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1  Introduction 
The structure of the current technical regulations for the seismic assessment of exist-
ing buildings, at (Italian) national level (NTC2008) and at international level (Euro-
code 8 Part 3), is as follows:  

• a variable number of limit states that are of interest is established;  
• a value of seismic intensity is associated with each limit state, characterized in 

probabilistic terms by the value of its average return period;  
• indications are provided regarding the achievement of a discrete number of 

pre-determined knowledge levels, each of which is associated with a global 
factor, to be used in a manner analogous to that of the usual partial factors;   

• methods of analysis are indicated with their respective scope of applicability;  
• the mechanisms to be verified are indicated and their respective capacity mod-

els are provided.  
 
The verification procedure ends with the determination of the ratio between the seis-
mic intensity that produces each limit state and the corresponding design intensity.  
The checks are fulfilled if this ratio is equal or larger to one.   
 
The limit of the above procedure is that at its end the actual level of protection of the 
structure, measured in terms of probability of exceeding each of the considered limit 
states, is unknown.   
In fact, the only element described in the probabilistic terms is the design seismic ac-
tion, while in reality, in the evaluation problem, i.e. in the determination of the proba-
bility of exceeding the different limit states, several other sources of uncertainty come 
into play that are not explicitly modelled.  In particular: 

a) an unambiguous definition of the limit states, in particular of the ultimate ones 
that involve widespread global damage, which are difficult to formulate, and 
the resulting subjectivity of the choice introducing an element of uncertainty 
in the outcome of the assessment; 

b) a complete knowledge of an existing building, which is not actually achieva-
ble, requires the structural engineer to make up for the lack of information 
with his own experience, by making assumptions on the structural layout.  
This is a further element of subjectivity that introduces uncertainty in the out-
come of the assessment;  

c) even with the same acquired information and the same assumptions on the 
structural layout, the choice of modelling and of the method for the analysis 
reflects substantially the experience and the professional qualities of the struc-
tural engineer, besides the computational tools at his disposal.  This is a fur-
ther, and very important element, that differentiates between the outcomes of 
an assessment;         

d) the current state of knowledge about the ultimate capacities of structural com-
ponents that were not designed accounting for seismic action is still quite in-
complete, especially with reference to behaviour just before the collapse, and 
available capacity models are characterized by considerable dispersion.  Fur-
thermore, for each mechanism there are generally available alternative models 
built on comparable empirical bases.  The choice of one or the other, as well 
as the introduction of the uncertainty on the corresponding model influences 
the variability of the outcome of the verification.     
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It follows from the foregoing considerations that the development of technical stand-
ards on the assessment of existing existing structures should set itself as its central ob-
jective the development of procedures that are appropriate to assess the reflection on 
the end result of all the uncertainties entering in the verification process, in terms of 
the probability of exceeding each of the limit states. The procedures that are presented 
in this Guide are intended to attain the indicated objective.  They have been drafted 
with the intention of requiring only a basic knowledge of reliability theory.  On the 
contrary, as far as the modelling and the analysis of the structural response are con-
cerned, since the limit states having the greatest interest are characterized by high lev-
els of structural damage, even close to collapse, the application of the Guide requires 
the simulation of nonlinear behaviour of RC elements and of masonry, which presup-
poses theoretical knowledge and experience in the use of appropriate computer codes. 
In this regard the Guide reflects the state of the art in the subject of modelling the be-
haviour of structural elements that do not satisfy the recent seismic standards, subject 
to cyclic deformations of such magnitude as to lead them close to collapse. Since the 
state of the art in the field is undergoing an active phase of development, the 
achievement of significant progress will be transferred in future updates to this Guide.  
 
This Guide provides an approach of higher level than that required by current legisla-
tion, and it is to be expected that they will be resorted to in cases of particular eco-
nomic and/or social significance.  It is also expected and hoped that the concepts and 
the procedures that are contained in them can be of help in future revisions of the cur-
rent standards.   
 
The document consists of:  

- a general section, (chapter 2) containing aspects of the assessment procedures 
that are common to the different construction types, and in particular masonry 
and reinforced concrete buildings.  

- two sections that provide specific elements regarding masonry buildings 
(chapter 3) and buildings in reinforced concrete (chapter 4). 

- an appendix (App. A) with comments on various sections of the preceeding 
chapters.  

