a
way of understanding such generality in the framework
of a parametric description of the quantum measurement
process.

II. MEASURE-LIKE DYNAMICS

Let us consider the measurement process originally in-
troduced by von Neumann[1] and later characterized by
Ozawa[6] under the name of conventional measuring pro-
cess of non-degenerate sharp observables. Its initial step
corresponds to a unitary evolution of Ψ that is deter-
mined, in the so called standard model [2], by the unitary

propagator Vt ≡ e−itĤΨ with

ĤΨ = g ÔΓ ⊗ ÔΞ + ÎIΓ ⊗ ĤΞ , (1)

where g is the coupling constant, ÔΓ is the hermitian
operator on HΓ associated to the measured observable,
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while ÔΞ is the operator on HΞ, conjugate to the one
that is usually referred to as the pointer ; moreover, ĤΞ

acts on Ξ only, ÎIΓ is the identity operator on HΓ, and
we have set h̄=1.

An essential assumption in the conventional measur-
ing process is that the initial state of Ψ be separable,
|Ψ(0)〉 = |Γ〉 ⊗ |Ξ〉, so that the result of the measure can
be ascribed to the system Γ in the pure state |Γ〉. Writing
Γ =

∑
γ cγ |γ〉 with {|γ〉}Γ the HΓ-orthonormal basis of

the ÔΓ eigenstates, ÔΓ|γ〉 = ωγ |γ〉, from Eq.(1) it follows

|Ψ(t)〉 = Vt|Ψ(0)〉 =
∑
γ

cγ |γ〉 ⊗ |Ξγ(t)〉 (2)

with

|Ξγ(t)〉 ≡ e−itĤ
γ
Ξ |Ξ〉 , (3)

and

Ĥγ
Ξ ≡ g ωγÔΞ + ĤΞ . (4)

Given Eq.(2) the reduced density matrix for the appara-
tus reads

ρΞ(t) =
∑
γ

|cγ |2 |Ξγ(t)〉〈Ξγ(t)| . (5)

What characterizes Eq.(2) as a measure-like evolution of
Ψ, besides the initial separable state, is the existence of
the basis {|γ〉}Γ such that Eqs.(2)-(4) hold. This condi-
tion, trivially ensured in the standard model that con-
tains only one operator ÔΓ, does not generally charac-
terize the interaction between Γ and Ξ: in fact, one such
interaction might well involve several non-commuting op-
erators on Γ, implying the non-existence of a basis of
common eigenvectors, and therefore the impossibility of
defining Ĥγ

Ξ and obtain |Ξγ(t)〉 as in Eq.(3).
On the other hand, it is just the appearance of the

states |Ξγ(t)〉, whose γ-dependence establishes a one-to-
one correspondence with the states |γ〉 and the coeffi-
cients cγ , that allows one to recognize, in Eq.(2), the
evolution capable of returning an outcome ωγ , with prob-
ability |cγ |2; in fact, this is obtained via the Ξ-positioning
into the state |Ξγ(t)〉, for any time t > τd, where τd is the
time after which decoherence is observed in Γ, with re-
spect to the basis {|γ〉}Γ (see Ref. [7] for a more detailed
discussion of the role of decoherence in the measurement
process).

III. QUANTUM DARWINISM IS GENERIC

A. an information-theoretic viewpoint

Let us now concentrate on the questions i)-ii) raised in
Sec. I. Referring to a recent paper by Brandao, Piani and
Horodecki [8], we rephrase their Theorem 1. as follows:

- consider a system A with an environment B, on its own
made by a number of subsystems Bi, i.e.
B = ∪ni Bi;
- let the initial state of A ∪ B, |AB(0)〉, evolve accord-
ing to an utterly generic physical dynamics |AB(t)〉 =
Ut|AB(0)〉, with Ut unitary ∀t;
- choose a number 0 < δ < 1:

• it always exists a system BS ≡ ∪i∈SBi with |S| ≥
n(1−δ), i.e. a subsystem of B made of a selection of
at least (n−nδ) parts of it, such that the dynamics
of each Bj ∈ BS tends to that corresponding to a
measure-like evolution when n goes to infinity. The
measured quantum observable regards the system
A, and it is the same for all the Bj in BS .

