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Abstract

During my visit at the Department of Statistics and Operations
Research of the Politechnic University of Catalonia in Barcelona from
June 13 to July 04, 2011, I studied the Controlled Tabular Adjustment
problem (CTA) of statistical tables by means of the Euclidean distance.

Any institution that disseminates data in aggregated form has to
guarantee that individual confidential information is not disclosed.
This is specially relevant for tabular data released by national statisti-
cal agencies (NSAs). Protection techniques for tabular data are divided
into perturbative (they modify information) and non-perturbative (they
hide information). Among the perturbative approaches we find con-
trolled tabular adjustment, an emerging technique being considered
by some NSAs (such as Eurostat). Briefly, given some unsafe tabular
data, CTA attempts to find the protected closest one according to some
distance. CTA results in a challenging integer optimization problem.
Previous research on CTA focused on L1 distances. This is the first
attempt to efficiently solve CTA with Euclidean distances, formulated
as a mixed integer quadratic problems. These are approached by per-
spective reformulations that have recently given good performances.
We compare different algorithms to solve perspective reformulations
on CTA, reporting the computational results. This report will be the
base for a paper that will be sent in a major international journal.

1 Introduction

The most important mission of National Statistical Agencies (NSAs), and
a significant mission of several other institutions, is to provide high-quality
statistical data. These data are disseminated either in disaggregated (i.e.,
microdata or microfiles) or aggregated (i.e., tabular data) form. A micro-
data file is a matrix of individuals by variables, where each cell provides the
information of a particular individual for some particular variable. Cross-
ing two or more categorical variables of the microdata file produces tabular
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· · · Si · · · Sj · · ·
... · · · · · · · · · · · · · · ·

ASk · · · 450M$ · · · 35M$ · · ·
... · · · · · · · · · · · · · · ·

ASl · · · 625M$ · · · 770M$ · · ·
... · · · · · · · · · · · · ...

(a)

· · · Si · · · Sj · · ·
... · · · · · · · · · · · · · · ·

ASk · · · 22 · · · 1 / 2 · · ·
... · · · · · · · · · · · · · · ·

ASl · · · 27 · · · 33 · · ·
... · · · · · · · · · · · · ...

(b)

Figure 1: Example of disclosure in tabular data: (a) turnover and (b) num-
ber of companies per activity sector and state.

data, either a single multiway or multidimensional table, or a set of related
tables. There are stringent requirements that no confidential or sensitive
information of any individual can be disclosed from the released data; not
only this is dictated by law, but also respondents (e.g., of a census) may
be tempted to hide or change information if they suspect that their confi-
dential information may be released. This justifies the interest in statistical
disclosure control, i.e., the set of techniques that can be deployed to pro-
tect sensitive information. In particular, the focus of this work is on tabular
data protection; seminal work on this field can be found in Bacharach (1966),
and the current state-of-the-art is described in the recent surveys of Salazar-
González (2008) and Castro (2011), as well as in the monographs Willenborg
and de Waal (2000), Hundepool et al. (2010).

Although tabular data provide aggregated information, the publication
of some cells may jeopardize individual information. Consider the small ex-
ample of Figure 1: if there is only one company with activity sector ASk in
state Sj, then any attacker knows the turnover of this company. For two
companies, any of them can deduce the other’s turnover, becoming an in-
ternal attacker. Clearly, the risk in the example is due to a small number of
respondents in cell (ASk,Sj). However, even if the number of respondents
was larger, there could be a disclosure risk if some companies can obtain
a tight estimator of another’s turnover (for instance by subtracting its own
contribution from the cell value). Unsafe or sensitive cells are a priori de-
termined before the application of any tabular data protection method, by
applying some “sensitivity rules”. These rules are out of the scope of this
work; e.g., see Domingo-Ferrer and Torra (2002), Hundepool et al. (2010)
for details.
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Disclosure limitation techniques for tabular data are classified as per-
turbative if one is allowed to add small perturbations or adjustments to
released data, and as nonperturbative if released cell values must be exact,
and therefore one is only allowed to entirely eliminate cells. Clearly, non-
perturbative approaches are therefore more rigid than perturbative ones.
Furthermore, the most widely used nonperturbative approach, cell suppres-
sion (Kelly et al. 1992, Fischetti and Salazar-González 2001, Castro 2007),
requires the solution of large-scale optimization problems to identify the op-
timal set of cells to be suppressed. It is perhaps not surprising, therefore,
that perturbative approaches are being considered as emerging technologies
for tabular data protection. In particular, Controlled Tabular Adjustment
(CTA) is gaining recognition and acceptance among NSAs (Zayatz 2009),
as testified by the recent handbook Hundepool et al. (2010) and by the
fact that it is currently used by Eurostat (Statistical Office of the European
Communities) within a wider protection scheme for tabular data (Giessing
et al. 2009). Figure 1 can be used to illustrate CTA. If cell (ASk,Sj) of table
(a) is considered sensitive, with lower and upper protection levels of 5, then
the published value of this cell must be in the range (−∞, 30]∪ [40,∞). We
say that the protection sense is “lower” or “upper” if the published value is,
respectively, in (−∞, 30] or in [40,∞). The remaining cells in the same col-
umn and row of the sensitive cell have to be accordingly adjusted to preserve
the marginal values, while minimizing the distance between the original and
the released values. Since each sensitive cells introduces a disjunctive con-
straint, which can be formulated by adding one binary variable, when the
number sensitive cells is large CTA is a difficult combinatorial optimization
problem.

It is worth remarking that, while the tables of Figure 1 are two-way
(two-dimensional) ones, in general the situation can be much more com-
plex. Tables can be classified in (i) k-dimensional tables, which are ob-
tained by crossing k categorical variables; (ii) hierarchical tables, or set of
tables that share some variables with hierarchical structure (e.g., “coun-
try”, “state/province”, “city”); (iii) linked tables, the most general situa-
tion, which is a set of tables that are obtained from the same microdata. A
particularly interesting case for NSAs, which will be tested in this work, are
two-dimensional hierarchical tables that share one hierarchical variable (e.g.,
tables that show the turnover crossing “activity sector” by “country”, “ac-
tivity sector” by “state/province”, and “activity sector” by “city”). These
are named one-hierarchical two-dimensional tables (or 1H2D for short), and
their relations can be represented as a tree of tables. However, table rela-
tions for any type of table are represented by linear constraints, where the
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sum of the inner cells is equal to the marginal cell; thus, the techniques de-
veloped in this paper are applicable to the most general case (linked tables”)
as well.

