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2. PERFORMED ACTIVITIES 
 

During the research stay at  Instituto de Ciencias de la Tierra Jaume Almera 

(CSIC), Barcelona, the research activity was devoted to the statist ical analysis of 

the time series of the continuous seismic signal  recorded from 15/07/2011 to 

29/02/2012 at El-Hierro (Canary Islands) (Fig. 1). The seismic tremor ground 

motion amplitude (RSAM) (counts) was computed in the vert ical  seismic 

component by averaging the modulus of the signal. Continuous seismic data were 

subdivided into windows of 600 s (10 min at  50 Hz) with no overlap; in each 

window the integral of the modulus of the signal was computed after removing the 

instrumental offset  (Fig. 2). Within the observation period the volcano was 

characterized by an eruptive phenomenon started on 10 October 2011 that lasted 

few weeks.  

The statistical  analyses performed on these data were:  

1) multifractal, by using the Multifractal  Detrended Fluctuation Analysis;  

2) entropic-informational, by using the Fisher-Shannon method. 

The details of the performed analysis along with the obtained results are described 

in the following sections 2.1 and 2.2.  

 

2.1 Multifractal  Analysis 

2.1.1 The method 

The multifractal analysis was performed by means of the Multifractal Detrended 

Fluctuation Analysis (MF-DFA) (Kantelhardt et al. ,  2002), which is an effective 

tool to characterize multifractal ity in nonstationary data. The method is based on 

the well-known detrended fluctuation analysis (Peng et al.,  1995). Considered the 

time series x(i), with i=1,2, .. . ,N and N the length of the series, x av e indicates the 
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mean of the series. Assuming that x(i) are increments of a random walk process 

around the average x av e,  the “trajectory” or “profile” is obtained by integrating the 

signal  

 
Fig. 1. Map of the El-Hierro volcano and seismicity from 17 July 2011 to 10 October 2011. 
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The integrated time series is divided into NS=int(N/s) non overlapping segments of 

equal length s (called time scale), s tarting from the beginning of the series.  

Because N/s often is  not an integer, a short part at the end of the profile y(i) may 

remain. To not disregard such part , the same procedure is repeated starting from 

the opposite end. Thereby, 2NS  segments are obtained altogether. The local trend 

for each of the 2NS  segments is calculated by a least square fit  of the series. 

Afterwards, the variance is  computed 
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for each segment ν ,  ν=1,. . ,NS  and 
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for ν=NS+1,. . ,2NS ,  where yν (i) represents the p-th degree fitting polynomial in 

segment ν .  Averaging over all segments the following q-th order fluctuation 

function 
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is obtained, where, in general, the index variable q can take any real value except 

zero.  
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Fig. 2. RSAM data measured at  El-Hierro volcano from 15 July 2011 to February 2012. 

 
 

Repeating the procedure described above, for several t ime scales s , Fq(s) wil l 

increase with increasing s. Then analyzing log-log plots Fq(s) versus s for each 

value of q,  the scaling behaviour of the fluctuation functions can be determined. If  
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the series x i  is long-range power-law correlated, Fq(s) increases for large values of 

s as a power-law 

Fq(s)∝  s
h (q )

.  

The value h(0) corresponds to the limit  h(q) for q→0, and cannot be determined 

directly using the averaging procedure above because of the diverging exponent. 

Instead, a logarithmic averaging procedure has to be employed, 
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In general the exponent h(q) will depend on q.  In particular for monofractal  series 

it  is independent of q. For stationary time series, h(2) is the well-defined Hurst   

exponent H (Feder,  1988).  Thus,  we call  h(q) the generalized Hurst  exponent.  The 

different scaling of small and large fluctuations will  yield a significant 

dependence of h(q) on q. For positive q,  the segments ν  with large variance (i.e.  

large deviation from the corresponding fi t) will  dominate the average Fq(s). 

Therefore, i f q is  positive,  h(q) describes the scaling behaviour of the segments 

with large fluctuations; and generally,  large fluctuations are characterized by a 

smaller scaling exponent h(q) for mult ifractal time series.  For negative q, the 

segments ν  with small variance will dominate the average Fq(s). Thus, for negative 

q values, the scaling exponent h(q) describes the scaling behaviour of segments 

with small fluctuations, usually characterized by larger scaling exponents.  

