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1 Introduction

We discuss the design of a bus service plan for the home-to-job transportation of employees of a large

research center in Italy. The ENEA Casaccia Research Center is located in the outskirts of Rome, see

Figure 1, and employs around 1500 full term contract workers. Currently, the bus service plan consists

of 22 routes with 300 stops located in the Rome metropolitan area. Each bus ends its morning route at

the center at 8h00, and follows the reverse job-to-home route, leaving the center at 16h00. ENEA does

not own the buses and outsources the bus service. The bus stops and the bus routes are the specifications

of the bus service plan, and transportation companies make their proposals according to this plan. The

number and candidate locations of bus stops are long-term decisions and are considered as inputs in this

study. The Home-to-Job Transportation Problem (HJTP) focuses on the route design: it determines where to

locate bus stops among equivalent locations and determines the bus routes. The two objectives are the

minimization of total costs and the maximization of passenger perceived quality of service while taking

equity aspects into account. A key feature of the proposed model is the imposition of time windows

on the earliest arrival time of a bus at a bus stop. As will be shown, these time windows enforce equity

among all users in terms of service quality. Another specific feature is that a bus stop can be equivalently

located at several vertices in the graph representing the road network. This captures two real-life issues.

First, it correctly models the routing in a dense urban network where turn penalties and prohibitions

can apply. Second, this feature enhances flexibility in locating bus stops.

The remainder of this paper is organized as follows. Section 2 discusses the relevant literature on

this problem, while Section 3 describes an optimization model for the HJTP.

2 Literature review and contributions

We first review in Section 2.1 the literature pertaining to management and passenger viewpoints in our

application. Buses must be routed on an urban street network in which turn penalties and prohibitions

must be considered. The literature relevant to this problem is discussed in Section 2.2. We then consider

the literature related to an application similar to ours in Section 2.3. Finally, Section 2.4 covers the

research related to the proposed solution method. Each section ends with pointers to the contributions

of this paper.

2.1 Literature on management and passenger viewpoints

The HJTP consists in designing a bus service plan that must be acceptable for both the management and

the workers of the ENEA research center. ENEA is a governmental agency and the bus service plan is

negotiated between the management and the unions representing the employees (researchers, technical

and administrative staff). Hence, the bus service is not a public service open to the population at large.
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Figure 1: Map of the Rome metropolitan area with bus stops represented as dots and the destination
indicated by the arrow. The spatial extension of the problem can be appreciated by the scale reported in
the lower left corner.

However, the decision process is similar to those of public services: the bus plan serves many users,

all of them having the same rights (as employees), and the plan is subject to collective agreements. In

view of this, the framework of Savas (1978) for evaluating performances of public services is particularly

relevant. More specifically, Savas (1978) discussed the importance of assessing three criteria that are po-

tentially conflicting: efficiency, effectiveness, and equity. Efficiency is easily defined as a ratio between

the amount of service provided and its cost. Effectiveness measures how well the need for the service

is satisfied. Equity refers to the fairness or impartiality of the service. Efficiency is usually related to

the service provider viewpoint, whereas effectiveness and equity are users’ concerns. It is common to

consider effectiveness as the only users’ criterion, thus dealing with a bi-objective model. For example,

Ghoseiri et al. (2004) have introduced a mathematical model for the passenger train-scheduling problem

which optimizes efficiency and effectiveness. Tzeng and Shiau (1988) describe a bi-objective optimiza-

tion model for the bus system of Taipei, Taiwan. The service operator and passengers viewpoints were

here modeled by disutility functions to be minimized. The explicit modeling of equity is less common;

one of the most notable exception is the work of Mandell (1991) which presented bi-objective optimiza-

tion models to assess the trade-offs between effectiveness and equity resulting from different allocations

of resources to delivery sites. The illustrative application was the allocation of new books among the
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branches of a public library system.

The field of location theory has extensively dealt with equity issues in public facility location. For

reviews see Marsh and Schilling (1994), and Eiselt and Laporte (1995). Siting facilities in a populated

area usually generates inequalities when the effects of the facility (positive or negative) vary with the

distance from it. This interplay between facility location and effects determined by people’s residences

is similar to that of our application where the riding time induced by a route (an HJTP decision variable)

is perceived as “fair” or “acceptable” depending on the direct home-to-job travel time. The reviews of

Marsh and Schilling (1994), and Eiselt and Laporte (1995) assess 20 indexes used in the location theory

literature to measure equity. Marsh and Schilling (1994) have introduced a classification scheme for

equity indexes and showed that they can be obtained by using different reference distributions, scales,

and metrics. Moreover, these authors have examined seven criteria used in the literature to choose

among equity indexes. A similar conclusion is derived by both Marsh and Schilling (1994), and Eiselt

and Laporte (1995) is that there is little consensus on how to model equity in facility location.