- two appendices (B and C) that include two complete applications on a mason-
ry and a reinforced concrete building, respectively.  
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2. General aspects 

2.1 Performance requirements  
In the context of this Guide the seismic safety assessment of an existing building con-
sists in the quantification of the average annual frequency of λSL exceeding one or 
more limit states (LS), defined in §2.1.1, and the comparison of this value with the 
minimum reliability requirements indicated in §2.1.2. 
The safety assessment with respect to the limit state of collapse is always required.    

2.1.1 Definition of Limit States  
Limit states are identified with reference to the performance of the building as a 
whole, including structural elements, non-structural elements and installations. The 
limit states considered are:  

• Damage Limit State (SLD): the building maintains the integrity of the struc-
tural elements (negligible structural damage that does not require repairs) and 
remains usable even in the presence of light damage to non-structural ele-
ments.    

• Severe Damage Limit State (SLS)1: the building undergoes damages and col-
lapses of non-structural components and installations, and damages to struc-
tural components that are associated with a significant loss of stiffness with 
regard to horizontal actions; the building however retains a part of the strength 
and stiffness against vertical action and a margin of safety against collapse due 
to lateral seismic action; this state defines the limit beyond which the extent of 
damage is such as to render repairs an uneconomic option.     

• Limit State for the Prevention of Collapse (SLC): the structural components of 
the building suffer very serious damage while still maintaining a residual ca-
pacity to support vertical loads. The residual safety with respect to horizontal 
actions is negligible.     

2.1.2 Minimum reliability requirements  
The structures to which this Guide refers are distinguished according to the signifi-
cance of the socio-economic consequences of the violation of the limit states in four 
classes: 

• Class I: Buildings with only occasional presence of people.  
• Class II: Buildings whose use regularly entails the presence of crowds, with no 

environmentally hazardous contents and without any essential public and so-
cial functions.  

• Class III: Buildings whose use envisages significant crowding.  
• Class IV: Buildings with important public or strategic functions, even with re-

gard to the management of civil protection in the event of a disaster.  
With reference to the four classes and the three limit states introduced in §2.1.1, Table 
2.1 provides the maximum thresholds of the average frequency of their exceedance.    
  

                                                 
1 This Guide does not provide specific guidelines for the Limit State for the safeguard of Human Life 
(LSHL) that is considered by the NTC 2008. The safety of human life is protected by the control of the 
Limit State for Collapse (LSC), which in the case of existing buildings is preferable for the reasons that 
are detailed in Annex A2. 
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Table 2.1  Minimum reliability requirements (maximum values of λSL, multiplied by 103) depending on the 
class of construction2. 

Limit State  Class I Class II Class III Class IV 
SLD 64.0 45.0 30.0 22.0 
SLS 6.8 4.7 3.2 2.4 
SLC 3.3 2.3 1.5 1.2 

2.2 Seismic action  
In the context of this Guide the reference basis for the definition of seismic action is 
represented by the ensamble of elastic response spectrum for the nine average return 
periods that are provided by NTC2008. The ordinates of these spectra represent the 
median value of ordinates obtained by taking into account the epistemic uncertainties 
related to the analysis of the seismic hazard of each site.  For the purpose of determin-
ing the average annual frequency of exceeding a limit state λSL (§2.6.1), these uncer-
tainties are further considered through a modification of the curve of the seismic haz-
ard at the site as indicated in §2.2.1.   

2.2.1 Derivation of the hazard curve  
The seismic hazard curve of a site, λS(s), provides the average annual frequency of 
exceedance of the value s is exceeded by a representative local seismic intensity S.  
In this Guide the reference structural model for the determination of the response is 
three-dimensional and is therefore subject simultaneously to three orthogonal compo-
nents of the seismic motion (in buildings it is normally acceptable to disregard the 
vertical component). The seismic intensity S is normally expressed in terms of the 
spectral acceleration at the fundamental period of the structure under consideration, 
the maximum of the two horizontal components3.       
The median hazard curve is obtained in discrete terms from the nine median response 
spectra given in NTC2008: 

  (2.1) 

where  is the value of the intensity S at the i-th average return period TR,i, with 
reference to the soil category A of NTC2008 and Eurocode 8. 
To calculate λSL (§2.6.1) reference is made to the average hazard curve  which is 
obtained by multiplying the mean curve λS by the amplifying factor: 

