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Brescia, 8.9.2006 
 

Scientific report of the visit 
 
The 2 month visit to the Molecular Genetics Institute of the Max Planck Society served two distinct 
and related purposes: 

1. Learn software and computational procedures, which are typical in bioinformatics (in particular 
in the analysis of DNA microarray data), and which can be usefully transferred to the sensor 
array arena. 

2. Individuate a computational biology problem of interest and apply pattern recognition in order 
to solve it. 

The two research lines brought to two conference papers, which we describe in turn below. 
 
1. Random Forests, Nearest Shrunken Centroids and Support Vector Machines for the 
Classification of Diverse E-Nose Datasets. M. Pardo, G. Sberveglieri. 5th IEEE international 
Conference on Sensors, Daegu (Korea), October 2006 (accepted). 
 
While feature plots (e.g. responses of single sensors over time) and descriptive statistics (e.g. 
calibration tables) may be sufficient for the analysis of small, low dimensional sensor data (e.g. for 
materials development), proper pattern recognition (PR) methods are needed to evaluate sensor systems 
(such as E-Noses) performance in practical tasks. The potential of state-of-the-art PR algorithms like 
Random Forests (RF), Nearest Shrunken Centroids (NSC) and SVM is exploited in diverse application 
areas, as in postgenomics (e.g. for DNA microarrays data analysis). RF is an ensamble of classification 
trees. It uses both bootstrap aggregation (bagging), a successful approach for combining unstable 
learners, and random variable selection for tree building. NSC classification makes one important 
modification to standard nearest centroid classification. The shrinkage consists of moving the centroid 
towards zero by threshold, setting it equal to zero if it hits zero. The shrinkage has two advantages: 1) it 
can make the classifier more accurate by reducing the effect of noisy features, 2) it does automatic 
feature selection. Finally, SVM are nowadays between the most used learning machines. 



The computations we carried out rely on a number of R packages. R is a programming language used 
in statistics with a number of libraries for data analysis. The R package MCRestimate implements 
parameter optimization and error estimation by two nested cross–validation loops. 
The E-Nose datasets we analyzed have been produced by the commercial EOS835 E-Nose, 
manufactured by the Italian company Sacmi s.c.a.r.l.. In the 1st experiment we determined the ripening 
levels of a roasted coffee blend inside the production chain of an Italian company; in the 2nd we 
investigated the detection of toxigenic strains of the deleterious fungus Fusarium verticillioides in corn; 
the 3rd dataset presents a commercially relevant problem, namely the distinction between extra virgin 
olive oil defects. 
We applied each of the three types of classifier to each of the three datasets. We always used 5-fold 
external CV (error estimation) and 4-fold internal CV (parameter optimization). Folds were stratified 
and we further averaged on 50 repetitions of the whole procedure to get stable error determination. 
Parameter optimization was done over a grid of parameters, which depend on the classifier. As also 
recognized in the literature we found that the performance of RF does not depend much on the actual 
value of its parameters inside a large interval. 
For space constraints we report the detailed results for the most difficult problem, the distinction 
between fusarium verticilloides producers and non-producers. In tables 1-3 we report the confusion 
matrices for the three classifiers. We see that SVM has a significant lower error, while RF and NSC 
perform similarly (though RF is better in estimating the fus. v. producers samples). The detail of the 
SVM correct classification frequency for each sample is given in Fig 1. In this way the hard samples 
can be singled out. 
 
Table 1 Confusion table for Nearest Shrunken Centroids 

 fus. v. non-producer fus. v. producer Classification error 
fus. v. non-producer 31               24        0.44 
fus. v. producer 20                38        0.35 
 
Table 2 Confusion table for Random Forests 

 fus. v. non-producer fus. v. producer Classification error 
fus. v. non-producer 30               25        0.46 
fus. v. producer 16                42        0.28 
 
Table 3 Confusion table for SVM 

 fus. v. non-producer fus. v. producer Classification error 
fus. v. non-producer 37               18        0.33 
fus. v. producer 12 46        0.21 
 



 
Figure 1 SVM correct classification frequency (over the 50 repetition) for each sample (triangles are mistakes). Left  
fus. v. non-producer, right fus. v. producer 

 
2. Translating a microarray signature into an equivalent but smaller signature applicable to 
paraffin material using rtPCR or immunophenotyping. M. Pardo, S. Bentink, R. Spang. 
International Meeting on Biomarkers Selection. Genova, September 2006. 
 
