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Abstract 

Quantitative information on rainfall is necessary to predict the possible occurrence of rainfall-
induced landslides. Landslide early warning systems attempt to predict rainfall-induced 
landslides through the comparison of quantitative rainfall information with empirical rainfall 
thresholds for the possible occurrence of landslides. Most of the systems exploit rainfall 
measurements obtained from networks of gauges, and only a few systems use satellite rainfall 
estimates. All the systems exploit empirical rainfall thresholds defined using rainfall 
measurements obtained from networks of rain gauges. Despite the availability of quantitative 
satellite rainfall estimates, and their experimental use in existing warning systems, surprisingly 
limited research has been done to compare satellite rainfall estimates and rain gauge rainfall 
measurements, for the forecasting of possible landslide occurrence. In this work, we analyse the 
relationships between rainfall measurements obtained from a network of > 1950 rain gauges in 
Italy and rainfall satellite estimates for the same area obtained by the NASA Tropical Rainfall 
Measuring Mission (TRMM-RT and TRMM-v6), for the period 2009-2010. Coupling point rain 
gauge measurements and TRMM rainfall estimates at individual grid cells (0.25 latitude × 0.25 
longitude), we evaluate the correlation between the gauge rainfall measurements and the satellite 
rainfall estimates in different morphological and climatological conditions, using linear and 
power-law fitting models. We use cumulative rainfall measurements/estimates for different 
periods, from 24 to 72 hours. We analyse and compare the distributions of the ground-based 
rainfall measurements and the satellite rainfall estimates using standard non-parametric and 
parametric statistical methods. In the Umbria region we determine rainfall events starting from 
rain gauge and satellite raw rainfall data series, and we compare their relative distribution to that 
characterizing rainfall events associated to landslide phenomena. We observe significant 
differences in the distributions of cumulative rainfall data, for different morphological and 
climatological areas in Italy. Differences are larger in mountainous areas, and collectively reveal 
a complex relationship between the ground-based rainfall measurements and the satellite rainfall 
estimates. Power law correlation models have the best fitting performance, at the expenses of 
large prediction intervals, particularly for large values of cumulated rainfall. An exponential 
distribution provides a better fit for satellite rainfall estimates, compared to rain gauge 
measurements. Distributions of rainfall events obtained from rain gauge and satellite raw rainfall 
data series are significantly different. TRMM data result generally underestimated compared to 
rain gauge measurements. Both rainfall events distributions result significantly lower than the 
distribution of rainfall events associated to landslide phenomena. These preliminary results 
indicate that satellite rainfall estimates are not straightforward comparable with rain gauge 
rainfall measures, requiring a detailed local investigation of degree of correlation. Further 
specific empirical rainfall thresholds have to be defined to fully exploit satellite rainfall estimates 
in existing early warning system. 
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1. Introduction 