  (2.2) 

The term βH can be estimated with the formula: 

  (2.3) 

                                                 
2 The values presented in Table 2.1 correspond approximately to the inverse of the average return peri-
od characterizing the seismic action for the verification of the corresponding state limits in NTC2008, 
multiplied by the amplifying factor 2.25, which takes account of the randomness both in the response 
and in the capacity of the structure.  
3 The use of the maximum spectral acceleration between the two horizontal components is necessary to 
maintain consistency in the integral of the following Eq. (2.12), since hazard data in NTC2008 used in 
Eq.(2.1) are derived with reference to this measure of intensity.   
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where the fractiles at 16% and at 84% of the seismic intensity S, that vary as a func-
tion of the average annual frequency λS, can be evaluated in the neighborhood of an 
estimate of λSL obtained using the median hazard curve λS.  
 

 
Fig. 2-1 Example of fractile hazard curves (50%, 16% and 84%) for peak ground acceleration ag.  [Source: 

Project DPC-INGV S2]. 

2.2.2 Time histories of seismic motion  
For the purpose of determining the fragility curve of the structure (§2.6.1) it is neces-
sary to use a set of (generally triplets but more often couples of) time-histories of 
ground acceleration, whose characteristics are compatible with the seismogenic 
mechanisms that influence the seismicity of the site under consideration4.    
Use can be made of natural records or time histories obtained from models that repro-
duce the fault mechanism and the propagation of the motion at that specific site, pro-
vided they are able to reproduce the variability of the spectral ordinates of the natural 
motions. 
In the event that use is made of recorded accelerograms, one criterion for the selection 
of recordings is to rely on the results of the breakdown, usually called disaggregation, 
of seismic hazard for the site in question.  This technique provides the range of values 
of magnitude M and distance R (and of the number ε of standard deviations with re-
spect to the average of the attenuation law used in the hazard analysis) representing 
events that contribute most to the value of the average frequency λS of exeeding5 the 
intensity S = s. The recordings will be selected preferably within the range M-R pro-

                                                 
4 It is not necessary to have a close compatibilty with the standard iso-probable spectrum.  This would 
actually provide an estimate in excess of the average annual rate λSL: this spectrum in fact represents an 
“envelope” of the effects of all possible events to the site (see also §A.4). 
5 Strictly speaking, to maintain consistency in the integral in the following Eq. (2.12), the disaggrega-
tion should be that of the frequency of occurrence of the value S=s and not of its exceedance.  The 
most widely diffused codes for the calculation of the hazard nonetheless carry out the disaggregation of 
the frequency of exceedance.  Generally, however, the two disaggregations provide similar results so 
that this latter can be used in approximation.   
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vided by  the disaggregation6, for a value of intensity with an average annual rate 
comprised between approximately 1/500 and 1/1000.    
In the absence of specific data for the site under consideration and in view of the 
range of magnitude values that are characteristic of regions with medium and high 
seismicity, the choice of the accelerograms may fall on records obtained on soils of 
category A or B (NTC2008, EC8), in the range of M between 5.5 and 6.5, and for ep-
icentral distances up to 30 km. 
For sites that are located in the vicinity of known active faults it is necessary to assess 
the probability of occurrence of impulsive motions and take them into account in the 
selection of signals for structural analysis (see §A.4).    
For sites that belong to soil categories C or lower, for which a selective amplification 
of the motion on the surface is envisaged, the acceleration time-histories previously 
selected or generated with reference to conditions of hard ground, must be modified 
by means of local seismic response analysis.  This analysis can be conducted with 
equivalent linear methods only for those stratigraphic profiles where even at higher 
intensities significant levels of plastic deformation are not expected7. The uncertainty 
associated with mechanical properties of the local stratigraphy must be taken into ac-
count.  For this purpose the parameters of the site response model (stiffness, re-
sistance, etc.) can be modelled with continuous random variables (§2.3.2) and a dif-
ferent sample of these variables can be associated with each selected record. This pro-
cedure is analogous and congruent to what is indicated in the following with reference 
to the uncertainties in the structure (see, for example, §2.6.2), so that the motion on 
the surface obtained using a soil sample is associated with a sample of the characteris-
tics of the structure.     
In case modelling with degrading components (see §2.4) is adopted, the duration of 
the time histories presents a significant correlation with the level of damage caused.  
In this case, in principle, it would be necessary to select time histories with a duration 
compatible with the distribution of the duration conditioned to the level of intensity 
chosen for the selection of the records.  In the absence of this information it is neces-
sary to verify that the chosen time histories will cover in an approximately uniform 
manner an interval of “significant” length D5-95

8 between 4 s and 10 s.  
The minimum number of time histories to be used is equal to 20.    