In all previous works on CTA, the L1 or Manhattan norm has been used
to measure the distance between the original and the protected published
data (Dandekar and Cox 2002, Castro 2006). This has the advantage that
CTA can then be formulated as a Mixed Integer Linear Problem (MILP)
with a number of variables and constraints that is linear in the size of the
table, and whose solution can therefore be attempted with generic state-of-
the-art MILP solvers. By contrast, formulations of the cell suppression prob-
lem are much larger and require the application of specialized approaches
such as Benders decomposition. This is not to say that CTA, even with the
L1 distance, is an easy problem; for large (1H2D) tables MILP solvers may
require a long time even to provide a first feasible solution, and therefore
heuristic approaches (González and Castro 2011) are required to provide
practical solutions in a reasonable time. It can be expected that CTA with
L2 (Euclidean) distance, which results in a Mixed Integer Quadratic Prob-
lem (MIQP), is even more difficult to solve; this is likely the reason why
this work is, to the best of our knowledge, the first one where such a feat is
attempted. Yet, protecting a table using L2 in CTA has several benefits:

• Weighting the distance between the original and the published cell
value by the inverse of the original cell value, the objective function of
CTA minimizes the well-known χ2 distance between the original and
the released table, which is useful for the statistical evaluation of the
results.

• The L2 distance more evenly distributes the deviations induced by
sensitive cells to other cells. This avoids concentration of deviations in
few cells, which improves the overall utility of the published data, as
measured, e.g., by the number of non-sensitive cells whose published
value is “significantly” different from the original data.

• From a computational point of view, once the binary variables are
fixed (i.e., the protection sense is decided), the solution of the result-
ing continuous problem can be more efficient for L2 than for L1 if
specialized interior-point methods are used, which can be orders of
magnitude faster than state-of-the-art general-purpose solvers (Castro
and Cuesta 2010).

On the other hand, the protected values provided by CTA with the L2 dis-
tance will likely be more fractional than those provided by the L1 distance,
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which has been often observed in practice to provide integer values even
without imposing integrality constraints. Yet, this is not a significant draw-
back since CTA is mainly used for “magnitude” tables which do not provide
frequencies but information about a third continuous variable (salary, net
profit, turnover, . . . ) which is most often fractional.

Fortunately, as we will see, the main structural characteristic of MIQP
formulations of CTA with the L2 distance (from now on, simply “CTA”) is
very closely related to convex separable quadratic-cost models with semicon-
tinuous variables, which are naturally formulated as in the following (frag-
ment of) MIQP

min
{

wz2 + cy : yl ≤ z ≤ yu , y ∈ {0, 1}
}

(1)

where w > 0 and l < u. This is useful because (1) admits the Perspective
Reformulation (PR)

min
{

wz2/y + cy : yl ≤ z ≤ yu , y ∈ {0, 1}
}

. (2)

Despite the weird look and the apparent ill-definiteness at y = 0, the ob-
jective function in (2) is convex, and it actually is the convex envelope of
an appropriately re-defined version of the objective function in (1), i.e., the
best possible objective function to have when the integrality constraints
y ∈ {0, 1} are relaxed to y ∈ [0, 1]. Indeed, (2) has at least two possible
further reformulations which avoid the fractional term in the objective func-
tion with the associated difficulties (nondifferentiability, possible numerical
problems) at y = 0: one is the Mixed Integer Second-Order Cone Program

min
{

v + cy : yl ≤ z ≤ yu,
√

wz2 + (v − y)2/4 ≤ (v + y)/2, y ∈ {0, 1}
}

(3)

(Tawarmalani and Sahinidis 2002, Aktürk et al. 2009, Günlük and Linderoth
2008), and another is the Semi-Infinite MILP

min
{

v + cy : yl ≤ z ≤ yu, v ≥ w(2γz − γ2y), γ ∈ [l, u], y ∈ {0, 1}
}

(4)

where γ is the index of the infinitely many linear constraints (called Per-
spective Cuts in Frangioni and Gentile (2006)) whose pointwise supremum
completely describes the objective function in (2). Either (3) or any finite
approximation to (4)—typically, to be iteratively refined—can be used as
models of (2), whose continuous relaxation is significantly stronger than that
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of (1) and that therefore is a more convenient starting point to develop ex-
act and approximate solution algorithms (Frangioni and Gentile 2006, 2007,
Günlük and Linderoth 2008, Aktürk et al. 2009, Frangioni et al. 2009).
Somewhat surprisingly, the potentially very large and approximated (4) ap-
pears to be most often preferable to the compact and exact (3) in the context
of exact or approximate enumerative solution approaches (Frangioni and
Gentile 2009), likely due to the better reoptimization capabilities of simplex
methods for linear and programs w.r.t. these of interior point methods for
conic programs. Furthermore, a different approach has been recently pro-
posed in Frangioni et al. (2011) that can be applied under some restrictive
hypotheses, some (but not all) of which satisfied in our application. The
idea is to recast the continuous relaxation of (2) as the minimization over
z ∈ [0, u] of the function

φ(z) = miny

{

wz2/y + cy : ly ≤ z ≤ uy , y ∈ [0, 1]
}

(5)

which effectively eliminates the y variable from the problem. The function
φ is convex (partial minimization of a convex function), and its closed form
can be computed by simple algebraic steps revealing a piecewise-quadratic
function with at most two pieces, at most one of them actually quadratic
(and the other linear). When the underlying problem has a useful structure
(e.g., network flow or knapsack), the continuos relaxation of (2) obtained in
this way retains that structure, which allows to use specialized algorithms to
solve it and therefore to outperform both (3) and (4). Yet, direct application
of that approach is only possible under rather restrictive assumptions that
are not satisfied in our case.