This is formally expressed by the relation

||Λj − Ej ||� ≤ 3d2
A

(
ln(2) log(dA)

nδ3

) 1
3

(6)

where || ||� is a norm (the diamond-norm) that can be
used for quantifying the difference between CPTP dy-
namical maps, dA is the dimension of HA, while the
CPTP maps Λj and Ej define two different reduced dy-
namics for Bj , according to

Λj [ρBj (0)]t = TrA∪B\Bj

[
Ut|AB(0)〉〈AB(t)|U†t

]
(7)

and

Ej [ρBj (0)]t =
∑
γ

|cγ |2|Bγj (t)〉〈Bγj (t)| , (8)

where ρBj (0) = TrA∪B\Bj |AB(0)〉〈AB(0)|. Notice that
while Λj follows from any generic global evolution, Ej
specifically corresponds to a measure-like one, as seen by
comparing Eq.(8) with Eq. (5).

The above result is obtained, discussed and interpreted
in Ref. [8] by an information-theoretic approach that,
while ensuring the beauty of a most general picture,
does not immediately translate into the physical language
needed for understanding its possible consequences on
the actual functioning of quantum devices. To this pur-
pose we aim at formally relating Theorem 1. of Ref. [8]
with the concept of quantum darwinism as introduced by
Zurek in Ref. [5], and the description of quantum mea-
surements recently proposed in Refs. [9, 10]. In the next
sub-section we show how, after setting the problem as
suggested by the approach sketched in Sec. II, a more
physical understanding naturally emerges.

B. a more physical viewpoint

The first difference that one notices when comparing
Sec. II and Sec.IIIa is that, despite both concern a com-
posite bipartite system, Γ ∪ Ξ and A ∪ B respectively,
only in the former case the notion of observed system
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(Γ) and measuring apparatus (Ξ) is explicit. This is not
a moot point, as it goes together with the fact that the
initial state of Γ and Ξ must be taken pure, while no such
hypothesis is made on A and B.

This observation gives us a clue on the role played by
the subsystems A, B, and ∆ ≡ B\BS of Sec. IIIa as
compared with that of Γ and Ξ in Sec. II: in fact, setting

Ψ = Γ ∪ Ξ = A ∪B , (9)

Γ = A ∪∆ , (10)

Ξ = B\∆ = BS , (11)

we understand ∆ as the system that purifies the initial
state of A, thus guaranteeing that the observed system
Γ = A ∪ ∆ is in the pure state |Γ〉 at t=0. In other
terms: A cannot be considered as an observed system, at
least because it is not initially prepared in a pure state.
However, there might exist a subsystem ∆ in B, such
that the state of A ∪∆ at t = 0 is pure, and can hence
be considered as the initial state of the observed system
in a measurement process. Notice that the parameter δ
that defines the maximum number nδ of subsystems Bi
forming BS , i.e. those that do not obey the inequality
(6), turns out to be related with the dimension of the
Hilbert space of the ancillary system ∆. Therefore, we
interpret the evidence that a small δ requires a large n
for the inequality (6) to be meaningful, as follows: any
dynamics of an OQS is doomed to be that of an observed
system if the Hilbert space of its environment is very
large, ensuring nδ3 � 1 for any finite δ < 1.

IV. ANY PHYSICAL EVOLUTION OF AN OQS
WITH A MACROSCOPIC ENVIRONMENT IS A

QUANTUM MEASUREMENT PROCESS

Inspired by the above reasoning, while closely retracing
the derivation of Theorem 1. in Ref.[8], we propose a
possible demonstration of this Section’s title according
to the following guidelines.

Consider the system Ψ, made of Γ = A ∪∆ and Ξ =
B\∆, and assume it is initially prepared in the separable
state |Γ〉⊗ |Ξ〉. As discussed in the previous section, and
given that Ψ is isolated, this assumption can always be
made by properly choosing ∆. Notice, however, that B
and ∆ must be substantially different for Γ and Ξ to keep
their role of principal system and environment.

Consider the Schmidt decomposition of |Ψ(t)〉 at some
time t

|Ψ(t)〉 =
∑
γ

cγ |γ〉 ⊗ |Ξγ〉 , (12)

where we have dropped the time-dependence of cγ , |γ〉,
and Ξγ , for the sake of a lighter notation: We define the

two related states

|Ψ(t)〉max =
∑
γ

cγ |γ〉 ⊗ |Ξγ〉max , (13)

|Ψ(t)〉sep =
∑
γ

cγ |γ〉 ⊗ |Ξγ〉sep , (14)

where

|Ξγ〉max =
1

m

m∑
k=1

⊗dΞ

l=1|ξ
γ
k 〉l , (15)

|Ξγ〉sep = ⊗dΞ

l=1|ξ
γ〉l , (16)

with m ≤ dΞ and l〈ξγk |ξ
γ
k′〉l = δkk′ . The corresponsing

density matrices for any subsystem Bj of Ξ are

ρj =
∑
γ

|cγ |2
[
TrΞ\Bj |Ξ

γ〉〈Ξγ |
]
, (17)