Rainfall-induced landslides are widespread phenomena that cause every year casualties and 
extensive damages. In Italy, rainfall is the primary trigger of landslides causing every year 
damaging failures. In the 60-year period 1950-2009 rainfall-triggered landslides caused more 
than 6300 casualties (Salvati et al., 2010). Predicting rainfall-induced landslide is a problem of 
scientific and societal interest. 
Investigators have long attempted to determine the amount of precipitation necessary to trigger 
slope failures. Rainfall-induced landslides are triggered by the increase of water pressure into the 
soil. Groundwater conditions leading to a slope failure depend from rainfall infiltration, and 
hence from soil properties, soil moisture conditions, and rainfall quantity (Wieczorek, 1996). To 
analyze the triggering of rainfall-induced landslides two modeling approaches are possible: (i) 
empirical, mainly consisting in the determination of rainfall thresholds (Caine, 1980; Innes, 
1983; Guzzetti et al., 2007; 2008), and (ii) deterministic, consisting in simplified physical-based 
models coupling an infiltration model to an instability model (Wu & Sidle, 1995; Montgomery 
& Dietrich, 1994; Iverson, 2000). While the first is largely used to analyze the triggering of 
rainfall-induced landslides at different scales from local to global, the second is mainly applied to 
single instability phenomena or to single basins. In both cases spatial and temporal quantitative 
information on rainfall is necessary to analyze the triggering mechanisms of rainfall-induced 
slope failures. At present these approaches only exploit rainfall measurements from rain gauge 
networks, even if satellite or radar quantitative rainfall estimates are available for long periods 
and large areas. 
The empirical modeling approach have been integrated in early-warning systems to predict the 
possible occurrence of rainfall-induced landslides over space and time. Commonly the existing 
landslide early warning systems attempt to predict rainfall-induced landslides through the 
comparison of quantitative rainfall information with ID (Intensity/Duration) empirical rainfall 
thresholds for the possible occurrence of landslides. Most of these systems exploit rainfall 
measurements obtained from networks of gauges (Rossi et al., 2012), but some systems use radar 
or satellite rainfall estimates (Kirschbaum et al., 2011). 
Despite the availability of quantitative satellite rainfall estimates, and their experimental use in 
existing warning systems, surprisingly limited research has been done to compare satellite 
rainfall estimates and rain gauge rainfall measurements for the analysis of the triggering 
mechanism and for the forecast of the rainfall-induced landslides. 
This work analyses the relationships between rainfall measurements obtained from a network of 
> 1950 rain gauges in Italy (available through the Experience Platform of the Italian Civil 
Protection Department) and rainfall satellite estimates for the same area obtained by the NASA 
Tropical Rainfall Measuring Mission for the period 2009-2010 (TRMM v6 Algorithm 3B42, 
http://trmm.gsfc.nasa.gov/3b42.html). The correlation between rainfall measurements and 
satellite rainfall estimate and the distribution of both type of rainfall data were analysed in 
different morphological and climatological conditions of the Italian territory. 
The correlation between rain gauge rainfall measurements and satellite rainfall estimates in 
different morphological and climatological conditions were evaluated considering cumulative 
rainfall measurements/estimates for different periods, from 3 to 72 hours. The distributions of the 
ground-based rainfall measurements and the satellite rainfall estimates were analysed and 

http://trmm.gsfc.nasa.gov/3b42.html
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compared, using standard non-parametric and parametric statistical methods. Finally rainfall 
events have been determined from rain gauge and satellite data exploiting an automatic 
procedure. Distribution of rainfall events obtained from both type of rainfall data were estimated 
and compared to the distribution of rainfall events associated to slope instability phenomena. 

2. Data 

The analysis of the relationships between rainfall ground measurements and rainfall satellite 
estimates was realized along the entire Italian territory comparing: (i) rainfall data from the 
Italian rain gauge network, and (ii) rainfall estimates obtained by the NASA Tropical Rainfall 
Measuring Mission. We compare rainfall data of one hydrological year from 01/09/2009 to 
31/08/2010. The analyses was focused to highlight the differences between the two rainfall data 
type in different morphological and climatological conditions corresponding to different 
morphological subdivisions of the Italian territory. 

2.1 Rain gauge measurements 

Rainfall measurements (R) were obtained from the rain gauge network available through the 
Experience Platform of the Italian Civil Protection Department. Figure 1 shows the location of 
1950 rain gauges in the Italian territory. Rainfall data are available from 2003 to now and are 
updated every 6 hours. 

 
Figure 1. Location of the rain gauges along the Italian territory (available through the Experience Platform 

of the Italian Civil Protection Department). 
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Rain gauge sensors in the database are heterogeneous and rainfall data can have different 
temporal resolutions, mostly semi-hourly. Sensor accuracy varies from 0.2 to 1 mm. Gaps, errors 
and discontinuous time series can be present in the database. A specific procedure was used to 
evaluate the quality of rainfall data in the analysed period. The procedure estimates the reliability 
of rain gauge sensors comparing the relative Cumulative Annual Precipitation (CAP) with Mean 
Annual Precipitation (MAP) values calculated in the period 1961-1990 exploiting data available 
at global scale from the Global Historical Climatology Network-Monthly (GHCN-M) archive of 
the National Climatic Data Center (NCDC) (http://www.ncdc.noaa.gov/ghcnm/) realized by the 
National Oceanic and Atmospheric Administration (NOAA). Criteria to estimate rain gauge 
reliability and results obtained for the period from 01/09/2009 to 31/08/2010 are summarized in 
Table 1. 

