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Abstract

We present three extensions to a base optimization model for a transit line

which can be used to strategically evaluate technology choices. We add to

the base model optimal stop spacing and train length, a crowding penalty,

and a multi-period generalization. The extensions are analytically solvable

by simple approximations and lead to meaningful insights. The significance

of the extensions is illustrated by means of an example in which two road

modes and two rail modes are defined by a set of techno-economical param-

eters. These parameters loaded in the base model yield dominance of road

modes for all but the largest demand levels. We consistently keep this set

of parameters for all models, and show how the break-even points between

road and rail modes progressively recede toward lower demand levels when

model refinements – not parameter changes – are applied.
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1. Introduction

Rapid transit is a key tool to sharply reduce environmental impacts of

transport in urban areas, and to improve access to employment and services

of lower income groups (Fulton and Replogle, 2014). Rapid transit consists

of bus rapid transit (BRT), light rail transit (LRT), metro, and commuter

rail. In recent years, several models have been put forward for the strategical

choice of transit technology (see e.g. Daganzo (2010), Tirachini et al. (2010b),

Estrada et al. (2011), Sivakumaran et al. (2014)). Here we extend in several

directions the model of Tirachini et al. (2010b) which becomes our base

model. In it the optimized variable is the frequency, the objective function

is the minimization of the sum of passenger and operator costs, and the

demand is assumed to be fixed in a single period. This model can be solved

analytically. We first extend the base model to account for optimal stop

spacing. We then add optimal train length and a crowding penalty. Finally,

we consider a two-period case and a multi-period generalization. In spite

of some notational complexity, the proposed extensions can be solved by

simple approximation schemes which provide some analytical insights into

the structure of optimal solutions. In particular, we find that the ratio of

optimal stop spacings among different modes follows a square root formula.

A crowding penalty moves away the optimal frequency from the minimal

values induced by the critical capacity. Road and rail modes handle crowding

in different ways. Road modes try to offer a higher frequency, whereas rail

modes leverage on both frequency and train lengths. The multi-period model

further increases the model realism when comparing different technologies.

The remainder of this paper is organized as follows. Section 2 contains the
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literature review which motivates our work. Section 3 presents mathematical

models and approximation schemes. Section 4 provides numerical analyses.

Some conclusions and insights are reported in Section 5.

2. Literature review

We first review relevant literature on microeconomic models of transit

systems in Section 2.1, and then the analytical models for transit network

design in Section 2.2. Finally, we present our approach in Section 2.3.

2.1. Microeconomic models

Jara-Dı́az and Gschwender (2003) review microeconomic models for the

operation of public transport, propose extensions, and compare models’ re-

sults. The authors extend the model of Jansson (1980), where demand is

fixed, by including the effect of vehicle size on operating costs and the influ-

ence of crowding on the value of in-vehicle time. The authors show how a

better characterization of user cost significantly increases optimal frequencies,

and alters key design variables of a transit system. Bruun (2005) introduces

a parametric cost model for BRT and LRT in order to compare these two

technologies for base and peak service hours in trunk lines. Both the demand

level and the shape of the demand profile determine operating costs. The

author observes that rail technology can accommodate demand variations

through the addition and removal of carriages from trains. According to cost

parameters representative of transit agencies in the US, the model finds LRT

to be increasingly attractive when demand is above 2000 spaces per hour.

In recent years, the effect of crowding on passengers’ value of time started

to attract some attention. Tirachini et al. (2013) review different literature
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threads related to crowding in public transport such as psychometric meth-

ods, engineering, economics, etc. Additional references are found in Qin and

Jia (2012), and Qin (2014). De Palma et al. (2015) critically review the liter-

ature on discomfort in mass transit, and propose a smooth approximation of

a piecewise linear penalty function for crowding. Implications of this crowd-

ing penalty for pricing, seating capacity, and scheduling are discussed in the

context of models for user and system equilibrium.

2.2. Analytical models for transit network design

The literature on structural transit analysis was initiated by Byrne (1975)

for radial lines, Newell (1979) for a hub-and-spoke network, and Vaughan

(1986) for ring and radial routes. In recent years the continuous approx-

imation literature has addressed the strategic evaluation of transit tech-

nologies. Daganzo (2010) studies structural characteristics of a transit sys-

tem for a square shaped urban area. The main assumption is that the

origin-destination flows are uniformly and independently distributed over the

square. The author acknowledges that this assumption penalizes the transit

system with respect to private car, but justifies this assumption since it sets a

higher bar for transit success. The transit lines follow a grid pattern and the

design variable is the length of stop spacing. In a central part of the square

the lines ensure double coverage. i.e. each stop is covered by North-South

and East-West lines. Outside this central part, the lines offer single coverage

and a hub-and-spoke scheme arises. A decision variable determines the ra-

tio between the area covered by double coverage, and the total service area.

Headway is the third decision variable of the model. The objective function

minimizes the sum of user and agency costs under a fixed demand. The user
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cost is the sum of access, waiting, transfer, riding, and egress times for an

average trip. The agency cost is the sum of fixed and variable costs of the

transit system normalized per trip. The non-linear model can be easily solved

by a grid search on the domains of the three variables. The author compares

road and rail rapid transit systems and concludes that BRT dominates LRT

and metro. This result is not surprising given the uniform demand assump-

tion. In fact, the derived formula for the critical load results in relatively low

values of transit occupancy, i.e. trains are not filled up.

Tirachini et al. (2010b) present models for a single transit line of fixed

length where the number of stops is given. Under fixed demand, the goal

of social welfare maximization is equivalent to the minimization of total,

user and operator, cost. Under elastic demand, two goals are modeled: the

maximization of operator’s profit and the maximization of social welfare. A

distinctive characteristic of this model is that the critical load is defined by

a specific parameter. Hence, this approach can synthetically model every

type of demand distribution, centripetal or uniform. Passenger costs related

to access, waiting, and in-vehicle times are finely represented. The authors

also provide an extension to numerically account for crowding costs. This

analysis is further expanded in Tirachini et al. (2010a) to a multi-period

radial network in a circular service area. Estrada et al. (2011) extend the

model of Daganzo (2010), and present a case study. The authors study a

rectangular shaped service area where line spacing can be greater than stop

spacing. The model is applied to a BRT system for Barcelona, Spain. An

idealized design is derived for the specific data and constraints of the case

study. A bound on the number of transit corridors is imposed because deci-
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sion makers are unwilling to commit too much road space to dedicated bus

lanes. This binding constraint prevents a more effective transit system and

induces high occupancy factors of buses at some critical points. It should

be noted that this model, as in Daganzo (2010), assumes uniform demand,

and it is therefore likely to underestimate critical loads under centripetal

demand. A detailed plan is drawn such that the structural main variables

are similar to those of the idealized design. Simulations are then performed

on this plan. Under the assumption of uniform demand, a good matching is

found between the simulated performances and those of the analytic model.

Results significantly differ under centripetal demand, which occurs in prac-

tice. This prompts the authors to suggest further work on this issue. Critical

occupancy factors of buses are not discussed under the simulated centripetal

demand. Badia et al. (2014) further extend the model of Daganzo (2010) to

cities with a radial street pattern.

Sivakumaran et al. (2014) present a continuous approximation model for

a trunk and feeder transit system. The authors aims at evaluating road and

rail transit technologies. They observe that the models of Daganzo (2010)

and Estrada et al. (2011) do not reflect hierarchical transit systems in which

rail transit is the backbone of a bus feeder network. In view of this, the model

accounts for multi-modal trips in a rectangular city. Demand is uniformly

distributed in the service area, and the objective function minimizes user and

agency costs, similarly to Daganzo (2010). The benefits of this multi-modal

transit model is illustrated through computational experiments. When access

occurs only by foot, i.e. there is no feeder service, ordinary buses and BRT

always dominate metro, which is never the optimal technology. Allowing
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a feeder service, both BRT and metro arise as optimal technologies in a

larger percentage of scenarios. These results highlight the critical role of

a feeder service for costlier technologies. The authors further expand the

model to account for changes in access due to transit oriented development

(TOD). They retain the uniform demand assumption for the whole service

area, but they assume that the demand associated to a transit station incurs

a smaller access time because of TOD. This model extension, however, does

not significantly alter previous results. This does not come as a surprise since

centripetal demand is not considered.