2.3 Knowledge of the structure  
The evaluation process begins with the acquisition of a first level of knowledge of the 
geometric characteristics of the structural system which is responsible for the seismic 
resistance, including the non-structural parts that can have significant influence on the 
response.  The purpose of this first activity is that of enabling the establishment of a 
preliminary model to be used to perform sensitivity analyses on the values of mechan-
                                                 
6 In principle, there may be multiple intervals in the range M-R that contribute in a way comparable to 
λS, for example, a source that generates events with high magnitude at a greater distance, and a source 
that is characterized by events of lower intensity at shorter distances.  In these instances the selection 
must reflect both intervals. 
7 Two out of the three analytical methods proposed in this Guide are based on an incremental dynamic 
analysis in which the signals are scaled linearly (in intensity) even at very high levels, until the collapse 
of the structure is reached.  At these levels, particularly for stratigraphic profiles characterized by poor 
mechanical characteristics, the magnitue of the anticipated deformations is important.  In these condi-
tions the equivalent linear methods suffer from known limitations in terms of the reliability of the re-
sponse, and non-linear methods are therefore preferable.   
8 The significant duration D5-95 is defined as the difference between the time instants t95 and t5 in which 
the signal strength reaches respectively 95% and 5% of total power.   
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ical parameters, on geometric parameters and on modelling assumptions for the struc-
tural response.  The results are useful in order to draw up a plan for the surveys and 
tests to complement the information already available.    
The preliminary analysis also aims to highlight the main features of the seismic re-
sponse of the structure, in particular the degree of uniformity of the deformations and 
of their order of magnitude, in addition to the static regime under vertical loads.  This 
information provides further indications on the elements on which to concentrate in-
vestigations and tests.  
Specific guidelines on modelling procedures for the preliminary analysis are given in 
§3.1.2 and §4.1.2 for masonry and for reinforced concrete buildings, respectively.    

2.3.1 Elements of knowledge  
Aspects of knowledge that are necessary for the assessment refer to the following is-
sues:  

• Geometry of the structural system  
• Construction details  
• Mechanical properties of materials  

 
Elements of knowledge may come from:  

• A historical-critical analysis aimed at reconstructing the initial construction 
process and the subsequent modifications that were made over time, as well 
the significant events that may have influenced the building.    

• Design documents regarding the implementation of the project and subsequent 
modifications.  

• A geometric-structural survey with reference to the overall geometry of the 
structure as well as of structural elements, including the state and nature of 
possible contacts with adjoining structures, quality and state of conservation of 
materials and components.   

• Experimental investigations, to be justified by type and quantity on the basis 
of their actual use in the analysis, designed to complete the information con-
cerning the mechanical properties of the materials.   

 
Specific guidelines regarding the type of investigations and tests to be performed are 
given in §3.1.3 and §4.1.3, for masonry and for reinforced concrete, respectively.    

2.3.2 Modelling of uncertainties  
With regard to the knowledge of the structure, one must distinguish between:  

• Factors which may be considered known in deterministic terms, i.e. with a 
negligible margin of uncertainty, in absolute terms or due to their negligible 
influence on the response. For these factors, a single value for all the analyses 
is adopted.  

• Factors affected by uncertainties of a random type, generally associated with 
the inherent variability of the properties of the structure.  These factors are 
modelled using random variables, as described in §2.3.2.1.    

• Factors affected by uncertainties of an epistemic type, associated with lack of 
knowledge of the structure or of the mechanical behaviour of its component 
elements.  These factors can be modelled in some cases by means of continu-
ous random variables, as described in §2.3.2.1 (when the lack of knowledge 
concerns the quantification of the value of a parameter of a model), or by us-



CNR-DT 212/2013 

  8 

ing the technique of the logic tree, as indicated in §2.3.2.2 (when lack of 
knowledge requires consideration of alternative models).     