The multifractal  scaling exponents h(q) are directly related to the scaling 

exponents τ(q) defined by the standard partition function multifractal formalism 

(Kantelhardt  et al. ,  2002) 

τ(q)=qh(q)-1.  

The singularity spectrum f(α)  is related to τ(q) by means of the Legendre 
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transform (Parisi and Frish, 1985),  

dq

dτ
α =

  

f(α)=qα-τ(q),  

where α is the Hölder exponent and f(α)  indicates the dimension of the subset of 

the series that is characterized by α.  The singulari ty spectrum quantifies in detai ls 

the long-range correlation properties of a time series.   

 

2.1.2 The results 

We divided the whole observation period in three windows: 

a)  from 15 July 2011 to 10 October 2011 (pre-eruptive phase) 

b)  from 10 October 2011 to 22 November 2011 (1
s t

 eruptive episode) 

c)  from 22 November 2011 to 29 February 2012 (2
n d

 eruptive episode) 

Fig. 3 shows the multifractal spectrum of the whole RSAM record along with those 

of the three data segments, as defined above.  
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Fig. 3. Multifractal spectra of RSAM and the three data segments as defined in the text. 
 

 

The multifractality can be quantified by means of the width, defined as ∆=αmax-

αmi n ,   

and the asymmetry, given by 
0max

min0

αα

αα

−

−
=A ,  where α0  is the α-value at which f(α) is  

maximum, and αmi n  and αma x  are the minimum and the maximum α-value.   A more 

or less multifractal signal (which means that ∆  is large or small), implies a more 

or less heterogeneous signal; a signal is heterogeneous if i t  is characterized by 

sudden bursts of high frequency, intermittency, irregularity. The asymmetry 

indicates the relative dominance of the low and high generalized Hurst exponents,  

implying the relative dominance of the large and small fluctuations respectively; 

A=1, the spectrum is symmetric; i f A>1, the multifractal spectrum is left-skewed; 

if A<1 the spectrum is right-skewed. A left-skewed spectrum indicates that the 
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dynamics of the signal is  dominated by the large fluctuations,  while a right-

skewed spectrum indicates that the small fluctuations dominate the dynamics of 

the signal . In our case RSAM data have ∆∼1.03 and A∼1.9. These values suggest 

that  the RSAM data are characterized by a certain multifractality degree, meaning 

a certain degree of heterogeneity;  furthermore, the dynamics is dominated by the 

relative large fluctuations.  

 

 ∆  A 

RSAM 1.03 1.9 

Pre-eruptive 1.296 1.338 

1
s t

 eruptive episode 0.711 1.312 

2
n d

 eruptive episode 0.778 1.263 

Table 1.  Multifractal characteristics of the data 

 

Comparing these values with those obtained for the three different data segment  

(see Table 1), ∆  and A for the RSAM can be considered a sort of average among 

the corresponding values of three segments. It  is striking that the pre-eruptive 

phase has a value of the multifractal width significantly larger than that of the two 

successive eruptive episodes. However, al l  the three spectra have very close values 

of the asymmetry.  These results  indicate that  during the pre-eruptive phase the 

seismic signal is  characterized by a larger heterogeneity and irregularity,  even 

though in all the three phases the dynamics is dominated by the relative large 

fluctuations. Furthermore, it  is also striking the quasi-collapsing of the two 

multifractal spectra of the signal segments recorded during the two eruptive 

episodes,  indicating similar multifractal fluctuations influencing the dynamics of 
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the signal  in these two eruptive episodes. 

 

 
2.2 Entropic-informational analysis 

2.2.1 The method 

The complex temporal fluctuations of nonstat ionary signals can be well 

investigated by using two informational measure: the Fisher Information Measure 

(FIM) and the Shannon entropy power (NX), well known in the information theory 

framework. The FIM quantifies the amount of organization or order in a system, 

while NX  measures its degree of uncertainty or disorder.  The Shannon entropy 

quantifies the amount of uncertainty of the prediction of the outcome of a 

probabilistic event,  being zero for determinist ic events. Therefore,  higher the 

Shannon entropy of a system, higher its degree of unpredictability.  