2.3. Proposed approach

The review of the literature highlights the relevance of several issues.

User values of time must be finely characterised (Jara-Dı́az and Gschwen-

der (2003), Tirachini et al. (2010b)), in particular crowding (Qin and Jia

(2012), Tirachini et al. (2013), Qin (2014), De Palma et al. (2015), and refer-

ences therein). Cost structure of different technologies is paramount (Bruun,

2005). Assumptions on demand distribution are crucial since rail transit sys-

tems arise when capacity at peak hour is an issue (see e.g. Vuchic (2005),

Vuchic et al. (2013)). Simple analytical models show broader applicability

than numerical approaches (Daganzo (2010), Estrada et al. (2011)). Analyt-

ical models can be also useful to environmental assessments (Griswold et al.

(2013), Griswold et al. (2014)). Because of this, we focus on the transit

line model of Tirachini et al. (2010b) which can easily accomodate different

assumptions on demand distribution and already provides a refined charac-

terisation of user costs. The extensions proposed in the following section

show how a transit line model can be made more realistic without losing
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analytic solvability, albeit through approximations.

3. Mathematical models and approximation schemes

This section presents mathematical models for the optimization of a tran-

sit line. Section 3.1 briefly reports a model from the literature where the op-

timized variable is the frequency, the objective function is the minimization

of the sum of passenger and operator costs, and the demand is assumed to

be fixed in a single period. This model, referred to as Model I, can be solved

analytically and is our base model which is extended in Section 3.2 to ac-

count for optimal stop spacing. Section 3.3 adds optimal train length, and a

crowding penalty. Section 3.4 considers a two-period case, and a multi-period

generalization. The new models are in general unsolvable by straightforward

analytical procedures, and this section also proposes analytically solvable

approximation schemes for them. Formulae are reported with the units of

measure at the first definition of their terms. The symbols are summarized

in Appendix A.

3.1. Model I: Base model

We report the notation and the formulae of the Tirachini et al. (2010b)

model with minor modifications to account for the extensions that we propose

in the following sections. In this model a transit line of length L with a stop

spacing equal to d serves a fixed bidirectional demand y. Passengers access

and egress the line by walking to and from the nearest stop at speed v. Hence

the average walking distance is d/4 at the origin and at the destination, the

average total walking length is d/2, and the average access and egress time
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of a passenger, ta, is

ta =
d

2v
d[km], v[km/h]. (1)

The cost of one unit of walking time is expressed by the parameter Pa, and

the access and egress cost borne by y passengers, Ca, is

Ca = Patay Pa[$/(pax-h)], ta[h], y[pax/h]. (2)

Waiting time depends on the frequency f , expressed as the number of

transit unit (TU) per hour. The concept of transit unit, see Vuchic (2005),

defines a set of n vehicles traveling physically coupled. For single-vehicle

operations, such as for road modes, n is equal to one, whereas for rail modes

n can be larger than one. Thus TU is the common concept for single vehicles

and trains used on a transit line. Passenger behaviour differs for low and

high frequencies. In the case of high frequencies, passengers arrive at stops

at a constant rate and the average waiting time tw can be modelled as a

fraction ε ≥ 1/2 of the expected headway equal to 1/f . Values of ε strictly

larger than 1/2 can model cases where the headways have a large variance. In

the case of low frequencies, passengers follow timetables and arrive at stops

w minutes before the expected time of service. The waiting time saved by

this behaviour still has a cost for the passenger but is discounted by a factor

µ less than one. The threshold frequency for these two behaviour regimes

is defined by f̄ , for example five transit units per hour, which results in a

headway of 12 minutes. The average waiting time of a passenger, tw, is

tw =


taw = w + µ

ε

f
if f < f̄

tbw =
ε

f
if f ≥ f̄ , f [TU/h], w[h]

. (3)
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We indicate by a the case where frequency is lower than f̄ , and by b otherwise.

The average cost of waiting borne by y passengers, Cw, is

Cw = Pwtwy Pw[$/(pax-h)], tw[h], y[pax/h], (4)

where Pw is the cost of one waiting time unit.

The average in-vehicle time of a passenger, tv, is modelled as a fraction

of the cycle time tc. The cycle time is the sum of the running time between

stations, including acceleration and deceleration phases, and the dwell time

for boarding and alighting. The running time is computed by assuming an

average running speed S, and thus R = 2L/S. The dwell time depends on

β, the boarding and alighting time per passenger of a TU, and the number

of passengers using a TU, given by y/f . The boarding and alighting time of

a TU depends on the number n̄ of vehicles per TU, which is a fixed value

in this model. We assume a boarding and alighting time per passenger of a

vehicle as equal to βv, thus β = βv/n̄.

The cycle time is

tc =
y

f
β +R f [TU/h], L[km], S[km/h], β[h/pax], y[pax/h]. (5)

The in-vehicle time is a fraction of the cycle time, equal to the ratio of the

average trip length, l, to the total distance covered by a TU in a cycle, 2L:

tv =
l

2L
tc l, L[km], tc[h]. (6)

Let Pv be the cost of one unit of in-vehicle time, then the cost of in-vehicle

time, Cv, is

Cv = Pvtvy Pv[$/(pax-h)], y[pax/h]. (7)
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Total passenger cost, Cp is

Cp = Ca + Cw + Cv Ca, Cw, Cv[$/h]. (8)

The operator cost is divided into three components. The first comprises

non-operational costs such as land and infrastructure capital costs. The

second depends on the fleet size and reflects crew and TU capital costs. The

third accounts for running costs such as fuel, tyres, lubricants, etc. Let c0 be

the fixed operator cost normalized for one hour, c1 be the unit operator cost

per TU-hour, and c2 be the unit operator cost per TU-km. The fleet size B

is the product of frequency and cycle time: B = ftc. The amount of TU-km

is the product of the commercial speed V and the fleet size. The commercial

speed is obtained by dividing the total length 2L, by the cycle time. Thus,

the amount of TU-km is V ×B = 2L/tc × ftc = 2Lf . The operator cost Co

is

Co = c0 + c1ftc + 2c2Lf c0[$/h], c1[$/(TU-h)], c2[$/(TU-km)],

f [TU/h], tc[h], y[pax/h]. (9)

The total cost Ctot is the sum of passenger and operator costs and it is a

function of the frequency:

Ctot(f) =

C
a
tot(f) f < f̄

Cb
tot(f) f ≥ f̄

, (10)

where Ca
tot(f) and Cb

tot(f) are defined as

C
(a,b)
tot (f) = Ca + Pwt

(a,b)
w y + Cv(f) + Co(f). (11)
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The frequency is constrained to be less or equal than a mode dependent value

fmax, and equal or larger than a value fmin which accounts for capacity as

follows. We denote by kv the capacity of a vehicle, and hence the capacity

K of a TU is equal to kv × n̄. Let αy be the largest load served by the line,

where α ≤ 1, and ν be a spare capacity factor, for example ν = 0.9, which

accounts for random fluctuations in demand. Thus, fmin and the feasible

range for frequency are

fmin =
αy

νK
≤ f ≤ fmax K[pax/TU], y[pax/h]. (12)

Model I minimizes (10) under constraints (12). To solve this problem,

first observe that Ca
tot(f) and Cb

tot(f) are both convex functions, hence their

unconstrained optimal solutions, faunc and f bunc, can be stated in closed form:

f (a,b)
unc =

√√√√Pwµ
(a,b)εy + Pv

lβ

2L
y2

c1R + 2c2L
, (13)

where µa = µ, and µb = 1.

Taking convexity into account, it is easy to compute the respective min-

ima under bound constraints, and then the optimal frequency f ∗ of Model I

is obtained by exploration of these minima.

