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During the period 10 May - 7 June 2010 I’ve been
working at the ISIS Neutron Pulse Source of the Ruther-
ford Appleton Laboratory (Didcot, Oxford, UK). A re-
port of the research activity, focused on the possibility
of experimentally observe features related with entan-
glement properties in solid-state and molecular systems,
follows. In particular, in Section I we describe our pro-
posal for a Neutron Scattering experiment for observing
the phenomenon of complete entanglement suppression
via an external magnetic field. In Section II we present
an original theoretical approach that allows us to define
some general guidelines for the experimental observation
of entanglement properties.

I. ENTANGLEMENT-SWITCH: A PROPOSAL
FOR EXPERIMENTAL ANALYSIS VIA

NEUTRON SCATTERING

This part of the activity has been developed in collab-
oration with the research group of Prof. T.Perring at the
ISIS Neutron Pulse Source of the Rutherford Appleton
Laboratory, and also discussed with Prof. A. Boothroyd
of the Physics Department of the Oxford University.
Most of the work has been focused upon the possibility
of submitting a proposal for a Neutron Scattering exper-
iment to be done at the ISIS Neutron Source. To this
respect, necessary requisites and preferred conditions are
marked differently (bold and italic, respectively) in what
follows.

A. Setup

This is the essential scheme as far as the real compound
to be tested and the necessary laboratory facilities are
concerned.

• A single chrystal whose magnetic behaviour can
be effectively described as a spin system on a d-
dimensional bipartite lattice of Nd sites;

• On each site i sits a spin Si, which interacts

only with its z nearest neighbours via a

Heisenberg-like exchange interaction

H0 =
∑

<ij>

JxS
x
i Sxj + JyS

y
i S

y
j + JzS

z
i S

z
j , (1)

(the sum is over all pairs of nearest neighbours).

• A uniform magnetic field h = (hx, hy, hz) is ap-
plied along a given known direction, inducing a
Zeeman term interaction

HZe =
∑

i

h · si (2)

(all constants are set equal to unity).

• The neutron scattering cross section is measured
in specific directions, which must be determined
relatively to those of the chrystallografic axis and
that of the applied field.

B. Theoretical statement

It is rigorously demonstrated[1] that for a magnetic
system with Hamiltonian H′ + HZe, if

∑

α

h2
α

(Jα + Jβ)(Jx + Jγ)
= zS , (3)

where greek indeces get values x, y, z with β 6= α, γ 6= α
and β 6= γ, then it is

|GS〉 = Π|si〉 (4)

where |GS〉 is the ground-state of the system, and |si〉
are single-spin pure states, which are eigenstates of ni ·
Si, where the local spin-orientation ni is determined by
the Hamiltonian parameters Jα and h. In particular, if
S=1/2 it is

|si〉 = cos θie
−iϕi | ↑〉 + sin θie

iϕi | ↓〉 (5)

where θi and ϕi are fully determined by Jα and h. When
the exchange integrals are uniform along the chain (as in
Eq. (1) ) the dependence upon the index i reduces to
a dependence on whether the site belongs to one or the
other of the two sublattices (remember that the lattice
MUST be bipartite), so that only two directions, n1,2,
are defined. The field defined by Eq. (3) is usually called
”factorizing” field (hf ); without loss of generality, we will
hereafter set its direction to be either x or z so as to drop
the vector notation whenever possible.

The above result holds in the antiferromagnetic case
(preferred) (Jx > 0, Jy > 0, Jz > 0); however, a general-
ization to the ferromagnetic case is also available. The
value of the spin is not particularly relevant, but low val-
ues of S are to be preferred (S = 1/2 or 1).
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C. Consequences on Entanglement properties

The ground state of the system at hf is fully separable
and therefore is, by definition, a non entangled many-
body ground-state (sometimes referred to as a ”classical-
like” ground state). When the structure of |GS〉 is not
trivial (as it is, for instance, in the case of the fully aligned
ferromagnetic ground state), the above result stands as a
very striking feature for a strongly interacting quantum
system.

In fact, despite standard magnetic observables (such
as correlation functions and magnetizations) do not show
peculiar behaviour at or near hf , entanglement proper-
ties do: not only all the entanglement measures vanish
when h = hf , but they show a very peculiar field depen-
dence, characterized by cusp-like behaviour, both in one
[2] and two dimensions [3].