Table 1. Criteria for the estimation of rain gauge reliability. CAP: Cumulative Annual precipitation; MAP: 
Mean Annual Precipitation. 

CONDITION QUALITY 
INDEX 

MALFUNCTIONING 
PROBLEM 

RAIN GAUGES 
# (%) 

No rainfall values in the period 
(CAP = NULL) 1 Rain gauge not acquired 287 (15%) 

CAP = 0 2 Malfunctioning rain gauge 2 (0%) 

CAP < MAP −
MAP

2
 3 Rain gauge with 

discontinuous values 148 (8%) 

MAP − �
MAP

2
� < CAP < MAP + (MAP ∙ 2) 4 Rain gauge properly 

working 1488 (76%) 

CAP > MAP + (MAP ∙ 2) 5 Rain gauge with excessive 
values 25 (1%) 

2.2 TRMM satellite rainfall estimates 

Satellite rainfall data (T) were estimated by NASA exploiting the TRMM (Tropical Rainfall 
Measuring Mission) data by mean of the TRMM v6 Algorithm 3B42. The purpose of the 
algorithm is to produce TRMM merged high quality (HQ)/infrared (IR) precipitation and root-
mean-square (RMS) precipitation-error estimates. The 3B-42 estimates are produced in four 
stages: (i) the microwave estimates precipitation are calibrated and combined; (ii) infrared 
precipitation estimates are created using the calibrated microwave precipitation; (iii) the 
microwave and IR estimates are combined; and (iv) rescaling to monthly data is applied. Each 
precipitation field is best interpreted as the precipitation rate effective at the nominal observation 
time. These gridded estimates are on a 3-hour temporal resolution and a 0.25 × 0.25-degree 
spatial resolution in a global belt extending from 50 degrees South to 50 degrees North latitude. 
Data available for the Italian territory in the period from 01/0/1998 to 31/08/2010 were extracted. 
TRMM data were stored in a PostgreSQL/PostGIS database structure (www.postgresql.org) to 
simplify the data management. Rainfall estimates were associated spatially to the relative cell 

http://www.ncdc.noaa.gov/ghcnm/
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centroid location. The location of the 638 cell centroids covering the Italian territory is shown in 
Figure 2.  

 

Figure 2. Location of TRMM v6 3B42 cell centroids covering the Italian territory. 

2.3 Morphological subdivision of Italy 

The analyses of the distributions and correlations of rain gauge measures and satellite rainfall 
estimates were performed in different zones, to consider different morphological and 
climatological conditions of the Italian territory. The Italian morphological subdivision was 
derived by that realized by Guzzetti and Reichenbach (1994) exploiting morphometric data 
calculated from a 230m DTM obtained mosaicking the entire Italian mean elevation archive. The 
original subdivision classify the Italian territory in eight major topographic division (provinces) 
and 30 minor divisions (sections). The subdivisions were identified using a step-wise semi-
quantitative approach combining: (i) an unsupervised three-class cluster analysis of altitude 
derivatives; (ii) an heuristic visual inspection of morphometric maps; (iii) and the interpretation 
of small-scale geological and structural maps. Provinces and sections reflect different 
morphological conditions, measured by four morphological variables derived by the altitude map: 
(i) altitude, (ii) slope curvature, (iii) frequency of slope reversal, (iv) and elevation-relief ratio. 
Highland, upland and lowland topographic types were identified. In this work we aggregated 
heuristically the 30 minor subdivisions (sections) in 10 new macro-subdivision, considering in 
addition latitude and aspect, to reflect different morphological and climatological conditions of 
the Italian territory. Table 2 summarize values of the morphological parameters associated to 
each morpho-climatological subdivision. 
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Table 2. Criteria for the estimation of rain gauge reliability. CAP: Cumulative Annual precipitation; MAP: 
Mean Annual Precipitation. 