3.2. Model II: Extension to optimal spacing

As reported in Section 4, modal comparison by Model I is sensitive to

the stop spacing d. Model I cannot be used directly to optimize over d since

its definition of cycle time is independent from d. Hence the minimization

of the total cost function (10) over d will lead to an unbounded problem. In

the following, we propose an extension, Model II, where optimal stop spacing
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considers TU kinematics. We assume that a TU leaves a stop accelerating

up to a speed Vmax, travels at this speed, and then decelerates to halt at the

next stop. Let ā and b̄ be the average acceleration and deceleration rates of

a TU. The incremental time loss caused by the acceleration and deceleration

phases is denoted by Ta, and is (see e.g. Vuchic and Newell (1968))

Ta =
Vmax

2

(
1

ā
+

1

b̄

)
Vmax[km/h], ā, b̄[km/h2]. (14)

Reaching the speed Vmax requires a stop spacing larger than a threshold value

dmin, which depends on acceleration and deceleration rates:

dmin =
V 2
max

2

(
1

ā
+

1

b̄

)
Vmax[km/h], ā, b̄[km/h2]. (15)

We add to the standing time a fixed component td, which accounts for the

opening and closing of doors, and we denote by Tl the lost time for acceler-

ation, deceleration, and door opening and closing:

Tl = Ta + td Ta[h], td[h]. (16)

Since the number of stops is equal to 2L/d, the new cycle time, tc2, is

tc2 =
y

f
β +

2L

d
Tl +

2L

Vmax
y[pax/h], f [TU/h], β[h/pax],

d, L[km], Tl[h], Vmax[km/h]. (17)

The cycle time impacts on both passenger and operator costs. Passenger

in-vehicle cost, Cv2, becomes

Cv2(f, d) = Pv
l

2L
tc2y Pv[$/(pax-h)], l, L[km], tc2[h], y[pax/h]. (18)

The updated total passenger cost, Cp2(f, d), is now a function of both f and

d:

Cp2(f, d) = Ca(d) + Cw(f) + Cv2(f, d). (19)
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The varying stop spacing requires a disaggregation of the fixed infrastruc-

ture cost into two components: c0l, the fixed hourly cost of the line, and c0s,

the fixed hourly cost of a stop. Thus, the updated operator cost, Co2, is a

function of both f and d:

Co2(f, d) = c0l + c0s
2L

d
+ c1tc2f + 2c2Lf c0l[$/h], c0s[$/(stop-h)],

c1[$/(TU-h)], c2[$/(TU-km)],

d, L[km], f [TU/h], tc2[h]. (20)

To state the model in a more compact way, we introduce the following coef-

ficients:

aa0 = Pwwy + Pv
l

Vmax
y + c0l + c1βy (21)

ab0 = Pv
l

Vmax
y + c0l + c1βy (22)

a1 = Pa
y

2v
(23)

a2 = PvlTly + 2c0sL (24)

a3 = c1
2L

Vmax
+ 2c2L (25)

a
(a,b)
4 = Pwµ

(a,b)εy + Pv
lβ

2L
y2 (26)

a5 = 2c1LTl. (27)

(28)

The total cost Ctot2, sum of passenger and operator costs, is a function of

frequency and stop spacing:

Ctot2(f, d) =

C
a
tot2(f, d) f < f̄

Cb
tot2(f, d) f ≥ f̄

, (29)
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where Ca
tot2(f, d) and Cb

tot2(f, d) are

C
(a,b)
tot2 (f, d) = a

(a,b)
0 + a1d+ a2

1

d
+ a3f + a

(a,b)
4

1

f
+ a5

f

d
. (30)

Model II follows:

minimizeCtot2(f, d) (31)

subject to

dmin ≤ d, (32)

αy

νK
≤ f ≤ fmax. (33)

Constraint (32) sets minimal stop spacing, and constraints (33) enforce min-

imal and maximal frequency

The components of the objective function of Model II, unlike those of

Model I, are not necessarily convex functions. In the following we report

the gradient, the Hessian, and the determinant of the Hessian of the two

components a and b of (29):

∇C(a,b)
tot2 =

(
a3 −

a
(a,b)
4

f 2
+
a5

d
, a1 −

a2

d2
− a5f

d2

)
, (34)

H(a,b) =

 2 a
(a,b)
4

f3
, −a5

d2

−a5
d2
, 2 a5f

d3
+ 2 a2

d3

 , (35)

det(H(a,b)) =
4 a

(a,b)
4

(
a5f
d3

+ a2
d3

)
f 3

− a2
5

d4
. (36)

Convexity would require the satisfaction of the following condition, which is

not guaranteed in the common ranges of variables and parameters.

det(H(a,b)) > 0 iff 4a
(a,b)
4 d

(
1 +

a2

a5f

)
> a5f

2. (37)
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Because of this, we propose C̃tot2 as a lower convex envelope of the compo-

nents of (29):

C̃tot2(f, d) =

C̃
a
tot2(f, d) f < f̄

C̃b
tot2(f, d) f ≥ f̄

, (38)

where C̃a
tot2(f, d) and C̃b

tot2(f, d) are

C̃
(a,b)
tot2 (f, d) = a

(a,b)
0 + a1d+ a2

1

d
+ a3f + a

(a,b)
4

1

f
+ a5

fmin
d
. (39)

Proposition 1. C̃tot2 is a lower convex envelope of Ctot2.

Proof — First, observe that the term f/d in (30) causes non-convexity.

Second, note that the convex term fmin/d in (39) would always be lower or

equal than the term f/d. �

Because of convexity, the unconstrained optimal solutions of (39) can be

analytically determined. We indicate by d̃unc the unconstrained optimal stop

spacing of (39):

d̃unc =

√
a2 + fmina5

a1

=

√
2vTl

(
Pvl

Pa
+

2c1Lfmin
yPa

+
2c0sL

yPaTl

)
. (40)

The unconstrained optimal frequencies of (39) are

f̃ (a,b)
unc =

√
a

(a,b)
4

a3

=

√√√√√√Pwµ
(a,b)εy + Pv

lβ

2L
y2

c1
2L

Vmax
+ 2c2L

. (41)

The optimal solution of the constrained lower convex envelope can be com-

puted as follows. We observe that (39) is also separable, and whenever the

unconstrained solution falls outside the box constraints, the optimal projec-

tion on the frontier is straightforward. The optimal solution (d̃, f̃) of the
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constrained lower convex envelope can be computed by examining at most

two feasible solutions (d̃, f̃a) and (d̃, f̃ b):

d̃ =

dmin dunc < dmin

dunc dunc ≥ dmin

, (42)

f̃ (a,b) =


fmin f

(a,b)
unc < fmin

f
(a,b)
unc fmin ≤ f

(a,b)
unc ≤ f

(a,b)
max

f
(a,b)
max f

(a,b)
unc > f

(a,b)
max

, (43)

where famax = f̄ and f bmax = fmax.

A heuristic solution of Model II can be determined by applying to the

starting solution (f̃ , d̃) a quasi-Newton code for bound-constrained optimiza-

tion. We denote by (f̂ , d̂) the solution found by this procedure, and by (f ∗, d∗)

the unknown optimal solution. We then obtain a lower bound Lb2 for Model

II, and an easy to implement solution method:

Lb2 = C̃tot2(f̃ , d̃) ≤ Ctot2(f ∗, d∗) ≤ Ctot2(f̂ , d̂) ≤ Ctot2(f̃ , d̃). (44)

Proposition 2. The optimality gap of the proposed procedure is

Ctot2(f̂ , d̂)− Lb2
Ctot2(f̂ , d̂)

. (45)

Hence (39) is a lower convex approximation of (30).

In Section 4 we show that the optimality gap is negligible on typical in-

stances. Moreover, the gap of the approximate analytic solution (f̃ , d̃) with

respect to the heuristic solution is insignificant. Hence the approximate ana-

lytic solution can also be used to discuss properties of the optimal frequency
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and stop spacing. Equation (40) indicates that optimal stop spacing is not

very sensitive to the level of demand, and that the only dependencies from

mode-specific parameters are from Tl, c1, and c0s, although the last two pa-

rameters are divided by the level of demand, a large number, and are thus

less significant. From equations (14) and (16) we observe that faster modes

presents larger values of Tl, hence longer stop spacing are to be expected.

