
Rapid transit network design with modal

competition

Abstract

We present a mixed-integer linear program for the rapid transit network design

problem with static modal competition. Previous mathematical programs eluded

modal competition because of the excessive complexity of modeling cost differ-

ences for each flow in the network. We overcome this difficulty by exploiting a

pre-assigned topological configuration.
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1 Introduction

We extend the rapid transit network design problem (RTNDP) of Gutiérrez-Jarpa et al.

(2013) by introducing modal competition. In Gutiérrez-Jarpa et al. (2013) an origin-

destination flow is considered as captured by the metro if stations are sufficiently close

to the origin and the destination of the flow. We observe that by maximizing the cap-

tured traffic according to this criterion results in improving access, i.e. the number of

citizens that could enjoy the metro network for their daily trips. Access is a worthwhile

objective in public transit planning, but alone inadequate in reflecting modal choices.

In this paper we consider a traffic flow as captured if the generalized cost of a metro

trip is less than the cost by a car trip. This feature has been eluded in previous discrete

mathematical programs because of the complexity of considering origin-destination
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flows. As observed by Marín and García-Ródenas (2009), this feature would require

adding a multi-commodity formulation, where each flow is considered as a distinct

commodity. We overcome this difficulty by exploiting a pre-assigned topological con-

figuration. As motivated by Bruno and Laporte (2002); Bruno et al. (2002), a pre-

assigned topological configuration is itself a positive feature for planners, hence this

approach should be valuable in practice. Section 2 presents the mixed-integer linear

program.
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2 Mixed-integer linear program

We define the RTNDP on an undirected graph G(N,E), where N = {1, ..., n} is a node

set and E = {(i, j) : i, j ∈ N, i < j} is an edge set. A node represents a centroid of

demand, and some nodes are also candidate stations. Each node i is characterized by a

neighborhoodN(i) ⊂ N of sufficiently close candidate stations. An edge is a candidate

rail link between stations. Edges are defined such that minimal and maximal distances

between stations are enforced. The network is embedded in a pre-assigned topological

configuration. We refer to Gutiérrez-Jarpa et al. (2013) for examples of basic configu-

rations such as the star, the triangle, and the cartwheel. The configuration defines the

number of transfer points so that the transit network is connected and passenger can

transfer from one line to another. Each line is made up of segments which are chains of

edges connecting two transfer points, or a transfer point with a end-point, a terminus.

The output of the model is a set of segments. The combination of segments into lines is

beyond the scope of this study since it pertains to tactical evaluations of train schedul-

ing and offered capacity. Let S be the set of corridors where segments are embedded.

We define by Ns ⊆ N the set of nodes of corridor s ∈ S, and NS = ∪s∈SNs. The ex-

treme nodes of a segment must belong to a predefined extreme set, the set of nodes

that are candidates to the location of a terminus or a transfer station. Let Tk denote the

k-th extreme set, and Ok be the set of all corridors having one of their extreme nodes in

Tk. We indicate by a and b the indices of an origin and a destination, respectively. We

observe that given a topological configuration we can approximatively determine the

set of candidate edges for a minimum cost path between a and b in the rapid transit

network. Let Pab ⊂ E be this approximate set. Thanks to this approximation we can

define the generalized cost of a path in the rapid transit network without an explicit

multi-commodity formulation. For notational simplicity and model compactness we

assume symmetry, i.e. the travel cost from a to b is equal to that from b to a. This as-

sumption can be easily removed and is not a limitation of the proposed model. In the

following we define the data and the variables required by the mathematical program.

An edge is characterized by the following attributes:
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• dij , distance between i and j.

• cij , construction cost of the infrastructure between station i and station j. It in-

cludes the cost of building a station as follows: if i or j is a candidate terminus

the full cost of the station is part of cij ; if i or j is a candidate transfer station a

quota of the building cost is included in cij according to the number of pertaining

segments; otherwise, half of the station cost is included in cij .

• τij , passenger travel cost from station i to station j. It includes the cost of travel

time between i and j, and the time lost due to stopping at j.

A pair of nodes, not necessarily an edge, is characterized by the following at-

tributes:

• tab, traffic flow between a and b.

• Tab, generalized cost for a passenger traveling between a to b by car.

• δak, passenger access or egress cost between the node a and the station k.

• φab, fixed cost for a passenger traveling between a and b by the rapid transit net-

work. It includes the cost of time lost for transfer, if any.

• M+
ab, difference between Tab, trip cost by car, and the minimum cost path between

a and b in the residual network defined by the approximate edge set Pab, and

considering access, egress, and fixed costs as defined above. By definition this

value is positive, otherwise the pair (a, b) would not be considered in the RTNDP.

M+
ab represents an upper bound on the cost advantage of using the metro instead

than the car.

• M−
ab, difference between the maximum cost path between a and b in the residual

network defined as above, and Tab.