ρjmax =
∑
γ

|cγ |2
1√
m

m∑
k=1

|ξγk 〉j j〈ξ
γ
k | , (18)

ρjsep =
∑
γ

|cγ |2|ξγ〉j j〈ξγ | , . (19)

In the state (19) we recognize the structure (5) expected
for a measure-like dynamics, where Bj is the apparatus,
and the operator for the measured observable is any her-
mitian ÔΓ with eigenvectors the elements of the Schmidt
basis, {|γ〉}Γ in Eq.(12), at time t . Therefore, we could
accomplish our goal were we able to demonstrate that ρj

gets the structure of ρjsep as Ξ becomes macroscopic. No-
tice that, as neither the basis {|γ〉}Γ nor the coefficients
cγ depend on j, the above demonstration would provide
an answer not only to question i) but also to question
ii), of Sec. I. On the other hand, the time-dependence of
the Schmidt basis used in Eq.(12) is somehow puzzling,
as it suggests that the observable being measured is dif-
ferent at different times, which is not a known feature of
quantum darwinism, so far.

V. FURTHER DEVELOPMENTS

Without entering into the formal structure of the
demonstration mentioned in the previous section, we
end this report by briefly describing its guidelines and
main ingredients. We first focus upon the above men-
tioned difference between ρj and ρjsep, and understand
that it is now necessary to choose one, amongst the
several, definition of distance d(ρ, ρ′) between any two
quantum states. We then consider that our interest is
in evaluating d(ρj , ρjsep) when the the dimension of HΞ,
with Ξ = ∪i∈SBi, goes to infinity. This suggests us
to make use of a recently proposed[11] parametric rep-
resentation with environmental coherent states, which
is specifically designed for studying OQS whose envi-
ronment needs being considered through its quantum-
to-classical crossover. By this formalism, the reduced
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density matrix of the environment is studied in terms
of its Husimi function, which is a positive and normal-
ized distribution χ2(Ω) on the differentiable manifoldM,
whose definition follows from the construction of the en-
vironmental coherent states |Ω〉. The distance between
states can thus be analysed by referring to the Monge
distance[12] between distributions, as done for studying
the decoherence process in Refs [9, 13]. As a further es-
sential ingredient of our treatment we recognize the con-
cept of ”classical equivalence”, as introduced by Yaffe in
Ref. [14] and specifically used in describing the quantum-
measurement process in Ref. [10], and its relation with
the existence of a global environmental symmetry, such as
that enforced in Ref.[15] for studying the specific model
there considered.

The reasoning behind the demonstration we are work-
ing on is the following: the Monge distance between
χ2(Ωj) and χ2

max(Ωj) is shown to vanish as Ξ becomes
macroscopic, and, in the very same limit, the states rep-
resented by χ2

max(Ωj) and χ2
sep(Ωj) become classically

equivalent, due to their deriving from global environmen-
tal states featuring the same symmetry. Therefore, the
generic distribution χ2(Ωj) has the same classical limit
of the one, χ2

sep(Ωj), corresponding to a measure-like dy-
namics of Ψ.

As a final comment we add that the result we aim
at demonstrating in general, as described above, has

been recently confirmed in the specific model treated in
Ref. [16], thus reinforcing our confidence in the possibility
of accomplishing our goal.

VI. ADDITIONAL INFORMATION ON THIS
CNR-STM PROGRAM

The material presented in this report resulted from
the joined consideration of the theory of quantum op-
erations, quantum measurement process, and OQS dy-
namics, which has been made possible by a systematic
sharing of the personal expertise of Dr. Teiko Heinosaari,
Dr. Paola Verrucchi, and Prof. Sabrina Maniscalco, re-
spectively. On the other hand, the ideas expressed in
Sec.III took their present form thanks to discussions,
group-meetings, and department seminars, involving all
the members of the TCQP, that have positively charac-
terized the three weeks of this CNR-stm program. Al-
though the work here presented needs being finalized,
particularly as far as the demonstration mentioned in
Sec.IV is concerned, important aspects of the quantum
measurement process as an OQS evolution have already
been understood, and we plan to let this collaboration
continue well beyond the completion of this specific work.
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