SUBDIVISION PARAMETER Min 
Value 

Max 
Value 

Lowland 
(%) 

Upland 
(%) 

Highland 
(%) 

Tyrr 
Central Tyrrhenian coast 

Elevation (m) s.l. 1738 

55.4 40.0 4.6 
Slope (°) 0 41 

Elevation relief ratio 0 0.98 
Slope reversal (1/km2) 0.14 12.07 

Curvature (1/m) -1.82 0.86 

Sici 
Southern/Western Sicily 

Elevation (m) s.l. 3340 

49.3 45.6 5.1 
Slope (°) 0 43 

Elevation relief ratio 0.01 0.91 
Slope reversal (1/km2) 0.14 10.07 

Curvature (1/m) -2.57 1.65 

Sard 
Sardinia 

Elevation (m) s.l. 1786 

37.7 46.1 16.2 
Slope (°) 0 48 

Elevation relief ratio 0.01 0.93 
Slope reversal (1/km2) 0.14 9.43 

Curvature (1/m) -5.25 2.71 

Popl 
Po plain and Alpine 

foothills 

Elevation (m) s.l. 842 

92.9 7.1 0.0 
Slope (°) 0 38 

Elevation relief ratio 0 0.99 
Slope reversal (1/km2) 0.14 9.14 

Curvature (1/m) -1.39 4.02 

Lang 
Liguria/Piedmont hills 

Elevation (m) s.l. 1287 

31.3 61.9 6.8 
Slope (°) 0 36 

Elevation relief ratio 0.06 0.88 
Slope reversal (1/km2) 0.14 10.79 

Curvature (1/m) -0.79 0.71 

ApeU 
Northern Apennines 

Elevation (m) s.l. 2121 

3.4 60.0 36.6 
Slope (°) 0 49 

Elevation relief ratio 0.01 0.86 
Slope reversal (1/km2) 0.14 10.79 

Curvature (1/m) -3.84 1.23 

ApeL 
Southern Apennines 

Elevation (m) s.l. 2267 

8.7 55.4 35.9 
Slope (°) 0 48 

Elevation relief ratio 0.03 0.98 
Slope reversal (1/km2) 0.14 9.64 

Curvature (1/m) -1.94 1.33 
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ApeC 
Central Apennines 

Elevation (m) 27 2914 

1.5 63.0 35.5 
Slope (°) 0 57 

Elevation relief ratio 0.02 0.86 
Slope reversal (1/km2) 0.14 10.86 

Curvature (1/m) -5.59 3.46 

Alps 
Northern alpine area 

Elevation (m) s.l. 4810 

13.8 32.0 54.1 
Slope (°) 0 72 

Elevation relief ratio 0.02 0.96 
Slope reversal (1/km2) 0.14 10.28 

Curvature (1/m) -6.65 5.66 

Adri 
Central Southern 

Adriatic coast 

Elevation (m) s.l. 1485 

44.0 55.7 0.3 
Slope (°) 0 35 

Elevation relief ratio 0 0.97 
Slope reversal (1/km2) 0.14 11.43 

Curvature (1/m) -0.64 0.68 

 
The map of the morpho-climatological subdivision partitioning the Italian territory and the 
elevation map used to derived the subdivision are shown in Figure 3. 
 

                   
Figure 3. Morphological subdivision to the Italian territory (a) derived by Guzzetti & Reichenbach, 1994 

from a 230m DTM (b) obtained mosaicking the entire Italian mean elevation archive. 

a b 
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3. Analysis of cumulative rainfall data 

The analysis of cumulative rainfall data was performed to estimate the correlation existing 
between rain gauge measures and satellite rainfall estimates and to characterize their relative 
distributions. Preliminarily a minimum distance criteria was used to couple rain gauge stations 
and satellite cell centroids. A specific GRASS GIS (a free Geographic Information System 
software used for geospatial data management and analysis, image processing, graphics/maps 
production, spatial modelling, and visualization, http://grass.fbk.eu/, Neteler and Mitasova 
2008) procedure allowed to associate to each rain gauge the closest satellite centroid. The 
procedure associated to each centroid one or more rain gauges with a one-to-many relationship. 
Figure 4 show an example of the result of the GIS procedure. Starting from raw data series, the 
cumulative rainfall for centroids and for rain gauges was estimated for different rainfall duration 
corresponding to 3, 12, 24, 48 and 72 hours. The procedure realized in R (a free software 
environment for statistical computing and graphics, R Development Core Team, 2011) 
excluded incomparable rain gauge/centroid couples due to: (i) missing data, gaps and errors in 
rainfall series, (ii) incomparable temporal resolutions, and (iii) partial overlapping problems. 
 

