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Introduction

This document is the final report about research activities in the field of adap-
tive medical robotics at Mechatronics In Medicine (MIM) laboratory, Dept. of
Mechanical Engineering, Imperial College London (UK), from July 3 to July
31, 2010, within Short-Term Mobility (STM) Program granted to Federico Vi-
centini, proposed by Lorenzo Molinari Tosatti, both in service at Institute of
Industrial Technologies and Automation (ITIA).
The research topic involved the development of a robotic platform for the bio-
mechanical analysis of the human knee articulation. This research program at
MIM was at its very early stage at the moment of the STM period, then some
preliminary activities were expected in the development of the experimental
setup, mainly related to the identification of the key figures for the application
of any adaptive control. The overall objective of the research program is in
fact the investigation about robot learning and adaptation w.r.t. the changing
and partially observable conditions of a target system. The peculiarity of the
learning is due to the fact that the robot must understand the behavior of the
target system (knee articulation) from the mutual interaction, i.e. through an
exchange of forces depending on the position and velocity of such interaction.

Figure 1: Schematic representation of the interaction between the robot (on the
left) and the bio-mechanical target system (on the right). The target system is
rigidly attached to the robot by a gripper mounted on the end effector after a
force/torque sensor.

In addition, the accuracy of the estimated mutual position plays a key role in
the control process since the variation in the response of the target system could
display a little relative magnitude in forces and very little usable workspace on
the target system (the nature and extension of the mechanical properties of the
articulation under investigation).
For these reasons the research activities focus on the identification of robot
dynamics and the accuracy of system calibration.
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System setup and identification issues

The experimental setup includes a Staubli TX90 robot rigidly attached to a
femur/ligaments specimen for the knee joint analysis. Such analysis entails
the mechanical properties of the articulation. In particular the key feature to
be investigated is the detection of structural flaws in bones and/or tendons.
Feedback signals are provided by the robot force sensor at the TCP and by
additional sensors directly on the specimen. The robot plays therefore a key role
in the excitation of trajectories suitable for the detection of potential flaws in
the biomaterials as a function of the force response. Hence, an adaptive control
approach is desired for optimally setting in real time the robot trajectories and
force profiles. In particular, given the setup in Fig. 1, let Bio-Mechanical System
(BMS) be the limb specimen that is displaced in the Cartesian space by the robot
trajectory xr as in Fig. 2; let the TX90 and its controller (CTRL) be the robotic
platform forcing the BMS given the control variables u or the joint coordinates
q to follow. Then, the trajectory of the BMS is tracked and supplied to a
Trajectory Planner (TP) that is in charge of computing the runtime setpoint
x0r for the robot in the Cartesian space. The Inverse Kinematic (IK) block is
inserted for consistency.

Figure 2: Functional blocks involved in the control loop of the robot-limb sys-
tem. IK = Inverse Kinematics, CTRL = robot and controller, BMS = target
limb, TP = trajectory planner

The TP is in charge of understanding the current conditions of the BMS in
order to set/modify the excitation trajectories. Hence it makes use of runtime
machine learning routines for the estimation of BMS state and generation of
x0r , on the basis of a pre-loaded knowledge base made of control settings and
calibration parameters.

In next sections the issues related to the robot dynamical parameters iden-
tification for optimally set the control strategy and the system calibration are
discussed.
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Settings

Among the direct/indirect methods for identification of robot dynamical pa-
rameters ([1]), most apply for widely known laboratory robots, like the Staubli
PUMA (e.g. [2, 3]) and RX series ([4]) or Mitsubishi PA-10 ([5, 6]) because the
direct access to the low level control. Most of industrial commercial robot do
not allow real-time access to control routines. In such cases, the motor torque
can only be recorded during execution time by asynchronous query routines.
Hence, being the robot in control and under the hypothesis of fast execution of
the sampling routine, the sampled data introduce estimation errors due to the
indirect access to the controller. This is the case of the Staubli TX90. Never-
theless, estimation can take place [7]. However, the dynamic parameters under
identification requires to be clustered during the computational process and,
most importantly, an explicit model of the type

Γ(τ) =W(θ, θ̇, θ̈)p

must be used for the computation of a least square solution for the unknown
parameters p in terms of

p =W+Γ

where θ, θ̇, θ̈ are the joints coordinates,W is the equivalent matrix of all inertial,
frictional, centripetal and gravitational contributions to the dynamical model,
+ denotes the Moore-Penros pseudo-inverse, Γ is the array of joint torques at
given joint positions. Such explicit representation of p unknowns go through a
non-trivial manipulation of the basic dynamical model

τ =M(θ,p)θ̈ +C(θ, θ̇,p) + F(θ,p)θ̇ +G(θ,p) (1)

for any time step. In particular, under the Lagrange formulation of (1), the
representation of M, C, F and G requires the sum of each link contribution,
hence a sum of matrices multiplication. As a result, this approach is usually
followed by robot manufacturers with very limited public availability of results
(mainly used in calibration), and rarely solved in analytical or, rather, numerical
way.