However, the ratio of optimal stop spacings between different modes follows

a square root formula. Let i and j be the indices of two modes to be com-

pared. The ratio between their optimal stop spacings can be approximated

as follows:

di∗

dj∗
≈ d̃iunc
d̃junc

≈

√
T il
T jl
. (46)

Equation (46) expresses an interesting property of optimal stop spacing. Ex-

ogenous values of stop spacing that do not reflect this property would violate

the optimal structure of the model.

The unconstrained optimal frequencies of the approximation (41) are the

same as the unconstrained optimal frequencies of Model I defined by (13).

Hence Models I and II yield similar frequencies. A closer examination of

(41) highlights a shortcoming of these two models. For moderate centripetal

demand, and typical values of parameters, equations (41) yield frequencies

lower than those required to satisfy typical passenger critical loads, i.e. f̃unc ≤

fmin. In these cases, Model I is redundant, frequency is implicitly set by

critical capacity, and the scope of Model II is limited to the stop spacing.

Moreover, the average occupancy rate θ is set to the highest value θmax:

θ(fmin) =
ly

2LKfmin
=

lν

2Lα
= θmax. (47)
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We observe that for some parameters θmax could be close to one and would

likely result in overcrowding.

3.3. Model III: Extension to crowding cost and optimal train length

We now consider the cost of in-vehicle crowding to passengers. In-vehicle

travel time is perceived by passengers as less convenient when the occupancy

rate θ is larger than a threshold value θmin. Usually, the threshold value is

set in such a way that θ = θmin indicates saturation of seating capacity, and

θ > θmin indicates that some passengers must stand. Road and rail modes can

manage crowding in different ways. Road modes can only try to offer a higher

frequency, whereas rail modes can leverage on both frequency and the number

of vehicles per TU. We introduce the integer variable n which indicates the

number of vehicles per TU and ranges from nmin to nmax. Road modes are

a special case with nmin = nmax = 1. Longer trains affects the boarding and

alighting times since a higher number of doors becomes available. Let βv be

the boarding and alighting time per vehicle, the new cycle time, tc3, is

tc3(f, d, n) =
y

nf
βv +

2L

d
Tl +

2L

Vmax
y[pax/h], f [TU/h], βv[h-veh/pax], d, L[km],

Tl[h], Vmax[km/h], n[veh/TU]. (48)

The value Pv of the in-vehicle travel time is multiplied by a crowding penalty

which depends on the average occupancy rate θ:

θ(f, n) =
ly

2Lkvnf
. (49)

We define a crowding penalty function δ as piecewise linear (see Wardman

and Whelan (2010) for a review which validates this approach). There is

no penalty up to an average occupancy rate of θmin, e.g. it is equal to 0.3.

19



For larger values of θ the penalty increases linearly with a slope value ρ, see

Figure 1 for an example. The above definition of the average occupancy rate

assumes an uniform demand distribution and underestimates crowding on

the segments affected by centripetal demand (see Li and Hensher (2013) for

a critical appraisal of over-aggregation of crowding indices). We propose to

adjust the parameter ρ to account for this, i.e. a higher value of ρ under

centripetal demand should be used, other things being equal. Formally, the
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Figure 1: Example of the crowding penalty function
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penalty function is

δ(f, n) =


1 + ρ (θ − θmin) = ξ + ρ

ly

2Lkvnf
nf ≤ ly

2θminLkv

1 otherwise

, (50)

where ξ = 1− θminρ is a parameter introduced for notational compactness.

Differently from Tirachini et al. (2010b), we directly use the piecewise

linear penalty function without resorting to an approximation by a quadratic

function. In spite of this, we show that the complication of the crowding

penalty function does not preclude an analytical solution, albeit approximate.

Thus, the main differences of our approach with respect to Tirachini et al.

(2010b) are twofold: we analytically assess crowding instead of resorting to

a numerical appraisal, and we combine crowding with optimal stop spacing

and train length. Passenger in-vehicle cost, Cv3, becomes

Cv3(f, d, n) = Pvδ(f, n)
l

2L
tc3(f, d, n)y. (51)

The updated total passenger cost, Cp3(f, d, n), is now a function of f , d, and

n:

Cp3(f, d, n) = Ca(d) + Cw(f) + Cv3(f, d, n). (52)

Varying the train length changes the structure of the operator’s cost function.

We have to distinguish between the TU costs and the vehicle costs. Let c1t

be the unit operator cost per TU-hour, and let c1v be the unit operator cost

per vehicle-hour. The former parameter accounts for the crew cost, and the

latter for the capital cost of vehicles. Let c2v be the unit operator cost per

vehicle-km. The deployed fleet of TUs, B, is, as in the previous models, the
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product of frequency and cycle time: B = ftc3. The vehicle fleet size is equal

to nB, and the amount of vehicle-km is 2nLf . The operator cost Co3 is

Co3(f, d, n) = c0l + c0s
2L

d
+ c1tftc3(f, d, n) + c1vnftc3(f, d, n) + 2c2vnLf.(53)

In the case of road modes where n = 1, we have c1t + c1v = c1, and c2v = c2,

thus (53) is similar to (20).

The total cost Ctot3, the sum of passenger and operator costs, is a function

of frequency, stop spacing, and number of vehicles per TU. Model III follows:

minimizeCtot3(f, d, n) (54)

subject to

dmin ≤ d, (55)

αy

νnkv
≤ f ≤ fmax, (56)

nmin ≤ n ≤ nmax, n ∈ N. (57)

Constraint (55) sets minimal stop spacing. Constraints (56) enforce minimal

and maximal frequency, and constraints (57) specify the feasible range of TU

length.

We now define an approximation scheme of Model III. We first consider

the domain where the variables n and f satisfy the following condition:

θ ≥ θmin i.e. nf ≤ ly

2θminLkv
. (58)

By so doing, we consider the linear part of the crowding penalty function δ.
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We introduce the following coefficients:

aa30 = Pwwy + Pv
lξ

Vmax
y + c0l + c1vβvy (59)

ab30 = Pv
lξ

Vmax
y + c0l + c1vβvy (60)

a31 = Pa
y

2v
(61)

a32 = PvlTlξy + 2c0sL (62)

a33 = c1t
2L

Vmax
(63)

a
(a,b)
34 = Pwµ

(a,b)εy (64)

a35 = 2c1tLTl (65)

a36 = c1tβvy (66)

a37 = c1v
2L

Vmax
+ 2c2vL (67)

a38 = Pvly
2

(
ξβv
2L

+
ρl

2LkvVmax

)
(68)

a39 = 2c1vLTl (69)

a310 = Pvρ
l2y2Tl
2Lkv

(70)

a311 = Pvρ
l2y3βv
4L2kv

. (71)

We observe that outside the domain (58), the crowding penalty is not active,

and the above coefficients must be computed by setting ρ = 0 and ξ = 1.