 
Figure 4. Minimum distance criteria used to couple, with a one-to-many relationship, to each TRMM 

centroid (blue circles) one or more rain gauge stations (red triangles). 

http://grass.fbk.eu/
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3.1 Analysis of correlation 

To analyse the correlation between cumulative rainfall measured by rain gauges (R) and 
estimated by satellites (T), we exploit linear (Eq. 1) and power law (Eq. 2) regression models. 

 TaR ×=  Eq. [1] 

 bTR =  Eq. [2] 

In the equations a is the linear coefficient and b is the power law exponent. 
R and T couple values correspond to cumulative rainfall estimated from the analysis of raw 
rainfall data series for different rainfall durations. In the analyses we exploit rainfall period of 24 
and 72 hours. Once cumulative rainfall values were estimated for each rain gauge/centroid 
couple, we aggregate those in different morpho-climatological domains corresponding to 
morphological zones derived from the 230m DEM analysis. Using a peak over threshold 
approach we then filter rainfall series taking values above different thresholds: 0, 2, 4, 6, 8, 10, 
12, 14, 16, 18 and 20 mm. For each threshold we estimated linear (a) and power low (b) fitting 
parameters (Figure 5), the relative determination coefficients (R2, measuring the goodness of fit), 
and confidence and prediction intervals (Figure 6a,b). For both linear and power law models and 
for each morphological subdivision we realize boxplots showing the variability of the fitting 
parameters (Figure 6c,d) and of the determination coefficients associated to the different rainfall 
thresholds (Figure 6e,f). 

 
Figure 6. Determination coefficients estimated in the Alpine area for linear (grey circles) and power law 

fitting correlation calculated considering 72-hours cumulative rainfall above different thresholds. 
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Figure 6. Linear (a) and power law (b) fitting between 72-hour TRMM rainfall estimates T and rain gauge 

measures R. Variability of linear (c) and power law (d) coefficients and determination coefficients (e, 
f) for different rainfall thresholds in the different Italian morphological subdivisions. 

a b 

c d 

e f 
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3.2 Analysis of cumulative rainfall distribution 

We further analyzed the distribution of satellite and rain gauge cumulative rainfall. First since 
data appear to be heavy tailed distributed we estimated the frequency of the logarithm of the 
rainfall of both series (Figure 7a,b) using the histogram estimation method (Venables and 
Ripley, 2002). Then using the kernel density estimation method (Parzen, 1962) we calculate the 
kernel densities of the logarithm of both series using a Gaussian kernel, and we compare these 
with the densities obtained by the histogram estimation method (Figure 8). Finally using 
maximum likelihood estimation method (Fisher, 1922a, 1922b; White et al., 2008) we 
estimated the parameter of the exponential distribution we assumed to model cumulative rainfall 
data (Figure 9). Using a bootstrap procedure we estimate the error associated to the exponential 
models. For the purpose we sampled the original rainfall series 100 times (bootstrap resampling), 
then for each sample we estimated the exponential model parameters and the associated modeled 
probabilities. We then calculated the mean (µ) and the standard deviation (σ) of the modeled 
probabilities and we use µ±σ as error bars. 
To measure the goodness of fit we first generated rainfall series exponential distributed and we 
realized QQplot (Wilk and Gnanadesikan, 1968) (insets in Figure 9) comparing raw and 
exponential modeled data. Further we performed a bootstrapped version of the two-sided 
Kolmogorov-Smirnov test (Kolmogorov,1933; Smirnov, 1933) to quantify the distance between 
the empirical distribution function of the rainfall data and the exponential distribution function 
estimated from data (used as reference distribution). The Kolmogorov-Smirnov test statistics (D 
and pvalue) calculated are shown in Figure 9. 
The analyses allowed the direct comparison of the distribution of rain gauge and satellite 
cumulative rainfall data. All the analyses were repeated considering 24 hour cumulative rainfall. 