One of the main sources of debate is the use of a min-max objective function as an index for equity.

Since the seminal work of Hakimi (1964) this type of function has been one of the most popular way of

modeling equity in the literature (usually referred to as p-center models). The philosophical background

is rooted in the work of Rawls (1971) who related justice or fairness with the objective of making the least

well-off element of a population as well-off as possible. In addition to the critique of Harsanyi (1975) to

Rawls’s theory, the min-max objective as equity index has been challenged because it does not satisfy

the principle of transfers (see e.g. Mandell (1991)). This principle is also called Pigou-Dalton condition

according to the two economists that introduced it for assessing equity in income distributions. It states

that a transfer of wealth from a subgroup to any relative worse-off subgroup should result in improve-

ment in the equity index. A min-max objective does not satisfy this principle because the improvements

are registered only when they affect the worse-off subgroup. In the economic literature a widespread

equity measure that satisfies the principle of transfers is the Gini index. Following an interpretation sug-

gested by Sen (1973), Mandell (1991) showed that the Gini index can be viewed as measure of average

“perceived net envy level” of an income distribution. Marsh and Schilling (1994) moderately questioned

the appropriateness of the principle of transfers in location theory. In fact, an underlining assumption

of equity measures in income distribution is that there could exist an “ideal” state of equity where there

are not wealth differences, i.e. equity as equality. However, in facility location it is not usually possible

or desirable to relocate a geographically distributed population to achieve equality in terms of distance

from the facility.

The research on Dial-a-Ride Services (DARSs) also deals with similar issues. DARSs are part of the

more general transportation-on-demand services (Cordeau et al., 2007) where routes and schedules for

vehicles are determined to serve the on-demand requests from several pickup points to several desti-
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nations. Usually, dial-a-ride services are provided to people with reduced mobility, hence the emphasis

on Quality of Service (QoS) which incorporates the notions of effectiveness and equity, but is not limited

to them. Paquette et al. (2009) provide a general discussion of QoS issues in dial-a-ride services. This

study indicates that the temporal aspects are the predominant ones when customers assess this type of

transportation service. In the DARS literature the minimization of the excess riding time over the direct

time for all the passengers is a rather common objective, see e.g. Diana and Dessouky (2004). In Section

3.2 we will follow these studies in our definition of effectiveness for the HJTP. However, the reviewed lit-

erature is not conclusive regarding the modeling of equity. Moreover, we observe that there is a further

dimension to be taken into account, namely decision making is often incremental in the sense that plan-

ning is usually not made from scratch, but with respect to an existing situation. Fairness should then

also be defined in terms of the requested change with respect to an existing service plan and considering

the independent residence decisions made by the users. The proposed modeling of equity presented in

Section 3.2 attempts to tackle these issues in our application.

2.2 Literature on turn penalties and prohibitions

A road network can be modeled as a directed graph where a vertex represents an intersection or a

demand point, an arc denotes a road segment, and the arc orientation is the allowed direction of move-

ment. In urban street networks, there are also delays at intersections (usually when turning left in right

driving roads) and turn prohibitions (e.g. U-turns). These networks can still be modeled as graphs, but

turn restrictions induce penalties when using two consecutive arcs corresponding to a turn delay, or

induce constraints preventing the use of two consecutive arcs when there is a turn prohibition. Rout-

ing models require shortest path computations between demand points. The literature on the Shortest

Path Problem with Turn Penalties and Prohibitions (SPP-TPP), see e.g. Pallottino and Scutellà (1998), in-

cludes two main classes of methods. A first class transforms the original graph into an auxiliary graph

in which the arcs of the original graph become vertices and the arcs of the auxiliary graph correspond

to the allowed turns, eventually penalized. Thus standard shortest path algorithms can be used on the

auxiliary graph. This approach was first suggested by Caldwell (1961). Añez et al. (1996) showed that

a “link-based” representation of transportation networks (the auxiliary graph) can model not only turn

charactheristics but also multiple operators and modes. A second line of research develops shortest

path algorithms that explicitly consider turns. Kirby and Potts (1969) introduced a modified Bellman

equation based on arcs instead than vertices. Easa (1985) presented an algorithm for the Shortest Path

Problem with Turn Prohibitions (SPP-TP), i.e. turn penalties are not considered. Ziliaskopoulos and Mah-

massani (1996) described a label correcting algorithm for the SPP-TPP. These authors stated that the

label correcting algorithm proved to be more efficient than a label setting version in their computational

experiments. More recently, Gutiérrez and Medaglia (2008) have introduced a label setting algorithm
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for the SPPTP. However these authors do not mention the more general algorithm of Ziliaskopoulos and

Mahmassani (1996). In fact, shortest path algorithms with turn penalties and prohibitions are not always

sufficiently acknowledged. For example, recently Fidler and Einhoff (2004) introduced in the computer

science literature a graph transformation procedure (the turnnet concept) similar to the auxiliary graph

of Caldwell (1961) without any mention to this paper. To give proper merit to the work of Fidler and

Einhoff (2004) we mention that it generalizes to several objective function structures (additive, multi-

plicative and concave metrics) than previous research.