In this paper we discuss the application of Perspective Reformulation
techniques to the CTA problem. In particular, other than the standard
approaches (3) and (4) we develop and test a new reformulation partly
inspired by the results of Frangioni et al. (2011). However, since our problem
is different and somewhat more complex, the “projected” version of the PR
we obtain is substantially different and trickier to use. Thus, instead of
insisting in keeping the equivalence with the original formulation we “drop
the nastier pieces” and end up with an approximated reformulation, which is
only as tight as the PR in some special cases, and looser otherwise. However,
this reformulation results in a simpler (although non-separable) MIQP to be
solved, and therefore it is most often preferable to the standard approaches
(3) and (4); furthermore, it suggests a simple modification to the latter
which invariably improves its performances. Armed with these results we
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show on a large experimental set that CTA for 1H2D of realistic sizes can
often be solved effectively enough.

We remark that the Perspective Reformulation approach is much more
widely applicable than the simple quadratic case we consider here: it not
only applies to the objective function but also to constraints f(z) ≤ 0 that
are “activated” if and only if a binary variable y is 1, f can be any closed
convex (possibly, SOCP-representable) function, z can be a vector whose
feasible region can by any bounded polyhedron; see (Ceria and Soares 1999,
Tawarmalani and Sahinidis 2002, Grossmann and Lee 2003, Frangioni and
Gentile 2006, Hijazi et al. 2011) and the recent survey Günlük and Linderoth
(2011). Thus, some of the ideas developed here could be extendable to more
complex situations.

2 Formulations of the CTA problem

Any CTA problem instance, either with one table or a number of tables, can
be represented by the following elements:

• a set of n cells ai, i ∈ N = {1, . . . , n}, that satisfy m linear relations
Aa = b (a = [ai]i∈N ); in the general case, if Ij is the set of inner
cells of relation j ∈ {1, . . . ,m}, and tj is the index of the total or
marginal cell of relation j, the constraint associated to this relation is
∑

i∈Ij
ai − atj = 0;

• the subset S ⊆ N of indices of sensitive cells, and hence its complement
U = N \ S;

• a vector of nonnegative cell weights w = [wi]i∈N ;

• finite lower and upper bounds l̄a ≤ a ≤ ūa for each cell reasonably
known by any attacker;

• nonnegative lower and upper protection levels for each confidential cell
i ∈ S, li and ui respectively, such that the released values x = [xi]i∈N
are considered to be safe if they satisfy

either xi ≥ ai + ui or xi ≤ ai − li for all i ∈ S . (6)

Given any weighted distance ‖ · ‖w, CTA can then be formulated as

min
{

‖x− a‖w : Ax = b , l̄a ≤ x ≤ ūa , (6)
}

(7)
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since one seeks for the released values x that are closest (in the given norm)
to the true values a, compatible with the relationships that a is known to
have to satisfy, and protected according to (6). Of course, the disjunctive
constraints (6) are the difficult part of the problem, their feasible region
being nonconvex. Formulating it hence requires some nonconvex element,
the simplest one being a vector of binary variables y = [yi]i∈S ∈ {0, 1}|S|. It
is also convenient to restate the problem in terms of the deviations z = x−a
from the true cell values, which therefore have to satisfy l̄a − a = l̄ ≤ z ≤
ū = ūa − a; this gives the formulation

min ‖z‖w
Az = 0
l̄ ≤ z ≤ ū
l̄i(1− yi) + uiyi ≤ zi ≤ ūiyi − li(1− yi) i ∈ S
yi ∈ {0, 1} i ∈ S

(8)

with “natural big-M constraints”. Indeed, when yi = 1 one has zi ≥ ui
and thus the protection sense is “upper”, while when yi = 0 one rather gets
zi ≤ −li and thus the protection sense is “lower”. While this formulation is
correct, it would provide rather weak bounds when its continuous relaxation
is formed by replacing the (nonconvex) integrality constraints yi ∈ {0, 1}
with (the convex) yi ∈ [0, 1]. The simple example with n = 1, “empty” A,
l1 = u1 = 10 and −l̄1 = ū1 = 100 shows that for y1 = 1/2 the solution
z1 = 0 is feasible to the relaxation, whose optimal value is therefore 0 while
the optimal value of the integer problem is ‖10‖w. Since weak bounds are
very detrimental for the solution of the problem via exact or approximate
approaches, we aim at constructing “better” formulations of the problem.

A first step in this direction is to introduce vectors of positive and neg-
ative deviations z+ ∈ R

n and z− ∈ R
n, respectively, thereby redefining

z = z+ − z−; this allows to reformulate the disjunctive constraints in (8) as

uiyi ≤ z+i ≤ ūiyi

li(1− yi) ≤ z−i ≤ −l̄i(1− yi)

yi ∈ {0, 1}

i ∈ S (9)

As before, when yi = 1, the constraints force ui ≤ z+i ≤ ūi and z−i = 0,
thus the protection sense is “upper”; conversely, when yi = 0 we get z+i = 0
and li ≤ z−i ≤ −l̄i, thus the protection sense is “lower”. This alone is
not enough to improve on the bounds, as in the above example we now
have z+1 = z−1 = 5 as a feasible solution for y1 = 1/2, which still leads
to a null bound. However the advantage of this formulation is that we
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now have two semicontinuous variables, to which we can hope to apply
Perspective Reformulation techniques. This is not straightforward: the two
semicontinuous variables are governed by the same integer variable, and
unlike in standard cases—where this is possible, provided that all variables
are “active” or “inactive” at the same time—one of them is “active” if and
only of the other is not. Furthermore, the objective function is nonseparable
in z+ and z−, and the convex envelope of multilinear functions, even if
with only two variables as here, is notoriously a complex object (cf. Luedtke
et al. (2010) and the references therein) so that “dirty tricks” have to be
used (Frangioni and Gentile 2007) in order to apply PR techniques. Thus,
the next paragraph will be devoted to the study of the convex envelope for
our particular case.

3 Perspective Reformulations of the CTA problem

In the following we will most often concentrate on a single cell i ∈ S; thus,
to simplify the notation we will consider the index i as fixed and drop it.
In order to improve the lower bound provided by the continuous relaxation,
one possibility is to compute the convex envelope of the nonconvex function

f(z+, z−, y) =







w(z+ − z−)2 if u ≤ z+ ≤ ū, z− = 0 and y = 1
w(z+ − z−)2 if l ≤ z− ≤ −l̄, z+ = 0 and y = 0
+∞ otherwise

(10)

This can be accomplished by considering two arbitrary points u ≤ z̄+ ≤ ū
and l ≤ z̄− ≤ −l̄ and computing the convex combinations of the two tuples
in the epigraphical space

( z̄+, 0, 1, w(z̄+)2 ) ( 0, z̄−, 0, w(z̄−)2 ) .