 
Figure 7. Frequency distribution of the logarithm of 72-hours cumulative rainfall calculated for (a) rain 

gauge measures R and for (b) TRMM rainfall estimates T in the Adriatic morphological subdivision. 

a b 
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Figure 8. Probability density of the logarithm of 72-hours cumulative rainfall estimated using Histogram 

Density Estimation (HDE, cirlces) and Kernel Density Estimation (KDE, lines) for rain gauge 
measures R (in blue) and for TRMM rainfall estimates T (in green) in the Adriatic morphological 

subdivision. 

    
Figure 9. Exponential distribution estimated for 72-hours cumulative rainfall using Maximum Likelihood 

Estimation (MLE) for rain gauge measures R (a) and for TRMM rainfall estimates T (b) in the 
Adriatic morphological subdivision. Insets show QQplot measuring the fitting performance of the 

exponential model. KS D and p.value are Kolmgorov Smirnow test statistics.  

a b 
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4. Analysis of rainfall events 

The increase in pore water pressure due to the rainfall infiltration process is the real triggering 
mechanism of rainfall-induced landslides. Infiltration models could play a fundamental role in 
landslide initiation modelling and hence in landslide prediction. Despite this, physical infiltration 
models can rarely be applied, given the high demand in terms of geotechnical and hydrological 
parameters, and often their application is limited to single slope or small basins. Consequently the 
study of the landslide triggering mechanisms over large areas is based on empirical approaches, 
mainly exploiting direct rainfall measures associated to landslide phenomena. Empirical rainfall 
thresholds have been largely used to study the landslides initiation mechanisms (Guzzetti et al., 
2007; 2008) and to predict landslides over a territory. Different rainfall measures have been 
exploited to define empirical rainfall thresholds, but commonly mean intensity, cumulative and 
duration of rainfall are used to define empirical rainfall thresholds. Those type of thresholds are 
defined as low boundary of rainfall conditions associated to landslides, and they require the 
identification of (i) the beginning, (ii) the end, and (iii) the cumulative rainfall of events that 
triggered landslides. Rainfall during an events is considered the responsible of landslide 
triggering and indirectly reflects the infiltration process. Commonly rainfall events are identified 
by experts following heuristic procedures (Rossi et al., 2012), but often due to their subjectivity 
they introduce a source of uncertainty (due to the subjectivity) in rainfall threshold definition. To 
overcome this problem we implemented an automatic procedure to identify rainfall events 
starting from raw rainfall series. 

4.1 Procedure for the identification of rainfall events 

The automatic procedure for the identification of rainfall events was implemented in R (R 
Development Core Team, 2011). A rainfall event is defined as the cumulative rainfall occurring 
during a period in hours with a continuous rainfall series. To separate rainfall events we consider 
a minimum period in hours with cumulative rainfall below a given thresholds. Essentially two 
rainfall events are separated, if between them there is a period of a given length without rainfall 
or with rainfall below a given threshold. The procedure iteratively determine this condition using 
a moving window. The procedure output consists of the identification of the beginning, the end 
and the cumulative rainfall associated to rainfall events in a given rainfall series. The automatic 
procedure produces plots and tables identifying the rainfall events. The procedure was applied in 
the Umbria region where rainfall events associated to landslides, collected in the period 2003-
2011 (Figure 10), were identified using the heuristic procedure above mentioned. The automatic 
procedure allowed the identification of rainfall events in each rain gauge and in each TRMM cell 
centroid inside the Umbria regional boundary. Two example of the rainfall event series identified 
for one rain gauge and one TRMM cell centroid are shown in Figure 11. In the analysis, to 
identified rainfall events, we use a 24-hours period and two rainfall thresholds corresponding to 
0.2 mm for rain gauge measurements and 0 mm for satellite rainfall estimates. 
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Figure 10. Location of landslide events recorded in the Umbria region (inset) in the period 2003-2011. 