The arc routing literature has extensively discussed these turn characteristics, see Clossey et al. (2001)

and references therein. Laporte (1997) proposed a graph transformation that allows solving arc routing

problems with turn penalties and prohibitions as Traveling Salesman Problems (TSPs). Clossey et al. (2001)

have introduced heuristic algorithms to directly handle turns in arc routing problems. These heuristics

proved to be more effective than exact or heuristic algorithms applied to the equivalent TSPs.

The effect of turn prohibitions in a vertex routing problem was highlighted by Laporte et al. (1989)

who studied the design of mailbox collection routes in urban areas. The mailboxes are usually located

at street corners, and can typical be reached from several possible directions. Because of U-turn prohibi-

tions, the distance between a pair of mailboxes depends on the direction they are reached. This problem

can be modeled as a Generalized Traveling Salesman Problem (GTSP); see also Laporte et al. (1996). Our

application deals with a case similar to that discussed in Laporte et al. (1989). We have to locate bus

stops in a road network where the direction of movement has to be explicitly modeled. We observe that

the issue of location-routing in networks with turn penalties and prohibitions has not received a wide

attention in the literature. In view of this we devote Section 3.4 to it.

2.3 Literature on related applications

Our problem belongs to the area of location-routing (Laporte, 1988) and is similar to the School Bus

Routing Problem (SBRP) where students must be transported from several pickup points to a unique

location within a prescribed time. For a comprehensive review of the SBRP literature the interested

reader is refered to the recent survey of Park and Kim (2010). In the following we present a short review

highlighting mainly three aspects that are common with our application: the modeling of quality of

service issues (effectiveness and equity), the modeling of bus stop location (if any), and the solution

method (which has to be related to the size of the considered instances).

Bowerman et al. (1995) discuss several criteria for the SBRP following the classification of Savas

(1978). They consider as guiding principle for evaluating effectiveness whether the level of service is

acceptable to the public. The student eligibility for bus transport (which in the authors’ case study

depended on the distance from student’s home to the school) was then used as an individualized effec-

tiveness criterion. However, this aspect is exogenous to the optimization model which explicitly mini-
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mizes a cost measure (the number of bus routes) and several other terms for equity purposes. These are

the “load-balance” and the “length-balance” of routes where the deviations with respect to the average

route load and length are minimized. Furthermore, the authors have introduced as equity criterion the

minimization of total student walking distance. However, in our opinion, this objective is related to the

effectiveness of the service. The optimization model also considers equity by the following modeling

of the routes. The designed routes allow a “first-on-first-off” policy, i.e. the students who are picked

up earlier in the morning must also be those who are dropped off first in the afternoon. This policy

is clearly limited to an urban setting in which routes are short, and it must not excessively penalize

students who live close to the school in terms of extra-riding time. The solution method was based on

several constructive heuristics applied to the two following phases. In a first phase a districting algo-

rithm creates clusters of students. In this phase the two objectives that were expressively minimized

are the number of routes and load-balancing. This phase also uses a cluster compactness measure as in

Chapleau et al. (1985). In the second phase the bus stop locations and the bus routes are determined for

each cluster. Computational results were provided for a case study at one school located in Wellington

County, Ontario, and involving 183 students.

Braca et al. (1997) comprehensively described the computerized system used to solve the New York

City multi-School Bus Routing Problem (m-SBRP). This is a more difficult problem occuring when a bus

fleet serves more than one school, and schools have different starting and ending times. These differ-

ences can be exploited to reduce the bus fleet size in dense urban area where routes are usually short. The

authors recognized the importance of optimal bus stop location, but no attempt was made to address

this issue and bus stops were taken as inputs according to the past experience. The model minimizes

the number of required buses and it includes QoS constraints such as maximal distance constraint (each

student cannot be on the bus for more than 5 miles), school arrival time constraints (buses must arrive at

a school between 5 and 25 minutes before school start), and pickup time constraint (the earliest pick-up

must not be before 7h00). The solution method was based on a randomized heuristic derived from a

heuristic for the Capacitated Vehicle Routing Problem (CVRP) introduced in Bramel and Simchi-Levi (1995).

Li and Fu (2002) have presented a constructive heuristic algorithm for a SBRP in Hong Kong. Their

heuristic considers four objectives: the total number of buses required, the total travel time spent by the

students, the total bus travel time, and the largest difference in loads and travel times between buses.