This result did and still does resonate a lot in the sci-
entific community, both from the point of view of en-
tanglement and from that of magnetic models and sys-
tems. However, no experimental analysis of the overall
phenomenon has been proposed yet, possibly due to the
fact that ground-state properties are only accessible at
T = 0, but also due to the lack of direct consequences
of the very peculiar structure of the ground state upon
some measurable quantity.

D. Consequences on S(q, ω) @ h = hf (exact)

In fact, as demonstrated by Mueller and Shrock in 1985
[4], ”the special structure of the ground-state wavefunc-
tion at h = hf has the consequence that the three diagonal
dynamic structure factors Sµµ(q, ω)H , µ = x, y, z are ex-
pressible in terms of a single function S+−(q, ω) eH

, where

H̃ is the Hamiltonian of the system with the quantization
axis on site i chosen parallel to ni (see Sec.II of Ref. 4
for details). Would experimental data for Sµµ(q, ω)H at
hf be available one could first check the above result,
even without knowing the function S+−(q, ω) eH

. More-
over, the function S+−(q, ω) eH

is analitically accessible in
some specific case, namely

i) for any q in the XXZ model (Jx = Jy);

ii) for q = 0 in the generic XYZ model.

In the above two special cases one could plot experimen-
tal data together with theoretical ones from Eqs.(3.8a-c)
of Ref. 4 and check the overall picture.

Problem with this approach is that despite being exact,
the results presented in Ref. 4 do only hold for h = hf
and T = 0: discrepancies with respect to the expected
picture could hence arise from this condition not being
exactly fulfilled, a possibility which could make the over-
all analysis tricky and unstable.

E. Consequences on S(q, ω) @ h ≃ hf (modified
spin-wave theory)

Our proposal is based on the results obtained by a
modified spin-wave theory (SWT), to be possibly refined
up to some self-consistent level, where the quantization
axis at site i is chosen to be parallel to the alignment
direction defined by ni. For h ≃ hf this comes as a
natural assumption, given the structure of |GS〉 at hf .
The resulting modified spin wave theory, despite being
slightly more complicated than the usual one, produces
readable expressions. Depending on the model chosen,
some pathologies of the theory arise, in particular for
d = 1. On the other hand, there are ”healthy” situations,
amongst which we particularly mention

1) any two dimensional antiferromagnet, with field ap-
plied in any directions.

2) one dimensional anisotropic antiferromagnet, with
field applied perpendicular to the direction of the
anisotropy (as in the case, for instance, of the XXZ model
with field applied along the X direction, Jx < Jx, Jy and
h = (hx, 0, 0)).

In fact, models with a gap (∆) in the excitations spec-
trum are to be preferred, as this (besides granting stabil-
ity to the harmonic approximation underlying the SWT)
gives a more precise meaning to the condition T = 0,
which in fact becomes T < ∆.

The proposed modified SWT not only works at h = hf
but it is a reasonable approximation also for h in the
vicinity of hf : therefore, results for different values of
the field becomes available and an analysis of what in fact
happens at h = hf gets possible. In particular, we have
shown that the component of the dynamical structure
factor Sz′z′(q, ω) along the quantization axis defined by
n1 (hereafter named z′) exactly vanishes for all k and ω
when h = hf .

Analytical, despite approximated, expressions for the
components of the dynamical structure factors in a fi-
nite interval of h-value centered at hf are available via
the modified SWT: an experimental analysis for different
values of h could hence be theoretically interpreted, pos-
sibly leading to the first experimental observation of an
”entanglement-switch” phenomenon.

F. Experimental guidelines

The experiment should be based on both elastic and
inhelastic neutron scattering on a single chrystal whose
magnetic behaviour is known to be properly described by
a Heisenberg, possibly anisotropic, Hamiltonian. A uni-
form magnetic field should then be applied, with value
ranging in a small interval centered at hf . Angles be-
tween the direction of the applied field and the charac-
teristic magnetic axis of the chrystal must be precisely
determined in order to define the laboratory framework
for the neutron scattering (i.e. the direction n defined
above). The dynamical structure factors along n and
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the other two perpendicular directions should then be
measured. The resulting data, once reported versus ω
and q, together with the theoretical predictions, should
confirm the predicted vanishing of S(q, ω) along n at hf
for whatever ω and q. The experiment should be done
at low enough temperatures so as to grant both the low-
dimensional character of the magnetic behaviour and the
possibility to observe features which are essentially re-
lated with the ground state structure.