In other words, taking any arbitrary convex combinator θ ∈ [0, 1] and using
the shorthand f(z) = wz2 (which also suggests how the approach can be
generalized), we have

θ( z̄+ , 0 , 1 , f(z̄+) ) + (1− θ)( 0 , z̄− , 0 , f(z̄−) ) =

( θz̄+ , (1− θ)z̄− , θ , θf(z̄+) + (1− θ)f(z̄−) )

Now, identifying θ ≡ y, z+ ≡ θz̄+ and z− ≡ (1 − θ)z̄− we can rewrite the
above as

(

z+ , z− , y , yf

(

z+

y

)

+ (1− y)f

(

z−

1− y

) )
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which finally leads to

cof(z+, z−, y) =















w
(

(z+)2

y
+ (z−)2

1−y
)
)

if
uy ≤ z+ ≤ ūy

l(1− y) ≤ z− ≤ −l̄(1− y)
y ∈ [0, 1]

+∞ otherwise

and therefore to the following PR of (8):

min
∑

i∈U wi(z
+
i − z−i )

2 +
∑

i∈S wi

(

(z+i )
2/yi + (z−i )

2/(1− yi)
)

(11)

A(z+ − z−) = 0 , 0 ≤ z+ ≤ ū , 0 ≤ z− ≤ −l̄ , (9) (12)

In other words, the PR can be seen as being obtained as follows:

1. substitute (z+ − z−)2 in the objective function with (z+)2 + (z−)2,
which is correct since in each integer solution z+z− = 0;

2. treat z+ and z− as two distinct semicontinuous variables with two dis-
tinct binary variables, say y+ and y−, and apply the standard PR (2);

3. now exploit the fact that y++y− = 1 to replace y+ = y and y− = 1−y.

While this sequence of reformulation steps could have been devised indepen-
dently (but, to the best of our knowledge, has never had), our analysis has
suggested them, as well as proved that this is in fact the convex envelope of
the fragment. Actually, the analysis suggests that one can further improve
the PR even regarding the non-sensitive cells i ∈ U . In fact, these can be
considered as sensitive cells with l = u = 0 and l̄ = ū = +∞, and therefore
it is clear that one could have been taken

(MIQP) min
{

∑

i∈N wi

(

(z+i )
2 + (z−i )

2
)

: (12)
}

as the original MIQP formulation of CTA, to which then directly apply
steps 2. and 3. above, thus obtaining

(PR) min
{

∑

i∈U wi

(

(z+i )
2+(z−i )

2
)

+
∑

i∈S wi

(

(z+i )
2/yi+(z−i )

2/(1−yi)
)

: (12)
}

.

Note how (MIQP) have already improved the lower bound: for our example
of the previous paragraph (with w1 = 1), z+1 = z−1 = 5 and y1 = 1/2,
(MIQP) gives a bound of 50 instead of 0. Yet, (PR) is even better: for the
same solution it gives a bound of 100, which (as expected) is the optimal
solution to the problem.
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Then by applying standard SOCP and SI reformulation tricks to (PR),
i.e., formulae (3) and (4), to express the objective function in terms of one
conic constraint/infinitely many linear constraints respectively, we obtain
two reformulations of CTA that we denote as (SOCP) and (P/C), respec-
tively.

Conversely, applying the projection approach of Frangioni et al. (2011)
following the same guidelines is not possible. The reason is that the main
condition required for that to work is that the binary variable corresponding
to one semicontinuous variable only appear in the corresponding constraints
(9) and nowhere else, or, in other words, that there are no constraints di-
rectly linking the binary variables to one another. This is clearly not the
case here, as the constraint y+ + y− = 1 is crucial.

In order to extend the projection approach of Frangioni et al. (2011) to
CTA we then have to explicitly carry out the analysis for our case. This is
done by considering the (clearly, convex) function

g(z+, z−) = miny
{

cof( z+ , z− , y ) : y ∈ [0, 1]
}

(13)

and carrying out a case-by-case analysis of its shape. This is significantly
more complex and rather tedious, so the details are best relegated to the
Appendix. These can be summarized by the following Theorem.

Theorem 1 The function g(z+, z−) is piecewise-conic-quadratic with at most
three pieces. If cell i is reasonably balanced, i.e., max{ li , ui } <
min{ ūi , −l̄i }, then g(z+, z−) has exactly three pieces, the “central” one of
which is

(z+i + z−i )
2 (14)

that is also the lower approximation to g(z+, z−) corresponding to the relax-
ation of the bounds constraints. If, furthermore, cell i is totally symmetric,
i.e., ūi = −l̄i and li = ui, then (14) actually coincides with g(z+, z−).

It would be then possible to derive a projected model analogous to these
of Frangioni et al. (2011) for CTA, but the prospects of doing so are not
particularly encouraging. First of all, the corresponding model would be a
SOCP with up to three conic constraints for each sensitive cells; the standard
formulation (SOCP), which already has only two of them, is typically not
competitive with (P/C) (Frangioni and Gentile 2009), a fact that we directly
verified to be true for CTA also. Furthermore, the rationale of Frangioni
et al. (2011) is to exploit structural properties in the original problem, which

11



are notably absent here since the matrix A lacks exploitable characteristics
for general tabular data.

Yet, the analysis readily suggests a workable alternative: use the model

(MIQP+) min
{

∑

i∈N wi

(

z+i + z−i
)2

: (12)
}

instead of (MIQP), (SOCP) or (P/C). This is possible since (14) is a lower
approximation to (13); furthermore, the two objective function clearly coin-
cide on integer solutions. The model is clearly stronger than (MIQP). The
(MIQP+) model is somewhat simpler than (SOCP), not requiring conic con-
straints; however, it has a nonseparable (albeit only slightly so) objective
function. It is also more compact than (P/C), which however is a separable
quadratic model.