Corberán et al. (2002) have solved a SBRP in a sparse rural area where routes are usually longer than

in urban areas. In view of this, the authors chose as QoS index the maximal time a student spends in the

bus. The model minimizes this QoS index and the number of deployed buses. This bi-criteria optimiza-

tion model was solved by means of a scatter search metaheuristic. The proposed methodology aimed at

drawing the efficient frontier of the two objectives, thus highlighting trade-offs between different levels

of service and costs. The authors showed that their algorithm could find better routes than the current
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bus plan in terms of QoS without increasing the number of buses. Pacheco and Martí (2006) have solved

the same problem by using a tabu search algorithm with an intensification phase based on the path

relinking methodology, which yielded better solutions than in Corberán et al. (2002).

Spada et al. (2005) describe a decision tool for a m-SBRP. This paper distinguishes itself from the

SBRP literature by focusing exclusively on QoS issues. Students can face additional time losses than the

extra-riding time. In fact, because a bus may perform several tours, some students can be dropped at

their school earlier than the school starting time. This waiting time at the school increases the student

time losses. The authors minimize two objective functions: the total time loss of all students, and the

maximum time loss among all students. The problem was modeled as a non-linear integer program and

solved heuristically. A solution was built by a constructive heuristic and improved by a metaheuris-

tic. The authors have compared two metaheuristics: simulated annealing, and tabu search. Simulated

annealing performed slightly better in their computational experiments.

Bektaş and Elmastas (2007) have studied a SBRP for an elementary school in Ankara. In this appli-

cation there were 29 bus stops and up to 26 available vehicles. The aim was to minimize the total cost

of the transportation service expressed as a sum of variable costs induced by traveled distances and

fixed costs for activated vehicles. The authors modeled the problem as an Open VRP (see e.g. Aksen

et al. (2007) and Li et al. (2007)) with capacity and route duration constraints. The route duration con-

straints ensured that a QoS index (the maximum time a student travels) was satisfied. The small size of

the problem made it possible to solve the model to optimality by a commercial integer linear program-

ming software. The optimal solution resulted in a 29% savings in total cost as compared to the previous

routing scheme.

The reviewed literature considered equity issues by using min-max approaches either as objectives

or as constraints. Moreover, the issue of bus stop location is often exogenous to the model and there is no

mention to routing in road networks with turn restrictions. In Sections 3 we provide an integrated model

for bus stop location and routing where equity issues are handled in a finer way than in classical min-

max approaches and where turn characteristics are dealt with. In their review of the SBRP, Park and Kim

(2010) observed that many of the solution methods of this literature stream are problem dependent and

there is a need for more general methods based on some of the recent metaheuristics for vehicle routing.

The usual motivation for problem dependent methods in SBRP is that there are structural differences

between classical cost minimization routing models and passenger transportation. In Sections 3.2 and

3.3 we show that time windows can be used as a modeling tool to bridge this gap. Time windows

are already used in freight transportation to handle customer satisfaction among other issues, see e.g.

Moccia et al. (2010b) and references therein.
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2.4 Literature on solution methods

The proposed optimization model for the HJTP is a bi-objective Generalized Vehicle Routing Problem with

Time Windows (GVRPTW). An exact algorithm for the single-objective GVRP was introduced by Bektaş

et al. (2009). To the best of our knowledge, there are no available exact algorithms for the GVRPTW.

Moreover, in our application we deal with a large scale case study. Therefore, a heuristic algorithm is

the favored solution method. Ibaraki (2010) discusses the importance of developing heuristic algorithms

that can be adapted to several classes of problems. In our opinion, the tabu search heuristic of Moccia

et al. (2010a) satisfies this criterion. It extends to the cluster routing case the Unified Tabu Search (UTS)

heuristic of Cordeau et al. (2001, 2004) and of Cordeau and Laporte (2001). The UTS heuristic was suc-

cessfully applied to the Vehicle Routing Problem with Time Windows (VRPTW) and several of its extensions

such as the multi-depot VRPTW, the periodic VRPTW, and the site-dependent VRPTW. Moreover, UTS

was adapted to an application very different from the classical VRPTW, the berth allocation in container

terminal, both at the operational and at the tactical level, see Cordeau et al. (2005) and Giallombardo

et al. (2010), respectively.

3 Optimization model

We first discuss how we model the efficiency and effectiveness criteria of Section 3.1 and the equity

criterion of Section 3.2. The methodology introduced to model equity has multiple uses that we detail in

Section 3.3. In fact, one of the guiding principles of the proposed model consists in favoring concepts that

simultaneously tackle several issues at once. This is also the case of the modeling of turn characteristics,

described in Section 3.4, which is also useful to the modeling of bus stop location (see Section 3.5).

Finally, we present the full optimization model in Section 3.6.