Burkitt’s lymphoma (BL) and diffuse large-B-cell lymphoma (non-BL) are mature aggressive B-cell 
lymphomas. It is important to distinguish between the two B-cell lymphomas since they have different 
prognosis and must undergo different treatments. In particular one would like to single out the smaller 
class of BL from the broader non-BL class. 
In [1] gene-expression profiling was performed using Affymetrix U133A GeneChips with RNA from 
220 mature aggressive B-cell lymphomas, including a core group of 8 BLs that met all World Health 
Organization (WHO) criteria. An expression based disease entity was defined called the molecular 
Burkitt lymphoma (mBL) using a signature consisting of 74 probe sets pertaining to 57 unique genes. 
In order to characterize clinical properties of this entity like survival or response to treatment one needs 
larger studies, which is only possible when including patients from the pre microarray era. For these 
patients no shock frozen tissue is available, hence a microarray analysis is not possible. However, there 
is paraffin material, which practically allows for expression measurement of 5-10 genes using rtPCR or 
immunohistochemistry.  
The challenge is to find a smaller but equivalent mBL signature. In addition one has to take in account 
that immunohistochemistry might fail for a subset of signature genes. Hence gene selection requires 
some redundancy. 
We therefore select eight genes from the 74 probe sets derived from [1] with the constraint that any 
four of them have a high discrimination power between BL and non-BL. 



The procedure used to arrive to a gene list consists of subsequent steps: 
1. Filter (variance) probesets to reduce them to N1<74. 
2. Exhaustively rank N1 pick 4 sets (N1=35 takes 4h on a PC). 
3. Pick N2 < N1 probesets. 
4. Evaluate N2 pick 8 sets according to the performance of the 8 pick 4 = 70 4-feature sets. 

To rank the N1 pick 4 sets we: 
• Use CV error of a QDC with cost matrix 

 0.75 0 
 0 0.25 

• Evaluate the performance is 1-cost 
To pick N2 < N1 probesets we considered three strategies: 

• N2 highest univariate top scoring filtered features 
• Union of the top scoring 4-feature sets until N2 
• Feature ranking from subset ranking and choose N2 highest features 

Finally, the performance of each of the N2 pick 8 sets can be evaluated with three different measures, 
which summarize in different ways the performances of the 8 pick 4  4-feature sets: 

• Worst 4-feature set 
• 5 percentile 4-feature set 
• Median 4-feature set 

 
Results are summarized in table 4. The unique gene names relative to the probesets indices in table 4 
are shown in table 5 (i.e. some probesets are relative to the same gene).  
These results have been shown to physician involved in the German Lymphoma Alliance. By 
biological insight the gene sets in bold have been singles out for further analyses with rtPCR. 
A global scoring of genes according to the recall frequency of any gene across the nine selection 
methods is shown in figure 2. 

Table 4. Probesets numbers for the 9 different simulations conditions. 

  
 Best 8 gene indices criterion 

Perfomance: 
best = 0.9956;
worst = 0.8803 

 
4 sets index: indices 
run from 1 (best) to 
52360 (worst) 

1 12 18 30 57 60 63 69      worst 0.9432 23233 
12 18 30 42 58 60 67 69     median 0.9827 636 univariate 

ranking 
1 12 18 30 57 60 63 69      perc5 0.9467 19946 

                     

1 12 23 30 45 54 60 69     worst 0.9452 21172 
12 18 19 30 58 60 67 69     median 0.9827 636 

ranking after 
union of best 4 

feature sets 12 18 23 30 45 54 67 69      perc5 0.9594 11630 

                     

12 16 18 23 30 60 69 70      worst 0.9432 23233 
7 12 16 18 30 60 67 69     median 0.9827 636 weighted 

ranking (pardo) 
12 18 23 30 60 66 67 69      perc5 0.9467 19946 



 

Table 5.  Unique genes 

'ARHGAP25' 'CFLAR' 'FHOD3' 'HNRPA3' 'LHFP' 'PRDM10' 'SSBP2' [ ] 
'ARHGAP25' 'CFLAR' 'DLEU1' 'HNRPA3' 'RCBTB1' 'SSBP2' [ ] [ ] 
'ARHGAP25' 'CFLAR' 'FHOD3' 'HNRPA3' 'LHFP' 'PRDM10' 'SSBP2' [ ] 
                
'ARHGAP25' 'C7orf10' 'CFLAR' 'FNBP1' 'PRDM10' 'SSBP2' 'STAT3' [ ] 
'ARHGAP25' 'CD44' 'CFLAR' 'DLEU1' 'HNRPA3' 'RCBTB1' 'SSBP2' [ ] 
'ARHGAP25' 'C7orf10' 'DLEU1' 'FNBP1' 'HNRPA3' 'SSBP2' 'STAT3' [ ] 
                
'ARHGAP25' 'CD44' 'CFLAR' 'GARNL4' 'HNRPA3' 'SSBP2' 'STAT3' [ ] 
'ARHGAP25' 'CD44' 'CFLAR' 'DLEU1' 'HNRPA3' 'SMARCA4' 'SSBP2' [ ] 
'ARHGAP25' 'BCL3' 'CFLAR' 'DLEU1' 'HNRPA3' 'SSBP2' 'STAT3' [ ] 
 

 
Figure 2. Frequency of gene recall inside Table 4. 
 
[1] A Biologic Definition of Burkitt’s Lymphoma from Transcriptional and Genomic Profiling. 
Hummel et al. N Engl J Med 2006;354:2419-30. 
 