Note that, as in the previous case, there is no need to distinguish between
sensitive and non-sensitive cells: the reformulation of the objective function
can be applied to either, and this actually has—as it can be expected—
positive results. Indeed, since non-sensitive cells are equivalent to totally
symmetric sensitive ones, as previously seen the analysis suggests to rather
consider

(PR+) min
{

∑

i∈U wi(z
+
i +z−i )

2+
∑

i∈S wi

(

(z+i )
2/yi+(z−i )

2/(1−yi)
)

: (12)
}

as the “starting” Perspective Relaxation. Thus, other than (MIQP), (SOCP),
(P/C) and (MIQP+), there are two further possible models: (SOCP+) and
(P/C+), obtained from (PR+) exactly as (SOCP) and (P/C), respectively,
are obtained from (MIQP). Compared to (SOCP) and (P/C), these new
models have (slightly) nonseparable objective function but may provide bet-
ter results. The relative strengths and weaknesses of these six models can
only be gauged computationally, which is done in the next paragraph.

4 Computational Tests

We performed a large computational experience to compare the six models
(MIQP), (P/C), (SOCP), (MIQP+), (P/C+), and (SOCP+). All tests have
been done by using CPLEX 12.1 solver and setting CPX PARAM NUMERICALEMPHASIS

to 1. (SOCP) and (SOCP+) have been tested but were regularly worse and
therefore not reported.
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instance cells sens. cells tab. cons vars. cons. %purebinvar
10-20-3 2877 81 452 5835 777 1.39
10-20-5 3163 150 466 6475 1064 2.31
10-20-10 2772 262 447 5806 1495 4.51
10-30-3 4569 131 612 9270 1137 1.42
10-30-5 4185 201 600 8571 1403 2.34
10-30-10 4706 452 617 9864 2426 4.59
20-20-3 6607 188 630 13401 1381 1.40
20-20-5 6426 305 621 13157 1841 2.32
20-20-10 6212 590 611 13013 2969 4.53
20-30-3 9145 264 760 18554 1816 1.42
20-30-5 8947 431 754 18324 2478 2.35
20-30-10 9164 884 761 19211 4296 4.60

Table 1: size and properties of symmetric instances

4.1 Test instances

We generated a number of instances of type 1H2D by using a generator
developed at UPC and validated by an NSA during a European project in-
volving UPC. We considered two types of instances: symmetrical instances
and asymmetrical instances. The former ones have the property that ui = li,
but in general ūi 6= −l̄i, because in many cases we have to ensure nonneg-
ativity of the perturbed values. Asymmetrical instances have also ui 6= li.
For each parameter set we generated 5 instances.

In tables 1 and 2 we specify the size properties of the instances that have
been used: the number of cells, the number of sensitive cells, the number of
tabular constraints, the number of variables and constraints in the resulting
(MIQP) or (MIQP+) models, and % of pure binary variables (that are in
one-to-one correspondence with sensitive cells). These data are the average
over the 5 instances for each combination of the generator parameters . Note
that P/C and SOCP models present more variables and constraints due to
the reformulation tricks (3) and (4).

4.2 Computational Results

In tables 3 and 4 we present the results obtained by considering models
(MIQP+), (P/C+), (MIQP), (P/C). We used a time limit of 10000 seconds.
For each algorithm the first column of the table is the gap at which the
instances have been solved

gap = (UB − LB)/LB,

where UB and LB are the values of the feasible solution and lower bound
provided the algorithm, relatively; the second column is the primal gap
(pgap) that is obtaind by the following formula:

pgap =
UB − bestLB

bestLB
,
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instance cells sens. cells tab. cons vars. cons. %purebinvar
10-20-3-2 2877 81 452 5835 777 1.39
10-20-3-5 3163 89 466 6414 822 1.39
10-20-3-10 2919 82 454 5920 784 1.39
10-20-5-2 3095 146 462 6337 1048 2.31
10-20-5-5 2835 134 450 5804 986 2.31
10-20-5-10 3188 151 467 6526 1070 2.31
10-20-10-2 3230 306 469 6765 1691 4.52
10-20-10-5 3146 298 465 6589 1655 4.52
10-20-10-10 3024 286 459 6334 1603 4.52
10-30-3-2 4476 129 609 9081 1124 1.42
10-30-3-5 4383 126 606 8893 1110 1.41
10-30-3-10 4452 128 609 9031 1121 1.42
10-30-5-2 4439 213 608 9091 1460 2.34
10-30-5-5 4427 212 608 9066 1457 2.34
10-30-5-10 3999 192 594 8190 1360 2.34
10-30-10-2 4334 416 605 9084 2270 4.58
10-30-10-5 4204 404 601 8811 2216 4.58
10-30-10-10 4545 437 612 9526 2359 4.59
20-20-3-2 5985 170 600 12140 1280 1.40
20-20-3-5 6556 186 627 13299 1372 1.40
20-20-3-10 6737 192 636 13665 1402 1.40
20-20-5-2 5905 280 596 12091 1717 2.32
20-20-5-5 6573 312 628 13458 1876 2.32
20-20-5-10 6409 304 620 13123 1837 2.32
20-20-10-2 6082 577 605 12740 2913 4.53
20-20-10-5 6094 578 605 12767 2919 4.53
20-20-10-10 6577 624 628 13779 3126 4.53
20-30-3-2 8804 254 749 17862 1767 1.42
20-30-3-5 9219 266 762 18705 1828 1.42
20-30-3-10 9176 265 761 18617 1822 1.42
20-30-5-2 9126 440 759 18693 2519 2.35
20-30-5-5 8661 417 744 17740 2414 2.35
20-30-5-10 8996 434 755 18426 2490 2.35
20-30-10-2 9170 884 761 19224 4298 4.60
20-30-10-5 9151 883 760 19185 4291 4.60
20-30-10-10 9033 871 756 18938 4241 4.60

