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Introduction

Facial expressions and, in general, the movements expressed by face muscles are
able to express a rich amount of information that convey a considerable part of
communication. The focus of the present document is to survey techniques that can
be adopted in a system focused on the extraction of information during interaction
that are different from verbal communication. When verbal and audio information,
that is principally involved in speech and verbal communication is discarded, the
remaining part of the communication is conveyed with actions detected in the facial
action and expressions. The shown techniques allow to detect face in a video stream
and represent facial movements. The application of this knowledge can be applied
to :

• affective computing

• intensional systems

• sign language

Affective Computing studies the systems that can recognize, classify and process
human affects. It is focused on the emotions and an ideal system should be able to
interpret the human behavior and give an appropriate response to the recognized
emotions. Intensional systems are able to interpret the intension of a person in
a context and can help him in a specific task. It is very helpful for person with
disabilities[1]. Sign language systems are focused on the interpretation of the sign
language that is mainly oriented to the movement of the hands and their postures.
It is a complementary activity in the understanding of face movements during the
dialogue with sign language since face expression and mouth movement can give
additional and relevant information to the communication content.[2]. Some in-
teresting technique to devise a system for expression understanding are described
below. In the section 1 a very efficient algorithm for face detection is described. In
section a commonly used standard for the description of face expression is shown.
In section the representation of signals with Compressive Sensing techniques is mo-
tivated. Some work have used Compressive Sensing for face expression recognition
and an analysis id done in 3.1

1 Face Detection

There are many techniques to detect faces in still images and video sequences but
the most used adopted in consumer and scientific field is the algorithm proposed
by Viola and Jones.[3] . The method is based on the algorithm called Ada Boost
[4] and allows to create a strong classifier starting from a set of weak ones. For
the particular application dealing with face detection a set of simple filters as Haar
filters are used. The Haar filters are shown in figure 1 and are easy to compute and
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some hint about how to calculate these filters in a quick way adopting the integral
image is given in [3].

Figure 1: Haar Filter Examples

The methodology, in general has as input a training set, X = (x1, y1), · · · , (xn, yn)
where xi is a representation of the generic sample and yi indicates the presence or
the absence of the specific item of interest(a face in this case).
The weak classifiers are named hj and can detect if the chosen object is present in
the given sample with a performance that is better (also slightly better) than the
random guessing. It can be also said that the classifier is slightly correlated with
the true classification. From the collection of a set of weak classifiers can be created
a new composite classifier composed by a weighted sum of the classifiers. The new
classifier is a strong classifier that is tightly correlated with the true classification
and can reliably detect the presence of a given signal. The algorithm to set the
weights is shown in algorithm 1 at page 3:

Algorithm 1 Ada Boost

Initialize weights w1,i

for t = 1, · · · , T do
normalize weights wt,i
evaluate the weighted error for each weak classifier
εj =

∑
iwi |hj(xi)− yi|

choose the ht with the lowest εt
update the weights:
wt+1,i = wt,i · β1−ei

t

where ei = 0 if xi is classified correctly, ei = 1 otherwise
βt = εt

1−εt
end for
Final Classifier:

Hfinal(x) =

{
1 if

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 otherwise
(1)

where αt = log 1
βt
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At each step the correct of wrong answer of the j − th weak filter is calculated
for each i− th training sample. The response of the j − th is estimated through :

εj =
∑
i

wi |hj(xi)− yi| (2)

The best classifier, among the weak ones is the classifiers that scores the lowest
error. The weights wi play an important role in the selection of this classifier taking
into account the most important samples. At the first iteration the weights are
normalized so that their sum produce a given value(e.g. one) and all of them have
the same value. This normalization assures that all the samples have the same
weight and the winning classifiers is the one that produces the highest number of
correct responses on the training set (that is equivalent to the least number of wrong
classification). The best weak classifier is called ht and will classify some samples in
a correct way and some other in a wrong way. The weights are updated according
to equation (3)

wt+1,i = wt,i · β1−ei
t (3)

where ei is equal to 0 if the i− th sample is correctly classified and is equal to 1 if
the sample is wrongly classified. If a sample is wrongly classified the value of the
weight remains unchanged. This update brings that if the i− th sample is correcly
classified the weight is multiplied for βt. Where

βt =
εt

1− εt
(4)

Since εt is the error produced by the chosen ht classifier, the better is the performance
of the classifier, the lower is the value of εt. If the value of εt is low, consequently
also βt is low and the weight for the correctly classified samples is reduced making
them less important.