2.3.2.1 Uncertainties modelled by random variables  
Uncertainties modelled by means of continuous random variables, characterized by a 
probability density function f(x) or by the corresponding cumulative distribution func-
tion F(x), in the problem of the evaluation of the average annual frequency λSL, in-
clude: 

• The mechanical properties of materials (for example, compression or shear 
strength of masonry, compression strength of concrete, yield strength of steel, 
etc). These quantities are defined positive and for them the lognormal distri-
bution can be adopted.  

• The measure of seismic intensity S of the site.  This random variable is speci-
fied in terms of the seismic hazard function λS(s). 

• Error terms of capacity models (resistance, deformability) of the structural el-
ements.  The distribution of these properties depends on the model and is 
specified in the relevant sections for various construction materials (see §3.4 
and §4.4).     

 
The inherent variability of seismic motion for a given intensity S is modelled implicit-
ly by means of a sample of its “values” represented by the full set of motions selected 
for the analysis of the structure (§2.2.2). 
 
The definition of the lognormal9 probability distribution of the random variables used 
to describe the properties of materials requires the definition of two parameters:   

• Mean. For buildings in reinforced concrete, an a priori estimate of this pa-
rameter can be established on the basis of the design documentation (specifi-
cations of materials in the calculations and/or test certificates), where availa-
ble, updated as necessary by means of the Bayes procedure based on the re-
sults of experimental tests (destructive tests for strength values) of proven re-
liability.  In the absence of original documentation, a sufficient number of 
tests must be carried out in order to obtain a firm estimate of this parameter.  
For masonry buildings, an a priori estimate may be obtained based on litera-
ture data, referring to buildings of the same period and type, or on values in-
dicated in §3.1.3.2.    

• Standard deviation. For buildings in reinforced concrete, an a priori estimate 
of this parameter, representative of the variability of mechanical properties 
within a single structure, can be established based on of literature data, refer-
ring to buildings of the same period and type, or on values given in  §4.1.3 
and updated as necessary by means of the Bayes procedure based on the re-
sults of experimental tests (destructive tests for strength values). For masonry 
buildings, an estimate a priori can be obtained on the basis of literature data 
referring to buildings of the same period and type, or on the values indicated 
in §3.1.3.2.     

                                                 
9 Lognormal distribution has now become customary to represent quantities that are considered posi-
tive such as the properties of materials.   It is worth mentioning that this distribution is not the only al-
ternative and that also the Gamma (very similar to a lognormal for parameter values between 2 and 4) 
or the Beta are used. 
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2.3.2.2 Uncertainties of epistemic type that can be modelled by the use of the logic 
tree technique  

These uncertainties are linked to an imperfect knowledge of the structure (for exam-
ple, the actual effectiveness of the anchorage between the walls, the capacity of the 
floors to distribute the forces among the walls, or the variability of the different typol-
ogy of walls for masonry constructions, or amounts or detailing of the reinforcement, 
or dimensions of the structural components for reinforced concrete buildings), the 
quantitative definition of the limit state, the choice between different capacity models, 
the use of different models and methods for the determination of the seismic response, 
etc.10 
These uncertainties are modelled as discrete random variables, characterized by their 
mass probability functions p(xi). 
In the context of this Guide, the effect of uncertainties of this type is evaluated by 
means of the technique of the logic tree, in which each of the combinations of the val-
ues of the variables is represented by a branch.  Assuming statistical independence be-
tween variables, the probability associated with each branch is obtained as a product 
of the probabilities of the values of the variables in the branch.  The calculation of the 
average frequency of exceeding the limit state λSL must be repeated for all the 
branches of the tree in accordance with one of the methods in §2.6. The final result of 
the evaluation consists in the weighted average with the probability of the corrre-
sponding branches (Fig. 2-2) of the values of λSL obtained for each branch.      
 
The selection of epistemic variables that are strictly necessary and of the correspond-
ing alternative options represents a critical element to contain the onus of the evalua-
tion of λSL. To this end it is particularly useful to have a sensitivity analysis per-
formed in the preliminary stage that is subsequently updated and integrated as a result 
of further fact-finding surveys.   
Specific indications are given in §3.1 and §3.1, for masonry and reinforced concrete 
buildings, respectively.    
 