3.1 Modeling efficiency and effectiveness

In our application the number of bus stops to be served and their potential locations are given, and thus

the efficiency criterion can be modeled by minimizing the cost of the plan. We measure the effectiveness

of a service plan by the total extra-time for all passengers, where the extra-time is the difference between

the bus riding time and the time of a direct trip. The direct trip is the shortest path between the bus

stop location and the destination. The extra-time is a common QoS measure used in transportation, as

highlighted in our literature review (Sections 2.1 and 2.3). Observe that passengers would always prefer

to be served from the last bus stop of a route because this choice results in no extra-time. However, this

would mean deploying a number of buses equal to the number of bus stops, which would be equivalent

to a taxi system. Such an option is prohibitive in our application setting. The efficiency objective favors

the downsizing of the number of routes (i.e. using a smaller fleet) which results in longer routes and
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thus higher extra-times. The trade-off between efficiency and effectiveness can be assessed by analyzing

the Pareto frontier of these two objectives. We observe that some improvements in effectiveness can

be achieved by different routing decisions without any cost increase. For example, suppose that a bus

route serves the bus stops labeled as A and B in Figure 2 and then reaches the destination C. The two

possible routes are R1 and R2, where in R1 stop A is served before stop B, and vice versa for route

R2. Assuming that the arc travel times and costs are all equal, both routes will have the same cost and

duration. However, if the number of passengers served at stopA is larger than that at stopB, then route

R2 will result in less total extra-time. Therefore, the explicit modeling of effectiveness is significant even

if the efficiency objective is predominant in the decision making.

B
R2 R1

C

A

Figure 2: Example of different routing decisions improving effectiveness without worsening efficiency

3.2 Modeling equity

We now discuss the proposed modeling of equity issues. The main source of passenger criticism in

the type of transportation service considered here is related to how the extra-time is distributed. The

effectiveness objective introduced in the previous section strives for the minimization of the total extra-

time. However, some passengers may be heavily penalized at the expense of others. In our application

context, which is bus transportation in the large geographical area of Figure 1, the routes must be radial,

and all converge to a common destination. This structural characteristic means that higher extra-times

are to be expected at the locations that are more distant from the destination. Because of this, the fairness

in extra-time distribution must be evaluated with respect to the minimal home-to-job distance.

We report in Figure 3 the distribution of the extra-times (y-axis) according to the direct travel times

(x-axis) in the current service plan. We focus on the worst extra-time for a given value on the x-axis.

We provide a lower envelope of these worst case extra-times, and in the following we call this lower

envelope the baseline capping function. It can be observed that there is a parabolic increase of this func-

tion up to a certain critical point, and then a slight decrease. In Figure 3, the critical point occurs at the

coordinates (23, 32). Since the travel time is the sum of direct time and extra-time, the travel time cor-
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Figure 3: The extra-times in the current service plan

responding to this critical point is 55 minutes. The analysis of these data can be synthesized as follows.

The worst-off passengers in the current plan have some sort of distributional equity among them. In

fact, the worst-off passenger at a certain direct distance from the destination is better-off than the worst-

off passengers residing further, and this holds up to a critical value of the direct distance (23 min.).

Passengers more distant that this value incur an extra-time such that their total travel time does not

exceed one hour. Our main idea is to use in our model this baseline capping function. We can enforce an

upper bound on the extra-time as a function of the direct distance to destination. Since the arrival time

at the destination is fixed, this results in a time window on the earliest arrival time at a bus stop (a more

precise definition accounting for the bus stop location issues will be given in Section 3.6). The impact

of these time windows constraints can be parametrically analyzed by varying the capping function by

means of appropriate coefficients. Figure 4 illustrates the baseline capping function and four functions

labelled as 0.8, 0.9, 1.1, and 1.2, where 0.8 indicate a capping function scaled by 0.8, etc.

We now discuss properties of this equity model. Let assume first that we use the baseline capping

function to define the time windows at the bus stops. By so doing, we can guarantee that every user

in a new plan will not be worse-off than a peer already is in the current plan, where a peer is another

user served from a bus stop located at the same direct distance from the destination. This is an easy to

explain criterion and therefore increases the appropriateness of the measure in the sense of Marsh and

Schilling (1994).

We can assess the impact of these constraints on the other objectives by using as a capping function

a better one from the user viewpoint (e.g. the 0.8 and 0.9 in Figure 4) or a worse one. We observe that
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Figure 4: Examples of scaling the baseline capping function

parametrically changing these constraints is equivalent to assessing an objective in multi-objective anal-

ysis. We now show that the implicit objective of the time window constraints is the minimization of

the scalar coefficient of the capping function. In the following of this section we use the framework and

notation of Marsh and Schilling (1994) to classify the equity objective. We define how users are grouped