The objective function of Model III, Ctot3, can be restated as follows:

Ctot3(f, d, n) =



Ca
tot3(f, d, n) f < f̄ , nf ≤ ly

2θminLkv

Cb
tot3(f, d, n) f ≥ f̄ , nf ≤ ly

2θminLkv

Ca
tot3(f, d, n)

∣∣∣
ρ=0

f < f̄ , nf >
ly

2θminLkv

Cb
tot3(f, d, n)

∣∣∣
ρ=0

f ≥ f̄ , nf >
ly

2θminLkv

, (72)
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where Ca
tot3(f, d, n) and Cb

tot3(f, d, n) are

C
(a,b)
tot3r(f, d, n) = a

(a,b)
30 + a31d+ a32

1

d
+ a33f + a

(a,b)
34

1

f
+ a35

f

d
+ a36

1

n
+ a37nf +

+a38
1

nf
+ a39

nf

d
+ a310

1

nfd
+ a311

1

(nf)2
. (73)

Once the variable n is fixed to ñ, a lower convex envelope of (72) can be

obtained as for Model II:

C̃tot3(f, d, ñ) =



C̃a
tot3(f, d, ñ) f < f̄ , f ≤ ly

2θminLkvñ

C̃b
tot3(f, d, ñ) f ≥ f̄ , f ≤ ly

2θminLkvñ

C̃a
tot3(f, d, ñ)

∣∣∣
ρ=0

f < f̄ , f >
ly

2θminLkvñ

C̃b
tot3(f, d, ñ)

∣∣∣
ρ=0

f ≥ f̄ , f >
ly

2θminLkvñ

, (74)

where C̃a
tot3(f, d, ñ) and C̃b

tot3(f, d, ñ) are

C̃
(a,b)
tot3 (f, d, ñ) =

(
a

(a,b)
30 +

a36

ñ

)
+ a31d+

(
a32 + a35fmin + a39ñfmin +

a310

ñfmax

)
1

d
+

+ (a33 + a37ñ) f +

(
a

(a,b)
34 +

a38

ñ
+

a311

(ñ)2fmax

)
1

f
. (75)

Proposition 3. C̃tot3(f, d, ñ) is a separable lower convex envelope of Ctot3(f, d, ñ).

Model III can be solved by a procedure similar to that devised for Model

II for each feasible value of the integer variable n. The unconstrained optimal

frequencies are

f̃
(a,b)
unc3(ñ) =

√√√√a
(a,b)
34 +

a38

ñ
+

a11

ñ2fmax
a33 + ña37

. (76)

We denote by d̃unc3 the unconstrained optimal stop spacing of the envelope:

d̃unc3(ñ) =

√√√√a32 + fmin(a35 + ña39) +
a10

ñfmax
a31

. (77)
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The optimal solution of the constrained lower convex envelope can be

easily computed by explorations of the relevant minima which are at most

four for each feasible value of n. Let d̃(ñ) be the optimal spacing, and let

f̃(ñ) be the optimal frequency of the constrained lower convex envelope for

the TU length ñ. A heuristic solution of Model III can be determined by

applying to each starting solution (f̃ , d̃, ñ) a quasi-Newton code for bound-

constrained optimization on the continuous variables f and d. We indicate

by (f̂ , d̂, ñ) the best solution found, and by (f ∗, d∗, ñ) the unknown optimal

solution for the value of TU length ñ. By so doing, we have Lb3, a lower

bound for Model III:

Lb3 = min
ñ∈(nmin,...,nmax)

Lb3(ñ) = C̃tot3(f̃ , d̃, ñ) ≤ Ctot3(f ∗, d∗, ñ)

≤ Ctot3(f̂ , d̂, ñ) ≤ Ctot3(f̃ , d̃, ñ). (78)

The solution method is outlined in Algorithm 1 which iterates over n until the

best solution (f̂ , d̂, n̂) is found. The optimality gap can then be computed.

Proposition 4. The optimality gap of the proposed procedure is

Ctot3(f̂ , d̂, n̂)− Lb3
Ctot3(f̂ , d̂, n̂)

. (79)

Hence C̃tot3 is a separable lower convex approximation of Ctot3.

In Section 4 we show that the optimality gap is very small on typical

instances. Moreover, the gap of the approximate analytic solution (f̃ , d̃, ñ)

with respect to the heuristic solution is negligible. Hence the approximate

analytic solution can also be used to derive properties of the optimal values.
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Algorithm 1 Solve Model III

Best← a very large number

for ñ ∈ (nmin, ..., nmax) do

Compute f̃
(a,b)
unc3(ñ) and d̃unc3(ñ) by (80) and (81), respectively

Compute f̃(ñ) and d̃(ñ) by convexity arguments for separable functions

Find (f̂ , d̂) starting from (f̃(ñ), d̃(ñ)) by a bound constrained optimiza-

tion solver

if Ctot3(f̂ , d̂, ñ) < Best then

Update Best, store solution, compute and store gaps

end if

end for

return best solution found, and gaps

The unconstrained optimal frequencies of the approximation are

f̃
(a,b)
unc3(ñ) =

√√√√√√√Pwµ
(a,b)εy +

Pvl

2L

(
ξβvy

2

ñ
+ ρ

l

kvñ

(
y2

Vmax
+

y3βv
2Lñfmax

))
2L

Vmax
(c1t + ñc1v) + 2c2vñL

. (80)

The structure of (80) differs from that of (41) because of the two new terms

under the square root related to the crowding penalty. One of these terms

increases with the square of the demand, and the other increases with the

cube of the demand, although it is multiplied by a very small number such

as βv. These terms have a relevant impact in raising optimal frequency with

respect to the previous formula. Modeling a crowding penalty moves away the

optimal frequency from the minimal values induced by the critical capacity.

Rail modes can leverage on train length to counteract raising frequency since

train length appears at the denominator of several terms. Overall, it is not
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anymore true that an increase in demand requires a less than proportional

increase in frequency, the classic result of Mohring (1972). Faster modes

with large and flexible capacity may yield economies of scale (observe the

role played in (80) by Vmax, kv, and n).

The unconstrained optimal stop spacing is

d̃unc3(ñ) =

√
2vTl

(
Pv
Pa
lξ +

2Lfmin
yPa

(c1t + ñc1v) +
2c0sL

yPaTl
+ ρ

l2yPv
2PaLkvñfmax

)
.(81)

The structure of (81) differs from that of (40) because of the two new terms

under the square root: a term related to the cost of a stop which decreases

with the demand, and a term related to the crowding penalty which increases

with the demand. However, both terms have typically small coefficients,

hence the stop spacing of Model III is only slightly larger than that of Model

II. Moreover, the structure of (81) confirms the approximation provided by

(46).

3.4. Model IV: Extension to multiple periods

The single period assumption can be criticized on several accounts. First,

we observe that amortization factors play a relevant role when comparing

technologies that differ in their infrastructure and vehicle costs. Hence the

number of service hours per year is a critical parameter. Single period mod-

els must account for a number of “equivalent” service hours smaller than the

effective hours. On the other hand, a single period has a higher number of

“equivalent” peak hours which helps to spread a higher fleet cost. Moreover,

as observed by Bruun (2005), both the demand level and the shape of the

demand profile determine operating costs. Rail modes can accommodate de-

mand variations through addition and removal of carriages from trains. To
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disentangle these issues, a modal comparison between road and rail modes

must represent a varying demand profile. We remove this limitation of the

previous models by introducing a two-period model. We will show how for-

mulae for multi-period cases can be obtained as simple extensions of the

two-period case.

We assume a base demand in off-peak hours equal to γy, where γ is a

positive parameter smaller than one. The ratio of peak hours to total service

hours is denoted by χp, and χo = 1 − χp is the ratio of off-peak hours to

total total service hours. The components of passenger and operator costs

are now described. The access cost Ca4 is the weighted sum of two terms:

Ca4 = χpPa
d

2v
y + χoPa

d

2v
γy = Pa

d

2v
y(χp + γχo). (82)

The cost of waiting for a single period, defined by equation (4), is a function

of the frequency and it is directly proportional to the demand level. We now

have two frequencies for the two periods, namely fp for peak hours, and f o

for off-peak hours. The cost of waiting for the two periods Cw4 is a weighted

sum of the cost of waiting for the two periods:

Cw4 = χpCw(fp) + χoγCw(f o). (83)

The cycle time has one out of three terms dependent on the demand level.