Table 2: size and properties of asymmetric instances
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MIQP+ P/C+ MIQP P/C
instance gap pgap time nodes gap pgap time n odes gap pgap time nodes gap pgap time nodes
10-20-3 0.01 0.00 442 474 0.00 0.00 486 357 6.49 0.01 9686 10365 0.00 0.00 1331 1973
10-20-5 0.01 0.00 765 690 0.01 0.00 1016 611 67.62 0.05 10000 2649 0.16 0.00 6695 8675
10-20-10 0.01 0.01 3852 10507 2.21 0.07 7660 2676 72.75 0.14 10000 5536 12.39 0.14 10000 3230
10-30-3 0.01 0.00 1470 760 0.01 0.00 1749 457 127.03 0.02 10000 778 0.98 0.01 9070 3022
10-30-5 0.01 0.01 4850 4003 0.07 0.01 7102 4769 118.53 0.12 10000 1422 15.80 0.03 10000 1853
10-30-10 2.44 2.44 10000 3512 8.26 2.53 10000 889 128.67 2.62 10000 1619 35.30 2.54 10000 643
20-20-3 0.00 0.00 1710 260 0.00 0.00 1874 291 158.64 0.01 10000 636 17.84 0.04 8559 596
20-20-5 0.01 0.01 3543 1507 1.27 0.01 7237 1185 138.59 0.12 10000 625 12.33 0.01 8808 481
20-20-10 7.10 7.10 10000 1968 24.51 7.21 10000 504 142.82 7.60 10000 777 38.22 7.39 10000 262
20-30-3 0.40 0.40 6113 738 3.60 0.41 6800 458 138.85 0.47 10000 726 27.17 0.45 10000 379
20-30-5 7.39 7.39 8791 751 15.19 7.46 8885 379 156.73 9.37 10000 801 32.83 8.02 10000 406
20-30-10 19.92 19.92 10000 674 32.04 21.13 10000 102 153.79 23.08 10000 496 44.06 21.20 10000 56

Table 3: Results for symmetric instances and MIQP+, P/C+, MIQP, P/C

where bestLB is the best lower obtained obtained with one of the four models
The other two columns are the time in seconds and the number of nodes of
the B&C tree. All data are averaged over the 5 instances associated with
the same generator parameters.

We recall that from our theoretical results we derived that (MIQP+)
and (P/C+) provide the same lower bound on fully symmetrical instances.
Although this is not the case as data must be nonnegative, (MIQP+) and
(P/C+) present similar behaviour on the lower bound results because upper
bound constraints are seldom active. From the computational tests we can
see that (MIQP+) generally performs better than (P/C+) on symmetrical
instances. Indeed (MIQP+) solves the instances in fewer seconds and when
it does not succeed to obtain the optimal solution within 10000 seconds it
provides a solution with a better gap. This can be explained as (MIQP+)
does not require constraint generation to compute the Perspective Refor-
mulation bound. On the same instances (P/C) and (MIQP) perform worse
than the other two models. They sport theoretically worse lower bounds
and in particular (MIQP) is much worse than the other three models.

When considering asymmetrical instances we have two different cases.
If the asymmetric parameter is small we have a behaviour similar to the
one observed for symmetrical instances. If the asymmetric parameter is
large (see instances 10 30 10 5, 10 30 10 10, 20 30 10 5, and 20 30 10 10)
the (MIQP+) model presents worse results than (P/C+) model. This re-
spects the property that the (P/C+) model provides better lower bounds
than (MIQP+). Moreover, also the separability of the objective function
gives a contribution to the performance. Indeed, (P/C) is even better than
(P/C+) on these very asymmetrical instances.

15



MIQP+ P/C+ MIQP P/C
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
10-20-3-2 0.00 0.00 23 9 0.00 0.00 58 1 0.01 0.00 1218 7823 0.00 0.00 106 17
10-20-3-5 0.01 0.00 19 1 0.00 0.00 82 1 0.01 0.00 322 197 0.00 0.00 111 1
10-20-3-10 0.00 0.00 15 7 0.00 0.00 55 1 0.01 0.00 270 124 0.00 0.00 78 1
10-20-5-2 0.01 0.00 58 30 0.00 0.00 119 9 0.04 0.00 10000 113601 0.00 0.00 152 32
10-20-5-5 0.01 0.00 21 15 0.00 0.00 79 1 0.01 0.00 1293 2332 0.00 0.00 81 1
10-20-5-10 0.00 0.00 20 2 0.00 0.00 106 1 0.01 0.00 1483 660 0.00 0.00 111 1
10-20-10-2 0.01 0.00 438 556 0.00 0.00 637 181 0.04 0.00 10000 67541 1.49 0.00 2904 370
10-20-10-5 0.01 0.00 4315 31344 0.00 0.00 142 1 0.08 0.00 10000 102641 0.00 0.00 142 1
10-20-10-10 0.01 0.00 416 2135 0.00 0.00 120 1 0.04 0.00 5044 26508 0.00 0.00 109 1
10-30-3-2 0.00 0.00 115 28 0.00 0.00 271 5 0.02 0.00 10000 55266 0.00 0.00 391 35
10-30-3-5 0.00 0.00 40 4 0.00 0.00 220 1 0.01 0.00 2447 1333 0.00 0.00 237 1
10-30-3-10 0.00 0.00 31 1 0.00 0.00 232 1 0.01 0.00 1468 565 0.00 0.00 258 1
10-30-5-2 0.00 0.00 193 103 0.00 0.00 377 19 0.05 0.00 10000 28721 0.00 0.00 455 72
10-30-5-5 0.01 0.00 119 39 0.00 0.00 333 1 0.01 0.00 4055 24181 0.00 0.00 258 1
10-30-5-10 0.01 0.00 63 46 0.00 0.00 207 1 0.01 0.00 1855 1104 0.00 0.00 216 1
10-30-10-2 0.01 0.00 1158 1035 0.00 0.00 1905 230 7.03 0.00 10000 27461 0.82 0.00 3066 986
10-30-10-5 0.01 0.00 6489 38818 0.00 0.00 401 1 8.53 0.00 10000 60347 0.00 0.00 311 1
10-30-10-10 0.01 0.00 4806 22519 0.00 0.00 522 1 0.09 0.00 10000 52141 0.00 0.00 372 1
20-20-3-2 0.00 0.00 136 25 0.00 0.00 393 1 0.03 0.00 10000 13721 0.00 0.00 502 9
20-20-3-5 0.01 0.00 72 1 0.00 0.00 625 1 0.01 0.00 4074 1207 0.00 0.00 691 1
20-20-3-10 0.00 0.00 76 1 0.00 0.00 574 1 2.18 0.00 5356 465 0.00 0.00 644 1
20-20-5-2 0.00 0.00 257 47 0.00 0.00 601 4 1.40 0.00 10000 14362 0.00 0.00 598 24
20-20-5-5 0.01 0.00 117 10 0.00 0.00 690 1 1.19 0.00 10000 15635 0.00 0.00 638 1
20-20-5-10 0.01 0.00 128 54 0.00 0.00 736 1 0.52 0.00 6434 2076 0.00 0.00 623 1
20-20-10-2 0.01 0.00 1448 212 0.00 0.00 2802 138 63.41 0.04 10000 1006 0.00 0.00 2525 228
20-20-10-5 0.02 0.00 9203 22462 0.00 0.00 943 1 3.40 0.00 10000 9950 0.00 0.00 634 1
20-20-10-10 0.03 0.00 7910 19421 0.00 0.00 1327 1 7.33 0.00 10000 9801 0.00 0.00 801 1
20-30-3-2 0.01 0.00 439 28 0.00 0.00 1477 1 13.94 0.00 10000 1203 0.00 0.00 1649 16
20-30-3-5 0.01 0.00 140 1 0.00 0.00 1597 1 5.39 0.00 8400 1767 0.00 0.00 1510 1
20-30-3-10 0.00 0.00 157 8 0.00 -0.00 1601 1 8.34 0.00 9321 691 0.00 -0.00 1547 1
20-30-5-2 0.00 0.00 777 65 0.00 0.00 2160 17 48.34 0.01 10000 612 0.00 0.00 2111 34
20-30-5-5 0.01 0.00 618 462 0.00 0.00 1800 1 19.74 0.01 10000 1692 0.00 0.00 1622 1
20-30-5-10 0.01 0.00 622 243 0.00 0.00 1988 1 2.14 0.00 9815 2623 0.00 0.00 1625 1
20-30-10-2 1.23 1.23 7575 1454 3.67 1.24 8407 297 79.80 1.39 10000 422 4.16 1.23 7705 262
20-30-10-5 0.52 0.00 10000 12890 0.00 0.00 2784 1 36.91 0.03 10000 718 0.00 0.00 1915 1
20-30-10-10 0.04 0.00 10000 17526 0.00 0.00 2619 1 27.08 0.03 10000 1441 0.00 0.00 1817 1