                                                 
10 It is to be noted that any response model is still unavoidably characterized by simplifying hypotheses 
that lead to an estimate that is still affected by uncertainty.  This problem is not solved with the use of 
multiple models using the technique of the logic tree.  To date, this uncertainty is not quantified by the 
majority of the response models available (quantification requires an extended comparison between 
calculated and experimental answers). If it were systematically quantified, the model could be elimi-
nated from logic tree and the corrresponding error term should be included among the uncertainties 
modelled using random variables in §2.3.2.1. At the moment this type of mdel uncertainty can be re-
duced to insignificant levels on the overall risk measure only through systematic recourse to state-of-
the-art methods and models.  
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Fig. 2-2 Logic tree for three variables X, Y and Z each with two values. 

2.4 Modelling and structural analysis  
In this Guide the verification methods (§2.6) require the implementation of non-linear 
analyses of the response of the structure.  
The non-linearities to be included in the modelling are of both mechanical and geo-
metrical type (this latter when significant11).   
Global response modelling of a building can be done by using frame models, which 
constitute the practice for buildings in reinforced concrete but also allow the represen-
tation of masonry buildings by means of the “equivalent frame” approach, which 
identifies columns (masonry piers) and beams (spandrels). For composite buildings of 
masonry and reinforced concrete the adoption of an equivalent frame model is there-
fore a natural extension of the above-mentioned approaches.  
Different modelling criteria, such as macro-element methods or finite elements ap-
proaches, by which the continuum is discretized into two-dimensional or solid ele-
ments, may also be adopted.  These latter models have the potential of providing very 
accurate results but their use is sometimes hampered by significant computational 
costs.    
For the modelling of the mechanical non-linearity of the elements, constitutive laws 
may be adopted at the material or section/element level having a stable hysteretic be-
haviour (with or without cyclic degradation of stiffness but without strength degrada-
tion), hereinafter referred to as “without degradation”, or constitutive laws with deg-
radation also of strength, referred to hereinafter as “with degradation”.     
 

                                                 
11 In general the geometrical non-linearity can be significant for RC frame structures in the stage of 
large deformations and not significant for masonry structures.  
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Fig. 2-3 Constitutive laws: a) with stiffness degradation but without degradation of strength, b) with of 

degradation of stiffness and strength.  The curve with degradation in the figure shows only one compo-
nent of the degradation, that due to negative stiffness in the monotonic load curve (backbone). Actually 

both the strength, and the unloading and reloading stiffnesses will degrade due to the effects of the cyclic 
dissipation of energy (cyclic degradation). Models are available that describe both forms of degradation 

(§4.3.1.5).  
 
The two choices are not equivalent in terms of accuracy of the assessment:  the choice 
of laws without degradation leads to a poor approximation for advanced limit states, 
i.e. severe damage and “near collapse”, in which degradation plays a fundamental 
role.  For reinforced concrete, for example, experimental tests on elements not de-
signed according to modern criteria for seismic protection (capacity design) show 
how degradation commences already with element ductility at very low levels (µ = 2). 
The response determined with models without degradation acquires therefore a con-
ventional character after the attainment (verifiable only in retrospect) of the defor-
mation threshold at which the degradation of the first element of the structure would 
start.  The choice of the type of constitutive law is also reflected in the procedures for 
the identification of the limit state of collapse (§2.5.3). 
Detailed indications on modelling procedures to be adopted for structural elements are 
given in §3.2 and §4.2 for masonry and reinforced concrete construction, respectively.  
In the case of masonry buildings it is also necessary to model and verify the possible 
local mechanisms, typically associated with the out-of-plane response of portions of 
the wall.  Specific indications are given in §3.2.2.   
The analysis of the seismic response can be performed by means of a static non-linear 
analysis (§2.4.1) or a dynamic non-linear analysis (§2.4.2). 