2 Facial Action Recognition

Facial Action Coding System (FACS)[5] is a standard technique for describing ex-
pression and activities of human face. There is no information of motion but a
face is represented statically according 44 Action Units (AU). Many techniques and
models have been proposed to recognize the single Action Units present in a image.
Among the most promising techniques for the recognition of action units with tem-
poral information there are the works of Tong et al. [6] and Simon et al. [7]. A
general overview on the approaches for AU recognition is given in [8].

Tong et al. in their work [6] propose a unified probabilistic framework based on
Dynamic Bayesian Network(DBN) to represent face motions. Simon et al. in [7]
developed a segment based approach that employs Bayesian Network with Support
Vector Machine(SVM) to set a robust dynamic recognition in time sequences about
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face movements. In [9] an analysis of the most used dataset (Cohn-Kanade) for
Action Unit Recognition has been done. 1. A description of the dataset CK and
CK+ made by the author of the same dataset is given in [10] [11].

Figure 2: Examples of Face Actions : Frontal and 30-degree views from the Cohn-
Kanade database. Each sequence begins with a neutral expression and proceeds to
a target expression

In particular the combinations of Face Actions have been analyzed by Mahoor
et al. in [9] and the combination with highest frequency have been selected. A
sub set of them are: AU 1+2+5+27, 15+17, 6+12+25, 4+9+17+23, 20+25. An
extenstive description of these facial actions with a relationship with facial muscles
that activate particular expressions can be found in [10].

3 Sparse Representation

The possibility to adopt sparse representation has grown in the last years due to the
new results provided in compressing sampling theory. Conventional approaches for
image acquisition and in general for signals recording is based on the basic principle
of the Nyquist frequency sampling theory.

The emerging theory of Compressing Sensing [12] [13] states that is possible to
capture signals, and therefore images, with a sensibly reduced number of samples if
a slight corruption is allowed. The Compress Sensing Theory is tightly coupled with
Sparse Representation since a signal can be represented through a linear combination
of few non zero coefficients.The condition is that the representation is made on
a redundant basis that constitutes an overcomplete dictionary. An introductory
presentation of this theory is given in [14]. The Compressive Sensing is focused on
the reduction of the number of measurements that are stated in the sampling theory.
This reduction is achieved exploiting the compressibility of signals. The focal point

1The datased is available at http://vasc.ri.cmu.edu/idb/html/face/facial_expression
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(a) P 10 : AU 1 + 2 + 5 + 25
+ 27

(b) P 14 : AU 4 + 7 + 10 + 17
+ 23 + 24 + 43

(c) P 35 : AU 6 + 12 + 25

(d) P 42 : AU 1 + 2 + 5 +25
+ 27

(e) P 56 : AU 15 + 17 (f) P 138 : AU 25 + 27

Figure 3: Examples of most frequent combination of Action Units

is that the measurement is not made with simple sampling (evaluating the signal in
a point) but are measured through a function. If we consider a real-valued, finite-
lenght, one-dimensional, discrete-time signal x, it can be seen as a column of N
values in RN space with n = 1, 2, 3, . . . , N . Any signal can in RN can be represented
according to a basis of vectors ∈ RN : {ψi}Ni=1. Considering that these vectors are
orthonormal they form a basis matrix Ψ := [ψ1|ψ2| . . . |ψN ]. For the definition of a
basis, any signal with dimension N can be expressed as :

x =
N∑
i=1

siψi or x = Ψs (5)

where s is the Nx1 column vector of weighting coefficients si = 〈x, ψi〉 = ψi
Tx,

where ·T denotes the Hermitian transpose operation. The representation x in the
time domain is equivalent to s in the Ψ domain.

Compressive Sensing is focused on signals that have a sparse representation and
can be represented with the linear combination of K basis vector with K � N . The
equivalent is that only K value of equation (5) are non zero while the other N −K
are zero. Sparsity is motivated by the fact that many signals are compressible
and there exist a basis Ψ where the representation has few large coefficient and
many small coefficients. These signals are usually represented with few coefficient
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employing the transform coding. This technique is used in audio and video standards
to compress natural signals. For JPEG image compression format the discrete cosine
transform (DCT) is adopted and, in an analog way, a decomposition on wavelets
is used for JPEG-2000 compression algorithm. A considerable part of the energy
of the signal is concentrated on few coefficient while most of the coefficient are
small and can be discarded (allowing a non-perfect reconstruction). The state-of-
art algorithms for the representation of signals and multimedia items are deviced
in two phases: a sampling phase and a compression phase. The sampling is done
according the Nyquist theory acquiring the full N -sample signal x. The coefficients
si are computed calculating s = ΨTx and that retaining the largest K value. The
N −K values are discarded. At last the K values are compressed with an entropy
coding. The used scheme has different drawbacks:

• a potentially large number of sample must be considered even if the value of
K is small