(groups are indexed by i), the effect Ei of the model decisions on group i, the reference value Di of the

effect on group i, and a group-specific attribute Ai for scaling purpose. We group passengers according

to the their loading bus stop. Thus a group of passengers i equivalently denotes their bus stop. The

measured effect Ei is the extra-time for passengers served at bus stop i, and the reference value is zero

extra-time for all users, i.e. Di = 0, for all i. The group-specific attribute Ai is the value of the upper

bound on the extra-time at the bus stop i given by the baseline capping function. The time windows im-

pose constraints Ei ≤ γAi, for all i, where γ is the scaling factor of the selected capping function. Thus,

for each selected capping function we have γ ≥ Ei/Ai. Therefore, parametrically changing γ implicitly

assesses the objective maxiEi/Ai. This is equivalent to [
∑
i |Ei/Ai −Di|∞]1/∞, thus highlighting the

relation with the L∞ metric. This type of objective can be classified according to the scheme of Marsh

and Schilling (1994), but it is new. Because it uses the L∞ metric it belongs to the class of min-max ap-

proaches. As any equity measure based on the L∞ metric it does not satisfies the principle of transfers.

The index registers an improvement if and only if a better-off group transfers a reduction in extra-times

to all worse-off groups lying on the capping function (i.e. all the groups i such that Ei = γAi). It should

be noted that this objective is a generalization of the classical min-max one where the baseline capping

function would be a constant. By using a more complex baseline capping function we consider rela-

12



tive effects as should be the case in problems of this type where equity as equality is not appropriate.

Moreover, the baseline capping function extracted from an existing scenario has the advantage of con-

sidering the performances that users were used to. It provides us with a frontier of what has historically

been judged acceptable by the users. Drawing a similar function according to utility theory would have

been another modeling option. However, the existence of historical data helps in communicating the

objectives of the plan, whereas a newly computed function could be questioned by some groups.

3.3 Modeling additional features by time windows

We have discussed the usefulness of time windows to the modeling of equity. We now consider other

of their uses. First, observe that time windows on the earliest arrival time at the more distant bus stops

implicitly define an upper bound on the duration of the routes since the arrival time at destination if

fixed. The route duration constraint is usually required in practice. Second, the upper bound on the

extra-time on some bus stops can be set to specific values for special purposes. For example, suppose

that a bus stop is located at a parking place where passengers arrive by car and wait for the bus for

the last leg of their home-to-job trip, as in a park-and-ride setting. These passengers have already ex-

perienced some discomfort on the first part of their trip, and it would therefore make sense to give to

this bus stop a higher priority (less worst case extra-time) than that resulting from the capping function.

This is straightforward to achieve within the proposed modeling framework. A specific value for the

arrival time at a bus stop could also be motivated by the need to synchronize the timetable with that of

other mass transportation modes at certain locations (e.g. train stations). These are examples of the finer

control on the characteristics of the plan provided by the time window concept.

3.4 Modeling turn characteristics

As mentioned in Section 2.2, our problem requires the computation of shortest paths between vertices

representing demand points in a graph with turn penalties and prohibitions. We now discuss how this

has an impact on the model. Kirby and Potts (1969) observed that a shortest path in such a network has

an origin and destination pair of arcs, instead of vertices. Since arcs represent directed street segments a

shortest path between two demand vertices is then associated to the directions both at the origin and at

the destination. Whenever we compute a shortest path between a pair of vertices in a network with turn

restrictions we implicitly assume that there are two artificial arcs with zero costs and no turn restrictions

entering the origin vertex and leaving the destination vertex, respectively. The computed shortest path

between these two artificial arcs is then the “ideal” path which considers turn restrictions after leaving

the origin vertex. These ideal paths are not in general useful to determine a shortest route connecting

several demand vertices. The sum of the lengths of the ideal paths between demand vertices is a lower

bound of the route real length. We illustrate this by the example depicted in Figure 5. We indicate
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by capital letters (A,B, and C) three demand vertices, and by lower case letters (d, e, f , and g) four

intersection vertices. Every arc has a unit length and U-turn prohibitions apply to every vertex, i.e. we

cannot use a sequence of two arcs if the head and tail of the first arc correspond to the tail and head of

the second arc (e.g. arc (e,B) cannot precede arc (B, e)). The three demand vertices can be visited by a

route in two ways:

1. A precedes B, which then precedes C; for this route we have to consider the distances AB,BC,

and CA (where we denote by AB the distance between the vertices A and B, etc.); this route is

indicated as ABC;

2. A precedes C, which then precedes B; for this route we have to consider the distances AC,CB,

and BA; this route is indicated as ACB.