Hence we introduce the new cycle time t
(p,o)
c4 , for peak and off-peak periods:

t
(p,o)
c4 (f (p,o), d, n(p,o)) =

y(p,o)

n(p,o)f (p,o)
βv +

2L

d
Tl +

2L

Vmax
, (84)

where yp = y and yo = γy. The average occupancy rate, defined by equation

(49), is directly proportional to the demand level, hence requires only a

scaling by a factor γ for the off-peak period. We denote by δ(p,o) the resulting
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two penalty functions. The TU length for the peak period is np, and no

denotes the TU length for the off-peak-period. The new in-vehicle cost, Cv4,

is

Cv4(fp, f o, d, np, no) = Pv
ly

2L
(χpδp(fp, np)tpc4(fp, d, np) +

+χoγδo(f o, no)toc4(f o, d, no)). (85)

The operator cost Co4 is

Co4(fp, f o, d, np, no) = c0l + c0s
2L

d
+ c1vn

pfptpc4(fp, d, np) + c1tχ
pfptpc4(fp, d, np) +

+c1tχ
of otoc4(f o, d, no) + 2c2vL(χpnpfp + χonof o). (86)

The total cost Ctot4, sum of passenger and operator costs, is a function of

peak and off-peak frequencies, stop spacing, and peak and off-peak number

of vehicles per TU. Model IV follows:

minimizeCtot4(fp, f o, d, np, no) (87)

subject to

dmin ≤ d, (88)

αy(p,o)

νn(p,o)kv
≤ f (p,o) ≤ fmax, (89)

nmin ≤ n(p,o) ≤ nmax, n
(p,o) ∈ N, (90)

npfptpc4(fp, d, np) ≥ nof otoc4(f o, d, no). (91)

Constraint (88) sets the minimal stop spacing. Constraints (89) enforce min-

imal and maximal values for peak and off-peak frequencies. Constraints (90)

specify the feasible range of TU lengths, and constraint (91) ensures that the

maximal fleet is deployed at peak time.
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The lower convex envelope and the solution algorithm for Model IV are a

straightforward extension of those of Model III, and hence their description

is omitted for brevity. However, in the case of Model IV we cannot always

conclude optimality of the constrained lower convex envelope because of the

non-linear constraint (91). The optimality gap cannot be computed when-

ever the unconstrained solution falls outside the domain of Model IV. In the

following we report the optimal solution of the unconstrained lower convex

envelope.

The unconstrained optimal peak frequency of the lower convex envelope

is

f̃
p(a,b)
unc4 (ñp) =

√√√√√√√Pwµ
(a,b)εy +

Pvl

2L

(
ξβvy

2

ñp
+ ρ

l

kvñp

(
y2

Vmax
+

y3βv
2Lñpfmax

))
2L

Vmax
(c1t +

ñpc1v

χp
) + 2c2vñpL

.(92)

Equation (92) differs from (80) in the denominator where the coefficient c1v,

which accounts for the fixed cost of vehicles, is divided by χp, a value smaller

than one, typically equal to 0.25. Hence the fixed cost parameter is increased,

which yields lower frequencies than in the single period case.

The unconstrained optimal off-peak frequency of the lower convex enve-

lope is

f̃
o(a,b)
unc4 (ño) =

√√√√√√√Pwµ
(a,b)εγy +

Pvl

2L

(
ξβv(γy)2

ño
+ ρ

l

kvño

(
(γy)2

Vmax
+

(γy)3βv
2Lñofmax

))
c1t

2L

Vmax
+ 2c2vñoL

.(93)

Equation (93) is similar to (80) applied to the demand level γy. The only

difference is in the denominator where the term related to the fixed cost of

vehicles is absent since the fixed cost of the fleet is accounted to the peak
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hours in the equation (86). As a result, frequencies in off-peak hours are

slightly larger than those at the same demand level in the single period case.

An extension of these results to a multi-period case is simple. The formula

for the peak frequency would not change, and the formulae for the off-peak

periods must only update the relevant values of γ.

The unconstrained optimal stop spacing of the lower convex envelope is

d̃unc4(ñp, ño) =√√√√√√√2vTl

PvPa lξ +
2Lfmin (c1t + ñpc1v)

yPa(χp + γχo)
+

2c0sL

yPaTl(χp + γχo)
+ ρ

l2yPv

(
χp

ñp
+
χoγ2

ño

)
2PaLkvñfmax(χp + γχo)

.(94)

Equation (94) mainly differs from the previous formula (77) by having two

terms slightly increased because they are divided by χp+γχo, a value smaller

than one. However, the main structure of the formula remains stable, and

confirms the approximation (46). In fact, the stop spacing resulting from (94)

is close to that of (77) applied to an average demand level y(χp+γχo). Hence,

the extension of this formula to the multi-period case is straightforward as

well. Moreover, since the stop spacing is not very sensitive to the demand

level, the above formula hints at similar results with respect to the previous

model.

4. Numerical analyses

This section shows how the proposed model refinements upend results of

the base Model I. The parameters are derived from the literature and are such

that Model I yields dominance of road modes for all but the largest demand

levels. We consistently keep this set of parameters for all models, and show
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how the break-even points between road and rail modes progressively recede

when model refinements are considered.

The section is structured as follows. We first presents the parameter set

in Section 4.1, and some computational details in Section 4.2. Results of the

four models are then discussed from Section 4.3 to Section 4.6.

4.1. Parameters

We derive the parameter set from the case study of Tirachini et al. (2010b)

for a transit line in Australia. This case study considers a bidirectional line

of 20 km patronized by passengers traveling on average 10 km per trip, and

accessing the line by walking at a speed of 4 km/h. The critical load is equal

to 35% of the total demand. This assumption models a moderate centripetal

demand where, for example, 70% of the bidirectional demand uses the peak

direction, and 50% of these passengers traverse the most loaded section. The

demand is studied from 3000 to 60000 pax/h with a step of 500 pax/h,

hence 94 demand levels are evaluated for each combination of mode and

model. The set of parameters related to the passengers and to the transit

line that are common to all models are listed in Table 1 where monetary

figures are expressed in Australian dollars. Four modes are studied, namely

buses in mixed traffic lanes (Bus), BRT, LRT, and heavy rail (HR). The main

technical parameters of these four modes are listed in Table 2. These and

the following parameters for the HR mode are derived from Tirachini et al.

(2010b) by assuming a train length of three cars (recall that in Tirachini et al.

(2010b) the train length is fixed, hence there is not a differentiation between

vehicle and TU parameters). The infrastructure and rolling stock costs of

the four modes are presented in Table 3, and operational costs which include
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Parameter Definition Unit Value

f̄ Threshold frequency for timetable behaviour TU/h 5

l Average trip length km 10

L Length of the transit line km 20

Pa Value of the access and egress time $/(pax-h) 12.5

Pv Value of the in-vehicle time $/(pax-h) 10.0

Pw Value of the waiting time $/(pax-h) 15.0

v Walking speed km/h 4

w Waiting time at stops when f < f̄ min 4

α Fraction of demand in the most loaded segment of the line - 0.35

ε Rate of the average waiting time to the headway - 0.5

µ Discount factor of the waiting time under timetable behaviour - 0.33

ν Spare capacity factor - 0.9

Table 1: Parameters related to the passengers and to the transit line that are common to

all models

overhead are reported in Table 4. These data determine the cost parameters

which vary with the model, as described in the following. The used discount

rate is 7%, the land cost is 9 million $ per hectare, and a 5% residual value

for rolling stock is assumed. Single period models consider an equivalent

number of service hours per year equal to 2947. Two-period models use a

value of 5500 hours per year. This difference yields different amortization

factors, and hence different cost parameters between single and two-period

models. Table 5 lists the cost parameters for all models. The fixed hourly

costs of the infrastructure, c0 in Model I and c0l in the following models, are

computed summing the amortization of the infrastructure and the land from

Table 3, and the hourly maintenance cost from Table 4. In order to maintain

consistency among models, we conservatively consider the cost of stops as

incremental with respect to that of the line, and the fixed hourly cost of a

stop c0s is the amortization of the building cost of a stop in Table 3. The
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crew cost of Table 4 determines the parameter c1t, hourly cost of a TU, used

in models III, and IV. The amortization of the vehicle acquisition cost from

Table 3 determines the hourly fixed cost of a vehicle, c1v, in Models III, and

IV. The hourly fixed cost of a TU in Model I and II, c1, is obtained as the

sum of c1t, and c1v multiplied by the number of fixed vehicles per TU. The

cost per vehicle-km, c2v, is directly derived from the operating cost of Table

4, and the cost per TU-km, c2, is equal to c2v multiplied by the number of

fixed vehicles per TU. Some remarks on the limitations of the parameter set

are presented in the following along the results.