As an alternative methodology, several approaches involve artificial neural
networks for control [8] and parameters identification [9], [10] and op. cit..
Jiang et al. (2006) [11] introduced a neural dynamic compensator of parameter
observation where the learning algorithm plays a key role in the fine tuning of
the system identification. Kosmatopoulos et al. (1995) [12] instead envisaged
the use of second-order Hopfield networks for the approximation of an observed
dynamical system through a learning dynamic modeler, where the model pa-
rameters are the unknown and several trajectories are sampled. In this case the
input is an array of given motor torques that provide a joint position pattern.
In simulation this can be achieved applying the direct dynamics to the robot
model, while in real applications the torque control on given torque pattern is
unusual. Rather, considering that the robot is of course controlled during any
data acquisition routine, the wise way is to define a set of trajectories suitable for
good excitation ([13]) of all the dynamic parameters together with good compu-
tational conditions, i.e. stable patterns of torques. Therefore, good trajectories
involve steady rate of all the joints, axis-by-axis jog motions and Cartesian di-
rections of motion non-parallel w.r.t. the projections of links principal inertial
axes.
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Hand-Eye calibration

Given the system setup of Fig. 1, the limb specimen requires to be tracked in
order to assess the kinematics profiles w.r.t. the robot coordinate frame. With
reference to Fig. 3, {r} is the robot base coordinate frame, while {h} is the end
effector moving coordinate frame. T{rh}|i

1 is the homogeneous transform for
the roto-translation of the end effector, i.e. the direct kinematics of the robot.
The target BMS motion is tracked by a marker-based capturing system (i.e.
NDI Polaris): tracked markers are represented by a cluster of points in the {e}
coordinate frame, while {c} is the base coordinate frame of the capturing system.
Let therefore be Z and Zk the roto-translations of the base coordinate frames
of the robot and of the specimen from the {c} frame, respectively. The tracking
markers provide a corresponding roto-translation T{ce}|i of the tracked limb
(i.e. femur) w.r.t. the {c} frame. The robot grasps the specimen on a generic

Figure 3: Notation of hand-eye calibration frames and transforms.

point of the specimen, whose position is non-trivially measured but requires
calibration. Such calibration is represented by the rigid constant transform X

from {h} to {e} frames. It is usually known as Hand-Eye Calibration Problem.
The hand-eye problem was originally posed more than two decades ago by

Shiu and Ahmad in their seminal work [14], stemming from the calibration
problem of robot-mounted sensors, shortly followed by Tsai and Lenz [15] who
properly formulated the kinematic framework and the geometrical constraints
affecting the accuracy of computation. The problem in fact entails the iden-
tification of the unknown transform between the robot end effector frame and
the sensor/tool carried/tracked on board of the gripper. Knowledge of such
transform allows any employed control model to directly feedback the carried

1The subscripts in x{fg}|i are: f/g the initial/final coordinate frames from/to where the
matrix x is referred, i the pose of the robot during a trajectory made of i = 1, . . . , N poses.
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sensor/tool position. Since those early works, the number of applications requir-
ing a calibration of the tools/sensors carried by robot grippers has greatly ex-
panded. Notable examples include, among others, visual servo control ([16, 17],
[18] and op. cit.,) and medical robotics ([19, 20, 21, 22, 23]). Remarkably in
these latter uses, the accuracy of the calibration is a key outcome for the whole
control process, namely when a fine positioning of tools w.r.t. a surgical tar-
gets is required. Another class of application involves the tracking of reflective
markers clusters (eyes) attached to any link (hand) of the robot or attached
directly on tools possibly carried by hand, e.g. surgical endoscopes, like in [24].
Markerless motion detection techniques are included as well for eye and/or hand
movements capture. Ultimately, the common framework involves two ways of
capturing the same motion of a fiducial object.

Figure 4: Hand-Eye notation. i and j represent two different poses.

Considering notation introduced above and displayed in Fig. 4,

ZT{rh}X = T{ce} (2)

expresses the closed kinematic loop among the coordinate frames. Considering
also N different robot poses, two relations stem from (2) for any i = 1, . . . , N :

T{rh}|iX = Z−1T{ce}|i,

T{rh}|ijX = XT{ce}|ij i 6= j, ij = ji.

that are known since early literature works as:

AiX = ZBi, (3)

AijX = XBij . (4)
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where

Ai = T{rh}|i Bi = T{ce}|i

Aij = T−1

{rh}|iT{rh}|j Bij = T−1

{ce}|iT{ce}|j .

The formulation in (4) displays a relationship between (i, j) pairs of poses, hence
a quadratic equation in terms of relative poses. It is also far more common in
early literature and allows a geometric interpretation of AX = XB problem
that underlies the solution approach of many of the algorithms developed in
last two decades, like [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]: A and B are
the same rototranslation projected in two different coordinate frames ({h} and
{e}) whose relative pose is represented by X, as shown in [37, 26]. Because most
of practical applications (e.g. control, visual guidance, tracking, etc) make use
of calibration matrix X for aligning A and B in a common coordinate frame, an
alternative interpretation shows A and B as two rototranslations of the same
magnitude around two skew screw axes [37]. Works in [38, 39, 40] provide
instead a solution for the problem posed in terms of AX = ZB.