The ideal shortest path lengths between the three demand vertices are reported in the upper-left corner

of Figure 5. Computing the total length of these two routes by the ideal lengths results in a value of 7

for both of them. However, the ABC route has a length of 8 when taking the U-turn prohibitions into

account. This is because the direction of movement at B resulting from the ideal path between A and B

(which is (A, e,B)) is not compatible with that of the ideal path between B and C (which is (B, e, C)). In

fact, the path (A, e,B, e, C) would require a U-turn at B. Instead, route ACB is the shortest with a total

length of 7. To correctly model this we have to explicitly associate a direction of movement to a demand

 

Ideal path lengths:

Real length of the ACB route:

B

e

f

g

C

d A

AB = 2
AC = 2

BC = 2
CA = 3
CB = 2

AB + BC + CA = 7

AC + CB + BA = 7

(A, e, B, f, g, C, e, d, A) = 8

(A, e, C, g, B, e, d, A) = 7

BA = 3

Ideal length of the ABC route:

Ideal length of the ACB route:

Real length of the ABC route:

Figure 5: An example of routing with turn constraints. Demand vertices are labeled with capital letters,
whereas intersection vertices have lowercase letters. Every arc has an unitary length and U-turn prohi-
bition applies to every vertex. The ideal shortest path lengths between demand vertices are reported in
the upper-left corner, followed by ideal route lengths, and real route lengths

vertex as in Laporte et al. (1989). We then need to represent a demand vertex as a cluster of vertices and
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requiring that exactly one vertex per cluster be visited by a route. The modeling framework becomes

that of the Generalized Traveling Salesman Problem (GTSP) for one route, and of Generalized Vehicle Routing

Problem (GVRP) for multiple routes. For other applications of the GVRP, see Baldacci et al. (2010).

In the above mentioned example there are two possible directions of movement at vertices B and C,

whereas vertex A has only one. Figure 6 illustrates the routing example on a new graph which models

the equivalent GTSP. A vertex of Figure 6 represents a direction of movement at a demand vertex of

Figure 5, and is labeled by the corresponding arc of the graph of Figure 5. An arc of Figure 6 indicates

the shortest path between the origin and destination arcs in the original graph. For example, the arc

between (d,A) and (e,B) is the shortest path originating at A with direction of movement from d and

ending at B with direction of movement from e. This path has a length of 2. We report in Figure 6 the

subset of arc lengths useful for our example. As required, the shortest route for the sequence ACB has

a length of 7, whereas the shortest route for the sequence ABC has a length of 8.

(d, A)

(g, C)

(e, C)(e, B)

(g, B)

Cluster B Cluster C

32

2 2

3 3

Figure 6: Graph for the cluster routing problem equivalent to the example of Figure 5

We observe that this problem could be modeled without resorting to clusters if the demand points

were specifically associated to street sides (and hence to unique directions of movement). This condition

can pertain to several applications such as the transportations of pupils who are not supposed to cross

streets. However, we remark that in this case the turn characteristics could still require a cluster routing

model. In fact, if the demand points are located at street corners, then there could be more than one

direction of movement arriving at these street corners. Another condition that would make the above

issue irrelevant would be a road network without U-turn prohibitions or in which U-turns have a zero

or negligible cost. However, this condition is rare in urban road networks.

15



3.5 Modeling bus stop locations

In the previous section we have shown that the flexibility of equivalently locate a bus stop at one of

the two sides of a two-ways street, or at one of the corners of an intersection, requires a cluster routing

model. Cluster routing, as opposed to vertex routing, adds flexibility to the model because it becomes

possible to consider several physical locations where a set of passengers can be equivalently collected.

Thus, several aspects of the bus stop location problem can be integrated as routing decisions. However,

we observe that a necessary condition for the appropriateness of the GVRP framework for bus stop

location is that vertices in a cluster must be equivalent. This is the case in our application, but this is not

necessary true in applications where the bus stop location must comply with some covering constraints

of passenger demand.

3.6 Mathematical formulation

We define the HJTP on a directed graph G = (V,A) as follows. We indicate by I the set of n vertices

representing the candidate bus stop locations, and by B the set of bus stops that must be located. For

each bus stop b ∈ B there exists a set I(b) ⊂ I of equivalent candidate bus stop locations. A set I(b)

is also called a cluster and the set I is the union of |B| disjoint clusters. The HJTP requires that exactly

one vertex belonging to a cluster be visited by a bus route. The vertices o, and d represent the bus de-

pot vertex, and the workplace vertex, respectively. The set of digraph vertices is then V = I ∪ {o, d},

and the set of arcs A is the union of three disjoint subsets: A(I) = {(i, j) ∈ A | i ∈ I, j ∈ I} , A(o) =

{(o, j) ∈ A | j ∈ I ∪ {d}} , and A(d) = {(i, d) ∈ A | i ∈ I ∪ {o}}. For each vertex i ∈ I the set δ(i)+ rep-

resents the vertices j ∈ V such that (i, j) ∈ A. Similarly, δ(i)− represents the vertices j ∈ V such that

(j, i) ∈ A. We are given the travel times along the arcs, expressed as tij , (i, j) ∈ A.