Parameter Unit Bus BRT LRT HR

fmax TU/h 200 150 80 40

kv pax/veh 64 101 190 250

S, Vmax km/h 20 30 35 40

βv s/veh 4 0.33 0.33 0.33

Table 2: Main technical parameters of the four studied modes

Parameter Unit Bus BRT LRT HR

Infrastructure building cost million $/km 0 10 20 35

Width required by the infrastructure m 0 10 10 15

Stop building cost million $/stop 0 0.125 0.25 0.5

Infrastructure technical life year - 50 100 100

Vehicle acquisition cost million $/veh 0.4 0.62 3.49 2.77

Vehicle technical life year 20 20 35 35

Table 3: Parameters for the fixed costs related to the infrastructure and to the rolling

stock

4.2. Computational details

The algorithms are implemented in Python 2.7 with the L-BFGS-B solver,

a quasi-Newton code for bound-constrained optimization, see Zhu et al.
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Parameter Unit Bus BRT LRT HR

Crew $/(TU-h) 42 42 73 130

Distance related vehicle cost $/(veh-km) 1.13 1.42 1.83 1.11

Infrastructure maintenance $/h 0 295 1078 1851

Table 4: Operating costs, including overhead

Parameter Unit Model Bus BRT LRT HR

c0, c0l $/h I, II 0 9638 14871 24918

c0l $/h IV 0 5301 8468 14211

c0s $/stop-h II, III 0 3.1 5.9 11.9

c0s $/stop-h IV 0 1.6 3.2 6.4

c1 $/TU-h I, II 54.2 60.9 159.9 336.9

c1t $/TU-h III, IV 42 42 73 130

c1v $/veh-h III 12.17 18.87 86.89 68.97

c1v $/veh-h IV 6.52 10.11 46.56 36.95

c2 $/TU-km I, II 1.13 1.42 1.83 3.32

c2v $/veh-km III, IV 1.13 1.42 1.83 1.11

Table 5: Cost parameters used in Models I, II, III, and IV

(1997). The algorithms compute optimality, approximation, and heuristic

gaps as defined in Section 3. The algorithm for Model IV does not always re-

turn an optimality gap, hence only the heuristic gap is reported. Table 6 lists

the median gaps which are negligible for all modes. Because of this, in the

following we refer to the results as optimal, albeit they are in general near-

optimal for the models solved by the approximation scheme coupled with the

optimization solver. The code is available upon request to the corresponding

author.

4.3. Results of Model I

Model I assumes a fixed TU length equal to n̄ which determines the TU

capacities, and the boarding and alighting times per passenger. The mode

specific parameters used for Model I are listed in Table 7. Results of Model
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Model II Model III Model IV

Median Median Median Median Median

optimality approx. optimality approx. heuristic

Mode gap (%) gap (%) gap (%) gap (%) gap (%)

Bus 0.0 0.0 0.6 0.0 0.0

BRT 0.0 0.0 0.6 0.0 0.0

LRT 0.0 0.0 1.0 0.0 0.0

HR 0.4 0.1 0.9 0.0 0.0

Table 6: Median optimality, approximation, and heuristic gaps

Parameter Unit Bus BRT LRT HR

d km 0.4 0.8 1.0 1.2

K pax/TU 64 101 190 750

n̄ veh/TU 1 1 1 3

β s/pax 4 0.33 0.33 0.11

Table 7: Mode specific parameters for Model I

I are similar to those presented in Tirachini et al. (2010b), and therefore we

present in Figure 2 only the average total cost of the four studied modes. As

in Tirachini et al. (2010b), road modes dominate rail modes. LRT is never

the cheapest option, and HR becomes competitive only when BRT capacity

is not sufficient. In fact, Model I is sensitive to stop spacing. Figure 3 reports

the average total cost when the stop spacing for the tree rapid transit modes

is set equal to 0.8 km. As can be observed, this modification yields break-even

points between BRT and LRT, and between LRT and HR. Hence exogenous

stop spacing is critical, and justifies the development of Model II.

4.4. Results of Model II

Model II requires new parameters, average acceleration and deceleration

rates, and time lost for door operations, in order to compute the parameter

Tl, fixed time lost for a stop. The mode specific parameters used for Model II
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Figure 2: Model I, average total cost, Ctot/y

are listed in Table 8, and are derived from Vuchic (2005). Figure 4 illustrates

the average total cost. The break-even point between BRT and LRT occurs

at circa 22000 pax/h. The optimal stop spacing is reported in Figure 5.

As predicted by the analytical results, the modes with larger Tl yield longer

stop spacing. However, the ratio of stop spacings between modes follows

the square root formula (46), hence the difference between modes is not as

large as previously assumed. Figure 6 illustrates the optimal frequencies with

respect to the minimal frequencies. With the exception of the high capacity

HR, all modes are such that the optimal frequency is set by the constraint
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Figure 3: Model I, average total cost, Ctot/y, when the stop spacing is set equal to 0.8 km

for the three rapid transit modes

on the minimal frequency. Recall that the optimal frequency of Model II is

similar to that of Model I, and this shortcoming justifies the development of

Model III.

Parameter Unit Bus BRT LRT HR

ā m/s2 1.2 1.2 1.4 1.4

b̄ m/s2 1.4 1.4 1.2 1.1

td s 2 2 2 3

Tl h 0.0017 0.0023 0.0026 0.0033

Tl s 6 8 10 12

Table 8: Mode specific parameters for Model II
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Figure 4: Model II, average total cost, Ctot2/y

4.5. Results of Model III

Model III requires additional parameters for the crowding penalty func-

tion. We assume, as in Tirachini et al. (2010b), a critical average occupancy

rate θmin equal to 0.3, and a slope ρ equal to one. The other mode specific

parameters used for Model III are listed in Table 9. Figure 7 illustrates the

average total cost. The break-even point between BRT and LRT occurs at

circa 14400 pax/h, and that between LRT and HR occurs at circa 21600

pax/h. The crowding penalty significantly changes the optimal total cost for

road modes which now exhibit a diseconomy of scale. The maximal frequency
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Figure 5: Model II, optimal stop spacing

is reached earlier than in the previous model (compare Figures 6 and 8) and

when this occurs serving increasing demand yields higher total cost because

of passenger inconvenience. This can be appreciated by disagregating the

total cost in passenger cost (Figure 9) and operator cost (Figure 10). The

former strongly increases with demand when maximal frequency is reached,

and the smaller decrease in average operator cost is not sufficient to compen-

sate this effect. This fact highlights the crucial role of the parameter fmax.

The high value of fmax for BRT in our parameter set is technically feasible,

but it could induce negative externalities in terms of urban segregation. The
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Figure 6: Model II, optimal and minimal frequencies

interested reader is referred to Vuchic et al. (2013) for a critical appraisal of

the maximal frequency in BRT. Figure 11 compares the optimal frequency

with the frequency where the crowding penalty starts, i.e. when θ = θmin.

In the following we refer to this frequency as critical. The optimal frequency

is almost always set by this critical frequency, highlighting the relevance of

the crowding penalty. The optimal stop spacing is reported in Figure 12. As

predicted by the analytical results, Model III yields slightly longer stop spac-

ings with respect to Model II. For road modes, which have smaller capacities

than rail modes, the crowding penalty increases stop spacing at higher de-
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mand levels. However, the ratio of stop spacings between modes still follows

the square root formula (46) which confirms its generality. Figure 13 shows

how the optimal number of vehicles per transit unit varies for rail modes.

The flexible capacity is fully exploited in these modes. Hence, riding comfort

and flexible capacity of rail modes prove to be related and crucial issues.