G. Possible compounds

• one-dimensional S=1/2: Cs2CoCl4 [8]

• one-dimensional S=1: anisotropic heisenberg anti-
ferromagnets, possibly with single ion anisotropy,
such as NENP [9] or NDMAP [10]

• two-dimensional S=1/2: monolayer copper oxides
(such as La2CuO4 and Sr2CuO2Cl2 and many oth-
ers); [Cu(pyz)2(HF2)]PF6 [13].

II. ENTANGLEMENT PROPERTIES:
GENERAL THEORETICAL GUIDELINES FOR

EXPERIMENTAL OBSERVATION

This part of the activity has been developed in collabo-
ration with the research group of Dr. N.Gidopoulos at the
ISIS Neutron Pulse Source of the Rutherford Appleton
Laboratory. We have worked on a theoretical approach
for describing open quantum systems, which might shed
light upon the meaning of any parametric representation,
as well as on the relation between the emergence of a
Berry phase and Entanglement properties. In particular,
aimed at determining quantum hermitian operators cor-
responding to physical observables possibly related with
Entanglement, we have developed the following formal-
ism.

Let us consider a composite system S = AuB in a pure
state |Ψ〉. We introduce an orthonormal basis {|φβ〉} for
the subsystem B and write

|Ψ〉 =
∑

β

γβ |φβ〉Ôψβ
A |χA〉 = (6)

= |Φ(A)
B 〉|χA〉 , (7)

where |χA〉 is any pure state of subsystem A, γβ are com-

plex coefficients and by the suffix (A) in |Φ(A)
B 〉 we un-

derstand that despite |Φ(A)
B 〉 formally representing a pure

state for the subsystem B, it in fact depends parametri-
cally on the state of the subsystem A. Such parametric

dependence is embodied in the operators ÔΨβ
A which lo-

cally act on the subsystem A only (for the sake of a lighter
notation, we will hereafter drop the index A). A matrix

representation of the operators ÔΨβ is directly obtained

by choosing an orthonormal basis for the subsystem A,
say {|χα〉}, so that one can write

|Ψ〉 =
∑

αβ

cαβ |χα〉|φβ〉 , (8)

and get the relations

∑

α′

OΨβ
αα′χα′ =

cαβ
γβ

, (9)

for the matrix elements OΨβ
αα′ ≡ 〈α′|ÔΨβ |α〉. Normaliza-

tion of |Φ(A)
B 〉 implies

∑

β

|γβ |2 (ÔΨβ)†ÔΨβ = ÎI , (10)

which clearly does not necessarily mean unitarity of each
ÔΨβ . If the Schmidt basis are used, so as to write |Ψ〉 =∑
j vj |νAj 〉|νBj 〉, it is

ÔΨj = vj ÎI and (ÔΨj)†ÔΨj = |vj |2ÎI , (11)

from which it is easily seen that if |Ψ〉 is not entangled,

i.e. if vj = δjl, then it is ÔΨj = δjl ÎI, and the whole
construction is consistently trivial. On the other hand,
if |Ψ〉 is maximally entangled, i.e. if vj = 1/

√
NA for all

j (here NA is the dimension of the Hilbert space of sub-

system A), then all the ÔΨj are equal, and proportional
to I.

Given any physical observable M, and the correspond-
ing Hermitian operator M̂ , the above formalism allows
one to write

〈Ψ|M̂ |Ψ〉 = 〈χA|M̂eff |χA〉 , (12)

where we have introduced the ”effectively local” operator
M̂eff , defined by

M̂eff =
∑

β′β

(ÔΨβ′

)†
(
γ∗
β′γβ〈φβ′ |M̂ |φβ〉

)
ÔΨβ . (13)

The reason why we call these operators ”effectively lo-
cal” is that despite their acting solely on the subsystem
A, they do also depend on the global state |Ψ〉. We un-

derline that the hermitianicity of M̂ implies that of M̂eff ,
due to condition (10), i.e. due to the normalization of

|Φ(A)
B 〉. We now apply the above formalism to a well

known example of entangled state.
Let us consider the case when A and B are qubits, i.e.