At each candidate bus stop i ∈ I is associated a value pi, number of expected passenger, and si is

the time required to perform the stop and load the pi passengers. These values are equal for all vertices

of a cluster, pi = pj if i, j ∈ I(b). The buses arrive at the workplace at a given time T̄d. The arrival

time at a bus stop b cannot be earlier than a given value ab, defined as follows. Let t̄b be equal to

T̄d −mini∈I(b){tid + si}; then t̄b represents the “ideal” bus arrival time for a passenger boarding at a bus

stop i ∈ I(b). In fact, because a bus ends its route at the workplace at the time T̄d, if it arrives at the

bus stop i ∈ I(b) at time t̄b, it achieves the highest quality of service (zero extra-time) for the passengers

using this stop. The equity criterion introduced in Section 3.2 defines an upper bound on the extra-time

according to a given capping function. Let W (b) the value of the capping function for a bus stop b. We

set ab = t̄b −W (b), which is the earliest bus arrival time such that the extra-time is considered as fair for

the passengers. The other uses of the time window concept discussed in Section 3.3 would determine

specific values for ab.

We consider a fleet of m buses and this set of vehicles is indicated as K. The fleet can be hetero-
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geneous, and therefore bus specific parameters must be introduced. Bus k ∈ K can serve at most qk

passengers, has a fixed cost fk, and variable cost ckij , (i, j) ∈ A when traversing the arc (i, j). With this

notation the HTJP can be modeled as a generalized vehicle routing problem with time windows. The

main difference is the existence of a second objective taking into account the quality of service offered

to the passengers by means of extra-times. Let k be the bus serving the vertex i ∈ I(b), and let T ki be

the arrival time of the bus k at this vertex i. The extra-time at the vertex i is measured by the value

wki , computed as t̄b − T ki . Observe that wki is always non-negative, and that 0 ≤ wki ≤ t̄b − ab = W (b),

where wki = 0 corresponds to the “ideal” quality of service, whereas wki = W (b) represents the largest

allowed extra-time by the selected capping function. We then define the effectiveness objective function

to be minimized as the sum of the extra-times weighted by the number of passengers pi. As discussed

in Section 3.1, the cost and extra-time are two conflicting objectives.

We now introduce the decision variables:

• xkij ∈ {0, 1} ,∀(i, j) ∈ A, k ∈ K, where xkij = 1 if bus k uses arc (i, j), and xkij = 0 otherwise;

• yk ∈ {0, 1} ,∀k ∈ K, where yk = 1 if the bus k is activated, and yk = 0 otherwise;

• T ki ∈ <+,∀k ∈ K, i ∈ V, indicates the arrival time of bus k at vertex i;

• wki ∈ <+,∀k ∈ K, i ∈ I, is equal to t̄b − T ki if i belongs to the route k, and it is equal to zero

otherwise.

The mixed-integer linear programming formulation is as follows:

minimize
∑
k∈K

(fkyk +
∑

(i,j)∈A

ckijx
k
ij) (1)

minimize
∑
k∈K

∑
i∈I

wki pi (2)

subject to
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∑
j∈δ+(o)

xkoj = 1 ∀k ∈ K, (3)

∑
i∈δ−(d)

xkid = 1 ∀k ∈ K, (4)

∑
j∈δ+(i)

xkij −
∑

j∈δ−(i)

xkji = 0 ∀k ∈ K, i ∈ I, (5)

∑
k∈K

∑
i∈I(b)

∑
j∈δ+(i)

xkij = 1 ∀b ∈ B, (6)

T ki + tij + si − T kj ≤ (1− xkij)Mi ∀k ∈ K, (i, j) ∈ A (7)

ab ≤ T ki ∀k ∈ K, i ∈ I, (8)

T kd = T̄d ∀k ∈ K, (9)

t̄b − T ki ≤ wki ∀k ∈ K, i ∈ I, (10)∑
i∈I

∑
j∈δ+(i)

pix
k
ij ≤ qkyk ∀k ∈ K, (11)

T ki ≥ 0 ∀k ∈ K, i ∈ V, (12)

wki ≥ 0 ∀k ∈ K, i ∈ V, (13)

xkij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K. (14)

Here Mi takes the value T̄d −minb∈B{ab}. The objective function (1) minimizes the total cost of the bus

service and the objective function (2) minimizes the total extra-time. Constraints (3) and (4) define the

degree of the origin and destination vertices, respectively. Flow conservation for the bus stop vertices

is ensured by constraints (5). Constraints (6), together with (5), mean that each bus stop b is located at

a vertex belonging to I(b), and is served by exactly one bus route. The propagation of time variables

T ki is enforced by constraints (7), while earliest arrival times at the bus stops, and fixed arrival time at

the destination are enforced by constraints (8) and (9), respectively. Constraints (10) and non-negative

coefficients in the objective function to be minimized define variables wki . Finally, capacity constraints

over the number of passenger per route is ensured by (11) which also defines the bus activation variables

yk.
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