More in detail, Tsai and Lenz (1989) formulated in [41] a variation of the
axis/angle notation for rotations in order to be linearized, exploiting in this way
the similarity property of (4) in rotational part, i.e. RA = RXRBR

T
X . From

this property, the meaning of X is the transform that rotates the axis of RA

to overlap that of RB . Linearized system searches for the least square solution
for such transform. Park and Martin (1994) introduced in [30] the use of Lie
algebra in order to linearize the equation system originating from (4). The phys-
ical consistency holds because Lie algebra is equivalent to the analysis of the
first order kinematic. The rotational and translational parts of solution X are
separately treated in the closed-form noise-free solution. Despite many recent
works assume that errors in RX propagate through tX if separately solved, au-
thors demonstrate that, in the Lie algebra, the minimization of rotational part
through a least square solution minimizes also the translational contribution.
This is due to the fact that, in the Lie algebra, the distance between rototransla-
tions can be expressed as linear function of the error in translation and the error
in rotation (rotation linearization). Daniilidis (1999) improves in [33] the use of
dual quaternions as mathematical tool for representing generic rototranslation,
extending the discussion of [42]. The formulation allows the merge of both ro-
tation and translation in only one equation. Despite the very elegant solution
(see also [43]), the dual quaternion formalization involves the algebra of dual
numbers, dual vectors and dual quaternion that is not completely addressed
in the implemented algorithm. The closed-form solution in fact relies on sepa-
rated scalar and dual parts of dual entities, preventing the full exploitation of
the underlying algebra. Nonetheless, the formulation is extremely compact and
the over-constrained problem of a large number N of poses is solved through
the kernel of a 6N × 8 matrix via a SVD routine. Andreff, et. al (1999) first
introduced ([34], often referred as [44]) a linear formulation of the hand-eye
problem including translation with rotation at the same time. Such formula-
tion features the common usage of equation (4) in control theory as a variant
(as it is) of the Sylvester equation2, with the additional constraint of dealing

2UV −VW = T where U = A, W = −B, V = X and T = 0
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with homogeneous matrices. Linear formulation exploit the Kronecker product3

operator. However the linear formulation does not guarantee that the found so-
lution belong to SE(3)4, yet rotation potentially requires to be orthogonalized.
Angeles, et. al (2000) in [35] approaches the problem by separating RT from tT .
Nevertheless, like in [30], the linearization of the problem is performed within the
first order kinematic, i.e. the minimum found for rotational part minimizes also
the errors in translational contribution. The most interesting feature consists
on the implementation of a recursive procedure that incrementally refines the
accuracy of calibration until no further progress can be achieved. Furthermore,
authors suggest a very interesting methods for the optimization of iterative com-
putation of the pseudo-inverse matrix. Despite these very interesting aspects,
the basic idea is still the computation of a least square solution w.r.t. the pop-
ulation of samples. Dornaika and Horaud (1998) first introduced in [31, 39]
the non-linear minimization of the error in (3) in terms of Frobenius norm of

AX̂− X̂B̃, where x̂ denotes an estimate of x and x̃ denotes a noisy observation
of x. Despite the loss of generality in the difference of homogeneous matrices,
the algorithm features the searching of a global minimum for the convex er-
ror function with weighted contributions of rotation/translation errors and of
the constraint of orthogonality, therefore not requiring any orthogonalization.
Strobl and Hirzinger (2006) mainly approach theAX = ZB problem, although
analysis and implementation are suitable for the AX = XB problem too. Au-
thors first introduced in [40] a mitigation factor for the impact of dimensionality
in rotation and translation components making use of a weighted SE(3) metric
for rototranslations. A key point of the algorithm is the correction of erroneous
measurements of observed data using the samples noise model and coupling the
estimation and prediction in the same metric for the purpose of optimization,
and it estimates X and Z by minimizing the squared prediction error in the
estimate AX̂ = ẐB of solution for (3). From a mathematical point of view, it is
an actual application of the maximum likelihood (ML) method that select the

models X̂ and Ẑ with the highest probability to fit the observed data.
All the reported algorithms seek for accuracy in the estimation of unknown

calibration matrices X and Z, defined as the bias w.r.t. the nominal value.
Such bias and need of estimation is introduced by the measurement noise that
all the times occurs when robot poses are tracked by the capturing system. The
solution is therefore estimated minimizing the expected error of X among the
set of observed data. Multiple measurements are required (N ≥ 2 poses) and
solutions are provided in terms of either least square or nonlinear minimization
of (3) or (4). An intrinsic limit in achieving the maximum accuracy is however
posed by the minimization strategies among many noisy data that are variously
proposed in literature. Despite different formulations, the core geometrical setup
holds. Thus the accuracy of the estimation depend on the distribution of noise
in observed data.

3(A⊗ I− I⊗B)vec(X) = vec(0)
4SE(3) is the Euclidean group of rigid body motions, which rototranslations T belong to.

RT ∈ SO(3), i.e. RT is a 3 × 3 matrix representation of an element in the SO(3) Special
Orthogonal group of rotations, tT ∈ R

3.
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