2.4.1 Non-linear static analysis  
As is widely known, there are several variants of this method of analysis which differ 
essentially by the load pattern used, whether invariant or varying depending on the 
level of inelasticity reached, and by consideration of a single or multiple modes of vi-
bration for the determination of the response.   
The scope of each method depends on the dynamic properties of the structure.  In the 
simplest case of structures whose response is predominantly dominated by a single 
mode of vibration and the elastic demand is sufficiently uniform, the analysis can be 
performed with an invariant distribution of forces, proportional to the product of the 
mass matrix times the modal vector.   
In general terms, the analysis consists in the application to the model of the structure, 
on which the gravitational loads have previously been applied, of one or more distri-
butions of horizontal forces increasing up to attainment of collapse conditions.  For 
each distribution of horizontal forces the result of the process is summarized in a 
global curve that links the shear force at the base to the displacement of a controlled 
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degree of freedom (the curve is actually transformed through expressions that depend 
on the modal form and on the distribution of masses in the structure, in order to define 
the response of an equivalent single degree-of-freedom oscillator, this latter curve is 
called in literature “capacity curve”). Each point of each capacity curve is associated 
with a deformed configuration of the structure.   
For each value of seismic intensity S, the demand of the global displacement (i.e., of 
the control degree of freedom) is obtained from a response spectrum (inelastic, 
overdamped elastic, etc.). When multiple modes contribute to the dynamic response 
of the structure, the demand of the global displacement must be calculated for each 
capacity curve, and the local responses for any given intensity S must be combined by 
an appropriate modal combination rule before proceeding to the calculation of the 
value of the limit state variable (§2.5) (method of “multi-modal pushover analysis”).     

2.4.1.1 Determination of the constitutive relationship of the equivalent oscillator  
As anticipated, for the purpose of determining the seismic response of a structure, the 
results of the non-linear static analysis are used to define the constitutive non-linear 
relationship of one or more simple oscillators, called “equivalent oscillators”, which 
will be used in Metdods B and C to be subsequently introduced (§2.6.1).   
For each of the two orthogonal directions in plan, the monotonic envelope of the 
equivalent oscillator is obtained by approximating with a multi-linear curve the over-
all curve of the structure.  As shown in Fig. 2-4, in general it will be necessary to per-
form two analyses by pushing in the opposite directions to account for dissymmetries 
in the behaviour of the building.  In the case that use is made of a method with an in-
variant load distribution it is also necessary to verifiy the approximate matching be-
tween the initial modal deformation and the deformation in a state close to the col-
lapse, and if necessary to repeat the analysis for a different initial distribution (for ex-
ample, for a distribution that is proportional to the masses in case the formation of a 
weak storey is identified). 
 

 
Fig. 2-4 Determination of the monotonic envelope of the constitutive relationship of the equivalent oscilla-

tor in the case of non-symmetrical behaviour and modelling with laws characterized by degradation.  
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The characteristics of the capacity curve depend on modelling choices, as illustrated 
in Fig. 2-5 that shows three relationships between base shear and displacement at the 
top for: (a) constitutive non-linear laws without degradation and absence of geometric 
non-linearity, (b) constitutive laws without degradation and presence of geometric 
non-linearity, (c) constitutive laws with degradation and geometric non-linearity. The 
curve of type (a) exhibits a post-elastic behaviour that is perfectly plastic or harden-
ing.  Curves of type (b) and (c) exhibit a post-elastic behaviour characterized by nega-
tive stiffness and possibly ending with zero shear at the base.    
 

 
Fig. 2-5 Effect of modelling on the relationship between base shear and top displacement, and qualitative 

laws of the equivalent oscillator. 
 
The monotonic envelope of the equivalent oscillator will be bi-, tri- or quadri-linear, 
depending on the model used in the determination of the response.  
If the analysis of the equivalent oscillator under to seismic action is carried out with a 
dynamic method (as in the following Method B, §2.6.3) it is necessary to complete 
the definition of the constitutive law with an hysteretic rule governing the unloading-
reloading curve of the oscillator.   