• the encoder must compute N coefficient si although only K are retained

• the largest coefficient must be located

The alternative process based on compressive sensing tends to acquire a signal
through a compressed representation without sampling N values. For this process a
set of M linear mesurements are used. The measurement is achieved applying the
inner product between the signal x and a collection of M vectors {φj}Mj=1, producing
the values yj = 〈x, φj〉. Packing the yj values in the vector y and the vectors φTj as
rows in the matrix MxN matrix Φ, from equation (5) can be written:

y = Φx = ΦΨs = Θs (6)

where Θ is a MxN matrix given by the product of Θ := ΦΨ. A graphical
representation of the process is shown in figure 4

Figure 4: Compressive Sensing Measurement Process

It can be noticed that the measurement process is not adaptive since the matrix
Φ is not dependent from the data. What is done in Compressive Sensing is to design
the matrix Ψ (called Measurement Matrix) so that the signal can be reconstructed
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from a limited number of measurements (M) and to approximate the number of
non-zero values of the vector s. The technique of the compressive sensing can be
divided in two parts: the generation of the a stable measurement matrix Ψ and the
reconstruction of the signal.

3.0.1 Stable Measurement Matrix

The measurement matrix Ψ must be chosen so that it assures that the salient infor-
mation in any K-sparse signal is not damaged by the dimensionality reduction from
x ∈ RN to y ∈ RM . The target of the technique is to reconstruct the x signal (or
in an equivalent way the vector s in the basis Ψ) starting from the M measurement
of the y vector.

The measurement should not destroy the information in x. In general the equa-
tion (6) asserts that the s can be obtained by y with the solution of the linear
algebra system. In this case, since M < N , the problem is ill posed since there are
fewer equation that unknowns.

A solution could be easy to find if, considering that the s vector is sparse, the
values that are different from zero in the sparese vector s would be known. If the
highlighted values shown in figure 4 (b) would be the only values different from zero
it would be sufficient to select the column of matrix Θ to obtain a linear system
with M equations and K unknowns that is well-conditioned (if M ≥ K) and a stable
inverse matrix can be calculated. A necessary and sufficient condition so that the
MxK system is well-conditioned is that for any vector v sharing the same K non
zero entries with s holds the property:

1− ε ≤
∥∥Θv

∥∥
2∥∥v∥∥

2

≤ 1 + ε (7)

for some ε > 0. The equation (7) is equivalent to state the the matrix Θ preserve
the lengths of K-sparse vectors.

In the operative application of this technique it is unknown the number of non
zero values and the locations of the s signal. In this case is used the Restricted
Isometry Property (RIP) [13] that states the a stable inverse for K-sparse and
compressible signal is available if Θ satisfy property 7 for an arbitrary 3K-sparse
vector v.

An alternative approach to stability is to create a measurement matrix Φ that is
incoherent with the sparsifying matrix Ψ. In other words the vectors {φj} cannot
represent sparsely the {ψi} and viceversa[13][12]. The behaviour is similar to the
representation of Fourier representation with delta spikes and sinusoids.

Given a matrix Ψ the choice of a Φ matrix should be selected so that the matrix
Θ verify the Restricted Isometry Property. Given the matrix Θ, that is calculated
from ΨΦ, the check that it satisfies the RIP is combinatorically complex as

(
N
K

)
.
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To avoid this calculation the matrix Φ is filled with random values that are
indipendently and identically distributed (i.i.d) from a zero mean, 1/N -variance
Gaussian density. Then the measurement of the y is done considering M differently
weighted linear combinations of the element of x. The choice of a Gaussian Φ has
some important properties:

• The matrix Φ is incoherent with the basis Ψ = I of delta spikes with high
probability. It would take N spikes to represent each row of Φ.

• Due to the properties of the iid Gaussian distribution used to generate Φ,
the matrix Θ = ΦΨ is also iid gaussian regardless the choice of the sparsifying
matrix Ψ. In other words, the random Gaussian measurements Φ are universal
in the sense that Θ matrix has the RIP property with high probability for
every possible Ψ. An alternative technique is to use random matrices with
random ±1 entries proposed by Rademacher [15] that also show to have RIP
and universality property.

3.0.2 Signal Reconstruction Algorithm

The Isometry Property (RIP) provides the proof that a K-sparse signal can be
described with M measurement in y. The reconstruction phase must take the mea-
surement in y, the random measurement matrix Φ and the sparsifying basis Ψ and
generate the length-N signal x or in an equivalent way the sparse coefficient vector
s.