physical objects that can be described as S = 1/2 spins,
and chose {|φβ〉} = {|χα〉} = {|1〉, |0〉}. The state of the
qubits pair be

|Ψ〉 = x|10〉 + y|01〉 (14)

where x and y are complex coefficients such that |x|2 +
|y|2 = 1 (we will hereafter set x real). The two operators
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ÔΨ1 and ÔΨ0 can be determined by Eq. (9). In matrix
representation the result is

ÔΨ1 →



|χ0|eiϕ

1 −χ1|χ0|
χ0

eiϕ
1

y
χ∗

1

γ1
y
χ∗

0

γ1


 (15)

and

ÔΨ0 →




x
χ∗

1

γ0
x
χ∗

0

γ0

−χ0|χ1|
χ1

eiϕ
0 |χ1|eiϕ

0


 (16)

The phasis ϕ1 and ϕ0 entering the above expressions
are undetermined and essentially arbitrary. We can
therefore equal ϕ1 to the phase of χ0, i.e. exp(iϕi) =
χ0/|χ0|, and ϕ0 to that of χ1, i.e. exp(iϕ0) = χ1/|χ1|,
thus getting

ÔΨ1 →




χ0 −χ1

y
χ∗

1

γ1
y
χ∗

0

γ1


 and ÔΨ0 →




x
χ∗

1

γ0
x
χ∗

0

γ0

−χ0 χ1


 (17)

From Eqs. (13) and (17) we can derive the effectively
local operator corresponding to any operator acting on
both qubits. Notice that when M̂ is a local operator, i.e.
it only acts on one of the two subsystems, then it con-
sistently is M̂eff = M̂ . In order to clarify the meaning
of the effectively local operators, we have specifically ad-
dressed the case when M̂ is the hamiltonian Ĥ ruling the
qubits interaction, that we have chosen of the Heisenberg
form (for the sake of simplicity, the symbol over letters
indicating the operatorial character of the object, will be
hereafter implied).

H = σA · σB = 2(σ+
Aσ−

B + σ−
Aσ+

B) + σzAσzZ . (18)

After some algebra, we find

Heff →



|χ0|2(q − p) + p χ∗

0χ1(p − 1)

χ0χ
∗
1(p − 1) −|χ0|2(q − p) + q ,


 (19)

where q = |xγ0|2 + |yγ1|2 and p = 2(xy∗ + x∗y) − 1.
The dependence of Heff on the state of the subsystem

which it acts on (i.e. on the coefficients χ0,1) reflects the
self-consistent character of the proposed formalism. As
a consequence of such dependence, it is also Heff |χA〉 =

H̃eff |χA〉, with

H̃eff = (q − 1)|χ1|2σz + (p + q − 1)ÎI . (20)

The above expression shed some light on the actual mean-
ing of effectively local operators: they stand as a formal
tool for describing the effect that the very same exis-
tence of one subsystem has on the other, due to their
global state being entangled. In the example above, such
effect is represented by qubit A being subjected to an
effective magnetic field along the z direction, due to its
being interacting with qubit B. Notice that, if Ψ were
NOT entangled (for istance if y = 0), than the effective

field would vanish, and Heff would reduce to −ÎI (and
〈Ψ||H||Ψ〉 = −1, as due), confirming that the non trivi-
ality of the effectively local operators is related with the
state of the global system being entangled rather than on
the two subsystems being interacting. We consider the
above formalism a solid basis for developing an original
analysis of parametric representation of open quantum
systems, which might pave the way to a deeper under-
standing of the connection between geometric phases and
entanglement. The work is in progress.

III. APPENDIX

During the period this report refers to I have also had
fruitful discussions with Dr. Nicola Tartoni of the Di-
amond Light Source (Chilton, Oxford) and scientists in
the research group of Prof. V.Vedral at the Clarendon
Laboratory of the Department of Physics of the Univer-
sity of Oxford. I have attended several group meetings
and seminars both at ISIS and at the Clarendon Labo-
ratory. Moreover, I finalized and submitted a paper I’d
been working on in the last six months in Florence [14]
and arranged to give seminars at the Physics Department
of the University College London (8th of July), the De-
partment of Materials of the Oxford University (14th of
July) and finally at ISIS (20th of July).
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