    
Figure 11. Rainfall events determined by an automatic procedure for rain gauge measures R (a) and for 

TRMM rainfall estimates T (b). Blue bars: raw rainfall data; red lines: cumulative rainfall data; pink 
bars: rainfall events; yellow lines: cumulative during rainfall events. 

a b 
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4.2 Rainfall event comparison 

Rainfall events calculated by the procedure starting from rain gauge and satellite rainfall series, 
were compared with the distribution of rainfall events associated to landslide using a standard 
heuristic procedure (Rossi et al., 2012). Cumulative and duration associated to rainfall events, 
identified in the Umbria region, were plotted in a bi-logarithmic plot (Figure 12). Finally we 
calculated descriptive statistics of these events including: (i) the number of rain gauges and 
TRMM cell centroids used in the Umbria region for the rainfall event identification; (ii) the 
average number of events identified by the procedure; (iii) the mean duration; (iv) the mean 
cumulative; and (v) the mean intensity of the identified events (Table 3). 

Table 3. Descriptive statistics calculated for rainfall events determined automatically analysing rain gauge 
and TRMM rainfall data series in the Umbria region in the period 01/09/2009 to 31/08/2010. 

DATA 
TYPE 

SENSORS 
CENTROIDS 

(#) 

RAINFALL 
EVENTS 

(#) 

MEAN 
DURATION 

(hr) 

MEAN 
CUMULATIVE 

(mm) 

MEAN 
INTENSITY 

(mm/hr) 
Rain gauge data 52 56 28.07 17.70 1.24 

TRMM data 17 56 17.47 6.07 0.59 

 

 
Figure 12. Cumulative rainfall and duration of: (i) rainfall events associated to landslides in Umbria region 

(red circles) determined heuristically analysing rain gauges rainfall in the period 2003-2010; (ii) rainfall 
events determined automatically from rain gauge measures (blue pluses); and (iii) rainfall events 

determined automatically from TRMM rainfall estimates (green crosses). In (ii) and (iii) rainfall events 
were determined in the Umbria region in the period 01/09/2009 to 31/08/2010. 
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5. Discussion and conclusion 

In this work we performed an extensive validation of NASA TRMM v6 Algorithm 3B42 rainfall 
estimates in Italy, exploiting rainfall data from the Italian rain gauge network available through 
the Experience system of the Italian Civil Protection Department. To consider the variability data 
associated to different morphological and climatological condition, the validation activities were 
performed aggregating data in different Italian morphological subdivisions derived from 
Guzzetti and Reichenbach (1994) analysing a 230m DTM obtained mosaicking the entire 
Italian mean elevation archive. The results allowed also to evaluate the use of satellite rainfall 
estimates in the analysis of rainfall-induced trigger mechanisms, and in empirical landslide 
prediction models. 
Primarily we analyse the correlation between cumulative rain gauge and satellite rainfall relative 
to 24 and 72-hours durations (§3.1) using linear and power-law fitting models. We repeat the 
analysis for rainfall above different thresholds (peak over threshold approaches) in different 
morphological and climatological conditions. Boxplot in Figure 6c,d,e,f describe the variation of 
parameters and of R2 squared estimated for different rainfall thresholds in each Italian 
morphological zones. For both fitting models (linear and power law), the regression parameters 
changes in different morphological zones, indicating a complex correlation between satellite and 
rain gauge rainfall. In general results show that TRMM data underestimates rain gauge data. In 
particular in high elevation areas (Alps, ApeU) TRMM data tends to underestimate rain gauge 
data much more (given the higher correlation coefficients) than in low altitude areas (Sici, Adri, 
Sard). Results for some morphological subdivision (Popl, ApeC, Lang) seem to don’t support this 
finding probably because the rough aggregation procedure. This finding has a direct impact on 
the use of TRMM satellite estimates in the analysis of rainfall triggering mechanisms and in the 
use of this data in landslide prediction models. For instance TRMM rainfall estimates cannot be 
used directly in landslide early warning systems based on the comparison of rainfall data and 
empirical rainfall thresholds derived analyzing rain gauge rainfall measures associated to 
landslides (Guzzetti et al., 2007; 2008; Rossi et al., 2012). Power law regression models gave 
always the best fitting performance (mean R2 ≈ 0.95) compared to the linear regression models 
(mean R2 ≈ 0.7) but at the expenses of high prediction intervals in particular for high rainfall 
values (Figure 6a,b). Best fitting results are obtained in correlating high rainfall values (higher 
R2 values for high rainfall thresholds) as shown in Figure 6. 
We further analyzed the statistical distribution of satellite and rain gauge 72-hours cumulative 
rainfall data using non parametric (HDE, KDE) and parametric (KDE) estimation methods (§3.2). 
Empirical frequency distributions (Figure 7) of the logarithm of rain gauge and satellite rainfall 
(obtained by Histogram Density Estimation methods) are different, as shown by the difference in 
the mode (more frequent rainfall values) and by the different distribution tails. Similar 
differences can be observed analyzing the probability densities of the logarithm of rain gauge and 
satellite rainfall calculated using the Kernel Density Estimation method (Figure 8). Using the 
maximum likelihood method (MLE) we then estimated exponential model parameters starting 
from raw cumulative rainfall data series, and we use QQplots to compare observed and modeled 
data. Results indicate that an exponential model can be appropriate to describe the 72-hours 
TRMM cumulative rainfall data (QQplot values along bisector, see inset Figure 9b), while a 
different distribution, characterized by an heavier tail for high rainfall values, must be used to 
model rain gauge rainfall (positive difference between QQplot values and bisector for high 