Table 4: Results for asymmetric instances and MIQP+, P/C+, MIQP, P/C
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5 Conclusions and future research

During my visit in Barcelona, I also found that the structure of the problem
may be used to find new valid inequalities for CTA problems with both L1

and L2 distances. This could be the topic of a future collaboration.

Appendix: Proof of Theorem 1.

As in Section 3 we will concentrate on a fixed cell i ∈ S and therefore drop
the index i. Also, in the development we assume w.l.o.g. w = 1, because it
is a multiplicative factor which just goes untouched through the derivation.
It is easy to see that the constraint

min{ l , u } ≤ z+ + z− ≤ max{ ū , −l̄ } (15)

is implied by (9): in all integral solutions one has either z+ ≤ ū and z− = 0,
or z− ≤ −l̄ and z+ = 0, and, analogously, either z+ ≥ u and z− = 0 or
z− ≥ l and z+ = 0. Therefore, we can consider (15) as explicitly added to
the formulation if we need it. Furthermore, the constraints 0 ≤ z+ ≤ ū and
0 ≤ z− ≤ −l̄ are always valid.

From (9) we immediately obtain

0 ≤ z+/ū ≤ y ≤ z+/u

(l − z−)/l ≤ y ≤ (z− + l̄)/l̄ ≤ 1

which yields

δ(z+, z−) = max

{

z+

ū
, 1−

z−

l

}

≤ y ≤ min

{

z+

u
, 1 +

z−

l̄

}

= ∆(z+, z−) .

(16)
We now want to develop a closed-form formula for the optimal solution
y(z+, z−) of (13). We therefore need to find the value of y such that

∂h(z+, z−, y)

∂y
= −

(z+)2

y2
+

(z−)2

(1− y)2
= 0

which leads to

(1− y)2(z+)2 = y2(z−)2 ⇔ (1− 2y + y2)(z+)2 = y2(z−)2

y2((z+)2 − (z−)2)− 2y(z+)2 + (z+)2 = 0 ⇔ y = z+/(z+ + z−) = ỹ

as y ≥ 0, z+ ≥ 0 and z− ≥ 0. In fact, the other root of the quadratic
equation, z+/(z+ − z−), coincides with ỹ when z− = 0, is > 1 when z+ >
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z− > 0, is indefinite when z+ = z− and is < 0 when z− > z+, and therefore
is never relevant. Moreover, the second derivative

∂2h(z+, z−, y)

∂y2
= 2

(z+)2

y3
+ 2

(z−)2

(1− y)3

is greater then zero in y = ỹ when 0 < ỹ < 1. Me must now distinguish
three cases:

1) ỹ ≤ δ(z+, z−) ⇒ y(z+, z−) = δ(z+, z−);

2) δ(z+, z−) ≤ ỹ ≤ ∆(z+, z−) ⇒ y(z+, z−) = ỹ;

3) ∆(z+, z−) ≤ ỹ ⇒ y(z+, z−) = ∆(z+, z−).

For case 2), plugging y = ỹ = z+/(z+ + z−) into (9) gives

u ≤ z+ + z− ≤ ū and l ≤ z+ + z− ≤ −l̄ . (17)

Therefore, under these conditions, the optimal objective function value f∗(z+, z−) =
f(z+, z−, ỹ) takes the particularly simple form

f∗( z+ , z− ) = f( z+ , z− , z+/(z+ + z−) ) = (z+ + z−)2 ,

i.e., (14). Hence, in the totally symmetric case ū = −l̄, l = u one has
max{ ū , −l̄ } = min{ ū , −l̄ } and max{ u , l } = min{ u , l }, only
case 2) can happen: g(z+, z−) = f∗(z+, z−). Note that, as claimed in the
Theorem, (14) ≡ f∗(z+, z−) ≤ g(z+, z−) as it corresponds to unconstrained
minimization over y.

With non-symmetric data, cases 1) and 3) has to be taken into account.
The analysis has to be divided into several sub-cases.

1) ỹ ≤ δ(z+, z−). Because δ(z+, z−) = max{z+/ū, 1 − z−/l}, two sub-
cases have to be separately considered:

1.1) z+/ū ≥ 1 − z−/l and ỹ ≤ z+/ū; by simple algebraic manipula-
tions, these two conditions boil down to

lz+ + ūz− ≥ ūl (18)

z+ + z− ≥ ū (19)

By rewriting (18) in the equivalent form

z+ + z−(ū/l) ≥ ū
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it is immediately evident that one among (18) and (19) is redun-
dant when the other is imposed; this depends on which of the two
conditions

ū ≤ l (20)

l ≤ ū (21)

holds. In particular,

∗ (20) ⇒ (18) dominates (19);

∗ (21) ⇒ (19) dominates (18).