Parameter Unit Bus BRT LRT HR

nmin veh 1 1 1 2

nmax veh 1 1 2 5

Table 9: Mode specific parameters for Model III
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Figure 7: Model III, average total cost, Ctot3/y
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Figure 8: Model III, optimal and minimal frequencies

4.6. Results of Model IV

Model IV introduces peak and off-peak periods. We assume an off-peak

demand level equal to γy, where γ is equal to 0.5, i.e. peak demand is twice

that of the off-peak period, as in Bruun (2005). The peak hours are one

quarter of the total service hours. All other parameters are equal to those

listed previously. Figure 14 illustrates the average total cost. The break-even

point between BRT and LRT occurs at circa 15500 pax/h, and that between

LRT and HR occurs at circa 23000 pax/h. This small worsening for rail

modes with respect to the results of the Model IV is caused by the relatively
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Figure 9: Model III, average passenger cost, Cp3/y

high value of the crew costs for these modes, hence the effect described in

Bruun (2005) of a higher convenience of rail modes under a varying demand

profile cannot be observed within our parameter set. However, since this

parameter set can be regarded as a worst-case for rail modes, it is noteworthy

than these break-even points are reached in the two-period case. The optimal

stop spacing is not reported since the results are very similar to those of the

previous model, as analytically observed in Section 3.4. Figure 15 illustrates

the optimal peak frequencies with respect to the minimal frequencies. As

in Model III, the peak frequency is significantly larger than the minimal

44



0 10000 20000 30000 40000 50000 60000
Demand (pax/h)

0

2

4

6

8

10

A
v
e
ra

g
e
 o

p
e
ra

to
r 

co
st

 (
$

/p
a
x
)

Bus

BRT

LRT

HR

Figure 10: Model III, average operator cost, Co3/y

frequency. However, as can be observed in Figure 16, the optimal peak

frequency does not reach the critical frequency. This happens because in

Model IV the peak frequency is more expensive that the uniform frequency

of Model III. The reverse is true for off-peak frequency which benefits from

the removal of fleet acquisition cost. Consequently, see Figure 17, the optimal

off-peak frequency is set by the critical frequency. Figure 18 shows how the

optimal number of vehicles per transit unit varies between peak and off-peak

periods. These results further highlight how flexible capacity is exploited in

rail modes.
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As a final remark on the parameter set, we observe that by only modi-

fying a single parameter, the cost of capital, the break-even points between

technologies can be substantially altered. For example, a discount rate of 3%

instead of 7% moves the break-even point between BRT and LRT in Model

IV at circa 7000 pax/h, and that between LRT and HR at circa 15000 pax/h.

5. Conclusions and insights

We have presented mathematical models amenable to approximate closed

form solutions for the optimization of a transit line with fixed demand. A
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Figure 12: Model III, optimal stop spacing

literature review has motivated the choice of the model of Tirachini et al.

(2010b) as our base model which has been extended in several directions.

Namely, we have added to the base model variable stop spacing and train

length, a crowding penalty, and a multi-period generalization. Since the new

models are in general unsolvable by straightforward analytical procedures, we

have proposed analytically solvable approximation schemes for them. The

significance of the proposed extensions has been discussed both through an-

alytical results and an illustrative example. Faster modes require longer stop

spacing, but the ratio of optimal stop spacings among different modes fol-
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Figure 13: Model III, optimal number of vehicles per transit unit

lows a square root formula. A crowding penalty moves away the optimal

frequency from the minimal values induced by the critical capacity. More-

over, road and rail modes manage crowding in different ways. Road modes

try to offer a higher frequency, whereas rail modes leverage on both frequency

and train lengths. A multi-period model further increases the model realism

when comparing different technologies. We have applied the proposed mod-

els to an illustrative example where two road modes and two rail modes are

defined by a set of techno-economical parameters taken from the literature.

These parameters loaded in the base model yield dominance of road modes
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Figure 14: Model IV, average total cost, Ctot4/y

for all but the largest demand levels. We have consistently kept this set of

parameters for all models, and we have shown how the break-even points be-

tween road and rail modes progressively recede toward lower demand levels

when the proposed model refinements are applied. Model refinements, not

parameter changes, have brought the break-even point between BRT and

LRT at circa 15500 pax/h, and that between LRT and HR at circa 23000

pax/h. We have emphasized that these results are specific to the chosen

parameter set, and that a discussion about parameters is not the focus of

this paper. In fact, by only modifying a single parameter, the cost of capital,

49



0 10000 20000 30000 40000 50000 60000
Demand (pax/h)

0

50

100

150

200

P
e
a
k 

fr
e
q
u
e
n
cy

 (
T
U

/h
)

f̂ Bus

fmin Bus

f̂ BRT

fmin BRT

f̂ LRT

fmin LRT

f̂ HR

fmin HR

Figure 15: Model IV, optimal and minimal peak frequencies

the break-even points between technologies can be substantially altered. A

discount rate of 3% moves the break-even point between BRT and LRT at

circa 7000 pax/h, and that between LRT and HR at circa 15000 pax/h.
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Appendix A. Notational glossary

Table A.10 reports the primary symbols used in this paper. Some other

symbols are derived from those listed in this table as explained in the fol-

lowing. A number added as subscript may specify the relevant model. For

example, tc3 indicates the cycle time of Model III, which differs from tc2, the

cycle time of Model II. The subscripts min and max specify bounds of a

parameter or of a variable. The subscript unc refers to the optimal solution

of an unconstrained objective function. A variable with the tilde symbol

is related to an approximation scheme. The superscripts (a, b) refer to the
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Figure 17: Model IV, optimal off-peak frequency and critical frequency for crowding

penalty

two cases for the waiting behaviour which depends on the frequency. The

superscripts (p, o) refer to the peak or off-peak periods.

Table A.10: List of primary symbols, and units of measure used in the formulae

Symbol Definition Unit

ā Average acceleration rate of a TU km/h2

b̄ Average deceleration rate of a TU km/h2

B Fleet size TU

c0 Fixed operator cost related to the infrastructure $/h

c0l Fixed operator cost related to the transit line $/h

Continued on next page
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Table A.10 – Continued from previous page

Symbol Definition Unit

c0s Fixed operator cost related to a stop $/h

c1 Unit operator cost per TU-hour in Models I and II $/(TU-h)

c1t Unit operator cost per TU-hour in Models III and following $/(TU-h)

c1v Unit operator cost per vehicle-hour $/(veh-h)

c2 Unit operator cost per TU-km $/(TU-km)

c2v Unit operator cost per veh-km $/(veh-km)

Ca Access and egress time cost $/h

Co Operator cost $/h

Cp Passenger cost $/h

Ctot Total cost, sum of passenger and operator costs $/h

Cv In-vehicle time cost $/h

Cw Waiting time cost $/h

d Distance between stops km

f Frequency TU/h

f̄ Threshold frequency for timetable behaviour TU/h

K Capacity of a TU pax/TU

kv Capacity of a vehicle pax/veh

l Average trip length km

L Length of the transit line km

n Number of vehicles per TU veh

Pa Value of the access and egress time $/(pax-h)

Pv Value of the in-vehicle time $/(pax-h)

Pw Value of the waiting time $/(pax-h)

R Running time km/h

S Average running speed km/h

ta Average access and egress time of a passenger h

Ta Time loss caused by acceleration and deceleration phases h

tc Cycle time h

td Time loss caused by opening and closing of doors h/TU

Tl Time loss caused by acceleration, deceleration, and door operations h

TU Transit unit -

tv Average in-vehicle time of a passenger h

tw Average waiting time of a passenger h

v Walking speed km/h

V Commercial speed of the TU km/h

Vmax Highest operational speed of the TU km/h

Continued on next page

53



Table A.10 – Continued from previous page

Symbol Definition Unit

w Waiting time at a stop when f < f̄ h

y Fixed bidirectional demand pax/h

α Fraction of demand in the most loaded segment of the line -

β Boarding and alighting time per passenger and TU h/(pax-TU)

βv Boarding and alighting time per passenger and vehicle h/(pax-veh)

γ Ratio of the off-peak demand to the peak demand -

δ Crowding penalty function -

ε Rate of the average waiting time to the headway -

θ Average occupancy rate -

µ Discount factor of the waiting time under timetable behaviour -

ν Spare capacity factor -

ρ Slope of the linear part of the crowding penalty function -

χ(p,o) Ratio of peak or off-peak hours to total service hours -
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