We introduce the following variables:

• xsij , equal to 1 if the edge (i, j) of the corridor s is active, zero otherwise.
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• βab, positive if the (a, b) flow is captured, zero otherwise; in the former case βab

is the difference between the generalized car cost and the generalized transit cost

for a passenger.

• yi, equal to 1 if the station i belonging to an extreme set is activated, zero other-

wise.

• ws
i , equal to 1 if the station i belonging to a corridor s is activated, zero otherwise.

• zik, equal to 1 if the node i is served by the station k, zero otherwise.

• vij , equal to 1 if there is a path in the rapid transit network between i and j, zero

otherwise.;

• rab, equal to 1 if the (a, b) flow is captured, zero otherwise.

For notational simplicity we introduce the set Ψ ⊂ N ×N which contains the forbiden

pairs of stations according to the minimal distance criterion, i.e. (i, j) belongs to Ψ if

dij ≤ d̂, where d̂ is the minimal distance between stations.

The mixed-integer linear program follows.

minimize Z1 =
∑
s∈S

∑
i,j∈Ns:(i,j)∈E

cijx
s
ij (1)

minimize Z2 =
∑

a,b∈N :a<b

tabβab (2)
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subject to

∑
i∈Tk

∑
j∈Ns\Tk

(xsij + xsji) ≥ 1 ∀k ∈ K, s ∈ Ok, (3)

∑
j∈Ns

(xsij + xsji) = 2ws
i − yi ∀s ∈ S, i ∈ Ns, (4)∑

i∈Tk

yi = 1 ∀k ∈ K, (5)

ws
i + ws

j ≤ 1 ∀s ∈ S, and (i, j) ∈ Ψ, (6)∑
k∈N(i)

zik ≤ 1 ∀i ∈ N, (7)

zik ≤
∑
s∈S

ws
k ∀i ∈ N, (8)

vij ≤
∑

k∈N(i)

zik ∀i, j ∈ N : i < j, (9)

vij ≤
∑

k∈N(j)

zjk ∀i, j ∈ N : i < j, (10)

Tab − [
∑
s∈Sab

∑
(i,j)∈Pab

τijx
s
ij +

∑
k∈N(a)

δakzak+

+
∑

k∈N(b)

δbkzbk + φab] ≤M+
abrab ∀a, b ∈ N : a < b, (11)

βab ≤ Tab − [
∑
s∈Sab

∑
(i,j)∈Pab

τijx
s
ij +

∑
k∈N(a)

δakzak+

+
∑

k∈N(b)

δbkzbk + φab] +M−
ab(1− rab) ∀a, b ∈ N : a < b, (12)

βab ≤M+
abrab ∀a, b ∈ N : a < b, (13)

rab ≤ vab ∀a, b ∈ N : a < b, (14)∑
i,j∈Q

xsij ≤
∑

t∈Q\{q}

ws
t ∀s ∈ S,Q ⊆ Ns, q ∈ Q : |Q| > 2,(15)

xsij ∈ {0, 1} ∀(i, j) ∈ E, s ∈ S, (16)

vij ∈ {0, 1} ∀i, j ∈ N : i < j, (17)

yi ∈ {0, 1} ∀k ∈ K, i ∈ Tk, (18)

ws
i ∈ {0, 1} ∀s ∈ S, i ∈ Ns, (19)

zik ∈ {0, 1} ∀i ∈ N, k ∈ N(i), (20)

rab ∈ {0, 1} ∀a, b ∈ N : a < b, (21)

βab ≥ 0 ∀a, b ∈ N : a < b. (22)
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Objective (1) minimizes construction cost, and objective (2) maximizes the value of

the captured flows. Constraints (3) require each segment with an extreme in site k to

have an edge connecting a node in the site with a node in the corridor. Constraints (4)

define continuity for each segment, i.e. if a node is the extreme of a segment then it

must have one incident edge since yi = 1 when i belongs to the extreme sets; otherwise

it must have two incident edges (yi = 0). Constraints (5) state that exactly one node

belongs to an extreme set. Constraints (6) enforce minimal distances between non ad-

jacent stations. Constraints (7) state that a node can be assigned to at most one station

belonging to its neighborhood, and constraints (7) enforce that such assignment must

activate the binary variable zik. Constraints (9) and (10) prevent traffic between two

nodes to be considered unless there is active path in the rapid transit network. Con-

straints (11) , (12), and (13) define the variables βab and rab as explained in the following.

Whenever the cost difference between the car and the rapid transit is positive for the

flow (a, b) the constraints (11) force rab to be equal to one. Henceforth, βab is equal to

the mentioned cost difference by constraints (12) and the maximization of objective (2).

Whenever the cost difference between the two modes is negative, i.e. the car is more

advantageous, then the flow is not captured and the non-negativity of variable βab and

constraints (12) force rab to be equal to zero. The value of βab is then forced to zero by

(13). Constraints (14) state that a flow cannot be captured unless there is an active path

for it. Constraints (15) eliminate subtours from the solution. The remaining constraints

define the range of the variables.
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