Since the vector y has M values and M < N there are infinitely many s′ that
satisfy:

Θs′ = y (8)

all these vectors lie on the (N −M)-dimensional hyperplane H := N (Θ) + s in RN

corresponding to the null space N (Θ) of Θ translated to the true sparse solution s.
If Θs = y then Θ(s + r) = y for any vector r in the null space.
The goal is to find the signal’s sparse coefficient vector s in the translated null

space. Generalizing the norm lp of a vector s as :

∥∥s∥∥
p

=

[ N∑
i=1

|si|p
]1/p

(9)

Varying of the parameter p is possible to optimize different norms:

• l2 : the classical approach is to consider the least squares criteria that is it is
searched the vector in the translated nullspace H with the smallest l2 norm:

ŝ = argmin
∥∥s′∥∥

2
such that Θs′ = y (10)
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There is a closed form solution ŝ = ΘT (ΘΘT )−1y that allow to recover the
value of ŝ but the solution found, instead of being a K-sparse approximation,
is an approximation of s with a plenty of ringing.

• l0 : an alternative to l2 norm is to consider the l0 norm. The searched vector is
the sparsest vector (that is the vector with the highest number of zero values)
in the translated null space H:

ŝ = argmin
∥∥s′∥∥

0
such that Θs′ = y (11)

Unfortunately the solution of (11) is numerically unstable and requires to
compute a NP-complete problem with all the combination for the non zero
value possible position in s (that are

(
N
K

)
)

• l1 is the norm used in compressive sensing since for y vector with size M ≥
cKlog(N/K) measured with Gaussian process can reconstruct K-sparse vec-
tors with high probability [13][12]

ŝ = argmin
∥∥s′∥∥

1
such that Θs′ = y (12)

The process of searching the ŝ is a convex optimization problem that can
be solved with basis pursuit technique with a computational complexity of
O(N3)[13][12]

Figure 5: Search for the approximation of s signal with l0(a), l1(b) and l2(c) norm

In the figure 5 is shown a geometric interpretation of the results with different
norms. For the definition of sparse vectors, the set of K-sparse vectors s in RN is a
highly non linear space consisting of all K-dimensional hyperplanes that are aligned
with coordinate axes. Sparse vectors are placed close to the coordinate axes in RN .
In figure 5(b) shows that the translated null space H = N (Θ) + s is a hyperplane
of dimension (N −M) and is oriented at a random angle due to the randomness
of matrix Θ. In the figure, a sketch in three dimension is proposed while typical
problems have dimensions much higher. The l2 minimizer ŝ from equation (10) is the
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point on H that is closest to the origin. It can be seen as a point on a hypersphere
that is tangent with the H hyperplane.

Since the orientation of H is random the closest point ŝ will probably be in a
different point from s and will be neither sparse nor a good approximation for the
point s. In Figure 5 (c) is shown the equivalent of the hypersphere with norm l1.
In this case the polytope will be aligned with the coordinate axes (and it becomes
pointier as the dimension N grows) and considering a growing dimension l1 hyper-
sphere, it will touch the translated null space H at a point near the coordinates and
precisely where the sparse vector s is located.

3.1 Compressive Sensing for face activity classification

This theory of Compressive Sensing has been adopted for face recognition and for
face expression recognition by Wright et al. [16], Ying et al. [17], and by Mahoor
et al. [9].

Wright et al. [16] attack the problem of face recognition through a linear re-
gression model and exploit the theory of Compressive Sensing to classify unknown
faces. A single face is represented as a combination of multiple given faces with
known identities. (This set of faces forms the overcomplete dictionary). The em-
ployment of the Compressive Sensing Theory is motivated by the authors as they
state that face recognition with occlusions and corruption is a task intrinsically
sparse with comparison to pixel level.

Ying et al. [17] adopted a sparse representation for facial expression recognition.
Two classifiers are used to discriminate the sparse values: raw gray scale pixel and
local binary patterns. The results were obtained fusing the results from the two
classifiers. Mahoor et al. in [9] state that the authors did not justify the design of
the used over complete dictionary and the motivation for the application of the L1

norm. The problem is not trivial and the question is when the Compressive Sensing
can be applied ? Which are the condition for the application of the L1 minimization?
Mahoor et al [9] apply the Compressive Sensing to faces when they are represented
by Action Units (AU) described by Facial Action Coding System (FACS)[5].

4 Conclusions

Pattern analysis and retrieval methods for automated labeling of humans and analy-
sis of facial motions in unconstrained digital video sources is a very interesting topic
that can bring to a large amount of applications in multiple aspects of human ma-
chine interaction. Action classification that aims at expanding action classification
to include head and facial movements which can be related to people expressions in
video clips. This also included examinations of issues related to analysis of facial
and head gestures during sign language communication, detect people emotions and
in general their intentions.
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