In either case we have y(z+, z−) = z+/ū, which finally leads to

f∗( z+ , z− ) = f( z+ , z− , z+/ū ) = ū((z−)2/(ū− z+) + z+) .
(22)

Note that the objective function value is always positive, as z+ ≤
ū.

1.2) z+/ū ≤ 1− z−/l and ỹ ≤ 1− z−/l; this gives

lz+ + ūz− ≤ ūl (23)

z+ + z− ≤ l (24)

Again, by rewriting (23) in the equivalent form

z+(l/ū) + z− ≤ l

we see that one of these is redundant when the other is imposed,
depending on the same conditions (20)/(21); that is,

∗ (20) ⇒ (23) dominates (24);

∗ (21) ⇒ (24) dominates (23).

In either case we have y(z+, z−) = 1 − z−/l, which finally leads
to

f∗( z+ , z− ) = f( z+ , z− , 1−z−/l ) = l((z+)2/(l−z−)+z−) .
(25)

Note that the objective function value is always positive, as z− ≤
z+ + z− ≤ l.

3) ∆(z+, z−) ≤ ỹ. Because ∆(z+, z−) = min{z+/u, 1 + z−/l̄}, again this
can happen in two different ways:
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3.1) z+/u ≤ 1 + z−/l̄ and ỹ ≥ z+/u; this is equivalent to

−l̄z+ + uz− ≤ −l̄u (26)

z+ + z− ≤ u (27)

where as usual (26) can be rewritten as z+ + z−(u/ − l̄) ≤ u.
Thus, according to which among

−l̄ ≤ u (28)

u ≤ −l̄ (29)

holds, one of the constraints is useless; indeed,

∗ (28) ⇒ (26) dominates (27);

∗ (29) ⇒ (27) dominates (26).

In either case we have y(z+, z−) = z+/u, which finally leads to

f∗( z+ , z− ) = f( z+ , z− , z+/u ) = u((z−)2/(u− z+) + z+) .
(30)

Note that the objective function value is always positive, as z+ ≤
z+ + z− ≤ u.

3.2) z+/u ≥ 1 + z−/l̄ and ỹ ≥ 1 + z−/l̄; one has

−l̄z+ + uz− ≥ −l̄u (31)

z+ + z− ≥ −l̄ (32)

According to which among (28)/(29) holds, one of the above (con-
sidering that (31) can be rewritten as z+(−l̄/u) + z− ≥ −l̄) is
irrelevant; that is,

∗ (28) ⇒ (31) dominates (32);

∗ (29) ⇒ (32) dominates (31).

In either case we have y(z+, z−) = 1 + z−/l̄, which finally leads
to

f∗( z+ , z− ) = f( z+ , z− , 1+z−/l̄ ) = (−l̄)((z+)2/(−l̄−z−)+z−) .
(33)

Again, the objective function value is always positive, as z− ≤ −l̄.

From the above discussion we conclude, remembering that 0 ≤ u ≤ ū and
0 ≤ l ≤ −l̄, that the (z+, z−) space can be partitioned into several subsets,
in each of which the objective function is uniquely determined. Again this
requires a case-by-case discussion:
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• If ū ≤ l (cf. (20)), then max{l, u} = l ≥ min{ū,−l̄} = ū; there-
fore, case 2) is not significant. Because (18) dominates (19) and (23)
dominates (24), we have that for all u ≤ z+ + z− ≤ −l̄

g(z+, z−) =

{

ū((z−)2/(ū− z+) + z+) if lz+ + ūz− ≥ ūl

l((z+)2/(l − z−) + z−) if lz+ + ūz− ≤ ūl
.

• Analogously, if −l̄ ≤ u (cf. (28)), then max{l, u} = u ≥ min{ū,−l̄} =
−l̄; therefore, case 2) does not happen. Because (26) dominates (27)
and (31) dominates (32), we have that for all l ≤ z+ + z− ≤ ū

g(z+, z−) =

{

u((z−)2/(u− z+) + z+) if − l̄z+ + uz− ≤ −l̄u

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄z+ + uz− ≥ −l̄u
.

If none of the above two “extreme” cases occur, then the “simple” inequali-
ties (19), (24), (27) and (32) all dominate their “complex” companions (18),
(23), (26) and (31), respectively. We can thus continue the discussion listing
all other possible ways in which l, u, −l̄ and ū can be arranged along the
line:

• If l ≤ u ≤ ū ≤ −l̄, then max{l, u} = u and min{ū,−l̄} = ū. Thus,

g(z+, z−) =















u((z−)2/(u− z+) + z+) if l ≤ z+ + z− ≤ u

(z+ + z−)2 if u ≤ z+ + z− ≤ ū

ū((z−)2/(ū− z+) + z+) if ū ≤ z+ + z− ≤ −l̄

• If l ≤ u ≤ −l̄ ≤ ū, then max{l, u} = u and min{ū,−l̄} = −l̄. Thus,

g(z+, z−) =















u((z−)2/(u− z+) + z+) if l ≤ z+ + z− ≤ u

(z+ + z−)2 if u ≤ z+ + z− ≤ −l̄

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄ ≤ z+ + z− ≤ −ū

• If u ≤ l ≤ −l̄ ≤ ū, then max{l, u} = l and min{ū,−l̄} = −l̄. Thus,

g(z+, z−) =















l((z+)2/(l − z−) + z−) if u ≤ z+ + z− ≤ l

(z+ + z−)2 if l ≤ z+ + z− ≤ −l̄

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄ ≤ z+ + z− ≤ −ū
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• If u ≤ l ≤ ū ≤ l̄, then max{l, u} = l and min{ū,−l̄} = ū. Thus,

g(z+, z−) =















l((z+)2/(l − z−) + z−) if u ≤ z+ + z− ≤ l

(z+ + z−)2 if l ≤ z+ + z− ≤ ū

ū((z−)2/(ū− z+) + z+) if ū ≤ z+ + z− ≤ −l̄

Thus, we have a total of 6 possible cases; in 4 of them the function has
three pieces, two conic ones and a quadratic one, while in the remaining
2 the function has two pieces, all of them being conic. We have therefore
completed the proof of Theorem 1.
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