Mauro Rossi Short Term Mobility 2011 – Scientific Report  

 

 
Version 1 31 January 2012 19/21 
 

rainfall values, see inset Figure 9a). Similar results can be observed analyzing the differences of 
the cumulative rainfall distributions obtained for rain gauge and satellite data for different 
morpho-climatological zones and for 24-hours rainfall duration. 
Finally we compared rainfall events identified from rain gauge and satellite raw rainfall series 
using and automatic procedure, with rainfall events associated to landslide calculated using an 
heuristic procedure. For these analysis we selected rain gauges and TRMM cell centroids in the 
Umbria region where landslide information (Figure 10) and the associated rainfall were already 
available. The comparison (Figure 12) showed that a different distribution of cumulative and 
duration values characterizes rainfall events obtained using satellite and rain gauge rainfall. In 
general rainfall events identified from rain gauge data series are longer and more intense than 
those identified from satellite rainfall series (Table 3). A similar number of rainfall events have 
been identified by the automatic procedure from 52 rain gauges and from 17 TRMM cell 
centroids in the Umbria region in the period 01/09/2009 to 31/08/2010. Both rainfall event 
distributions are distinct from the distribution characterizing rainfall events associated to 
landslides. These important findings suggest once more that TRMM satellite estimates are 
incomparable with rain gauge data and hence with empirical rainfall thresholds for landslide 
prediction derived from rain gauge data. Nevertheless the similar number of rainfall events 
identified from rain gauge and satellite data suggests that TRMM data can be used to identify 
possible triggering rainfall events and hence to define new rainfall thresholds from satellite data. 
Those thresholds could be potentially integrated in existing early warning system to predict 
landslides exploiting satellite rainfall estimates.  
The distributions characterizing rainfall events, derived from rain gauge data, associated and not 
associated to landslide are significantly different (Figure 12). This suggests that is possible to 
determine empirical rainfall thresholds starting from the rainfall event conditions associated or 
not associated to landslide in a given area. In this context the procedure for rainfall event 
determination could be a fundamental tool to identify and analyze rainfall conditions triggering 
landslides exploiting both rain gauge and satellite rainfall data. The procedure can also 
potentially allow to diminish the uncertainty related to the heuristic identification of rainfall event 
associated to landslides. 
In conclusion a complex relation exists between rain gauge and satellite rainfall data in different 
morpho-climatological settings characterizing the Italian territory. Satellite rainfall estimates are 
not straightforward comparable with rain gauge rainfall measures, requiring a detailed local 
investigation of degree of correlation. Nevertheless satellite rainfall data can be exploited to 
analyze rainfall conditions triggering landslides and hence to define empirical rainfall threshold 
for the landslide initiation. Those could potentially be integrated in early warning system to 
predict landslide over large areas.  
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