Formally,  both the FIM and the Shannon entropy are defined as follows. Let f (x)  

be the probability density of a signal x ,  then its  FIM I  is given by 
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and its  Shannon entropy is defined as:  
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For continuous distributions the Shannon entropy can take any real  positive and 

negative value.  Therefore,  in order to avoid to deal  with negative measures, the 

so-called Shannon power entropy NX  can be used instead of the Shannon entropy:  
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The calculation of the FIM and the Shannon entropy power depends on the reliable 

estimation of the probability density function f (x)  (pdf), which can be performed 

by means of the kernel density estimator technique (Devroye, 1987; Janicki and 

Weron, 1994) that approximates the pdf as: 
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with b  the bandwidth, M  the number of data and K(u)  the kernel function, which is  

a continuous non-negative and symmetric function satisfying the two following 

constraints:  

K(u)≥0 and 1)( =∫
+∞

∞−

duuK .                                                                 

In our study, the estimation of the pdf was performed by using the algorithm 

developed in Troudi et  al.  (2008) combined with that developed in Raykar and 

Duraiswami (2006),  that  uses a Gaussian kernel with zero mean and unit  variance:   
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2.2.2 The results 

The time-varying FIM and NX   was investigated for the RSAM signal measured at 

El-Hierro. A sliding time window was employed to calculate the time variation of  

the local informational parameters. A sl iding window of 10
3
 samples (~7 days) was 
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used to compute the local  FIM and NX .  Each computed value was associated with 

the time of the last sample in the sliding window. The shift between two 

successive windows was set at 10 samples (equivalent to 10
2
 minutes), in order to 

smooth the results and evaluate the variation of the informational parameters with 

a relat ively high time resolution. Fig. 4 shows the results of the local  FIM.  
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Fig. 4. Time-varying FIM and RSAM data. 

 

Generally speaking, the variabil ity of the local FIM indicates that the volcanic 

system of El-Hierro changes its dynamical state between less organized structures 

(low FIM values) and more organized ones (high FIM values).  A more detailed 

analysis of the FIM variat ion shows several features that are not directly 

observable in the RSAM time series: i) from the beginning of the recording unti l 

20 August 2011, the local FIM is characterized by an oscil lating behavior; i i) then, 

until  approximately 27 September 2011, the local FIM is quite stable with 
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relat ively low values; iii ) during the successive period until the onset of the 

eruption on 10 October 2011, the local  FIM is characterized by a visible increase 

that culminates in the highest FIM value about 1 days after the onset of the 

eruption on 11 October 2011, followed by a smaller peak on 18 October 2011, but 

dropping down almost suddenly on 19 October 2011; iv) from late October 2011 

until late  November 2011, the FIM shows the presence of other two visible peaks,  

about at 3 and 26 November 2011; v) then it  stabilizes at relat ively low values 

until  18 January 2012, since when it starts to have a quasi-oscillating behavior 

similar to that  shown at the beginning of the record.  
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Fig. 5. Time-varying NX and RSAM data. 

 

Fig. 5 shows the t ime variation of the Shannon entropy power NX .  The Shannon 

entropy power quantifies the amount of disorder or uncertainty of a system, so i t  

behaves approximately in opposition with the FIM.  Although the behavior of the 
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NX  appears more irregular than FIM, i t  is  still  recognizable the main pattern as we 

detected in the FIM time variation: drops (which have a counterpart in the FIM 

peaks), and the quasi-stable phases (which correspond to the quasi-stable phases in 

the FIM evolution).  However,  it  is  clear that , of the two, the FIM is a much better 

indicator of the underlying dynamical change in the volcanic system of El-Hierro.  

In fact , the amplitude of the FIM peaks is larger than that of the NX  drops,  

indicating that the FIM yields more discrimination power between the different  

states of the volcano. 

 

3. CRITICAL EVALUATION OF THE PROJECT 

The research activity performed during my stay at Instituto de Ciencias de la 

Tierra Jaume Almera (CSIC) was successful and the objectives of the STM project  

were fully reached. 

In particular:  

1) It  was planned to submit two papers at  scientific International journals with the 

citation of the STM 2013 CNR Program; 

2) The scientific collaboration was strengthened not only with the ICTJA-CSIC in 

Barcelona, but also with the IGN in Madrid 
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