2.4.2 Non-linear dynamic analysis  
Non-linear dynamic analysis in step is carried out by numerically integrating the 
equations of the motion of the structure subjected to the two orthogonal horizontal 
components of the seismic motion, specified in terms of time histories of ground ac-
celeration selected as indicated in §2.2.2. The analysis is carried out after the applica-
tion of the vertical loads.  
Unlike non-linear static analysis, for which it is sufficient to have constitutive models 
able to represent the response under monotonically increasing loads, in the case of 
dynamic analysis the model must account for the dissipative hysteretic behaviour un-
der cyclic displacements.    
The demand D obtained by means of a non-linear dynamic analysis shall be under-
stood as the maximum absolute value attained during the time history of the response:  

  (2.4) 

2.5 Quantification of limit states exceedance 
Within this Guide the quantitative assessment of attaining or exceeding the limit 
states, as defined qualitatively in §2.1.1, is carried out in terms of a scalar variable Y 
that expresses the overall state of the structure, as a function of the state of its compo-
nent elements.  Depending on the limit state considered and the non-linear modelling 
adopted, the variable Y can be expressed as a function of local ratios between the val-
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ues of demand D and capacity C, or as a function of a global ratios between demand 
and capacity, or as a function of both, as subsequently indicated in §2.5.1, §2.5.2 e 
§2.5.3.  
For limit states of damage and of severe damage that affect respectively the function-
ality and the economic feasibility of the repair, the definition of Y is flexible and the 
choice of an appropriate threshold is left to the decision of the owner.  For the limit 
state of collapse, linked to safety, the formulation of Y does not leave any room for 
subjective choices.   
Exceeding the limit state is indicated by values Y > 1.  

2.5.1 Damage limit state (DLS)   
The formulation of damage limit state indicates negligible damage to structural ele-
ments and slight damage to non-structural elements.   
The variable Y can be expressed as a function of the local ratios D/C such as:  

 1 1, ,

1 max ;
st nstn n
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SLD i j

i jSLD i SLD j SLD

DDY w I w I
C Ct = =
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∑ ∑
  (2.5) 

where I(D/C) is an indicator function with a value of 1 if D/C≥1 and otherwise zero, 
the weights w allow for the importance of the different components to be distin-
guished, and nst and nnst are the number of structural and non-structural elements con-
sidered in the summations.  YSLD reaches the unit value when the “maximum” func-
tion reaches the value tSLD, defined by the owner and representing the maximum 
permissible cumulative damage for the damage limit state (for example, 5%). This 
formulation is directly applicable in the case of buildings in reinforced concrete, with 
values regarding the capacity of structural and non-structural elements provided in 
§4.4-4.5. 
In the case of masonry buildings for the calculation of the limit state variable YSLD 
(§3.3.1.1), there is a contribution not only of the relationships D/C at local level 
(§3.4.1) but also at the level of the walls (interstorey drift - §3.4.4) and of global dis-
placement, with appropriately defined capacity.  In case where methods are used that 
resort to the definition of an equivalent oscillator, the variable YSLD can be expressed 
simply as a function of the relationship:  

  (2.6) 

where: d is the global displacement demand of the structure and dSLD is the corre-
sponding capacity, i.e. the global drift at which occurs one of the criteria stated subse-
quently (§3.3.1.1), including one that stipulates that the maximum percentage of the 
damage must not exceed a preset value.  

2.5.2 Severe damage limit state (SLS)  
The formulation of this limit state indicates a structure that is characterized by a state 
of damage that is so widespread as to render repair operations uneconomic. The vari-
able Y assumes in this case the expression:   
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where the coefficient αst expresses the weight of the structural component on the total 
economic value of the building, depending on its features and on its intended use; the 
summations extend over sets of structural and non-structural elements; the conven-
tional repair cost function , depending on the state of damage D/C, assumes 
a zero value for Di equivalent to zero and an unit value, corresponding to the re-
placement cost of the component, for , with a linear variation between the 
two extremes, in the absence of more accurate determinations; the weights w permit a 
differentiation between the importance of the various components; the ratio D/C in 
the summation of the non-structural elements can be expressed in terms either of in-
terstorey drift and/or acceleration.  
As in the case of limit damage state, the variable YSLS reaches the unit value when the 
weighted sum equals the threshold tSLS, equivalent to a fraction of the total value of 
the building, defined by the owner as the threshold beyond which demoli-
tion/replacement would be cost effective.  Obviously in the case of collapse a value 
corresponding to the replacement cost of the building would be assigned to the 
threshold tSLS.   
Capacity values to be adopted for structural and non-structural elements are given in 
§3.4.2 and §4.4.3-4.5 respectively for masonry buildings and for reinforced concrete.  
The expression (2.7) is of direct use for buildings in reinforced concrete.  A similar 
formulation, that does not consider non-structural elements but that distinguishes the 
different roles of masonry piers and spandrels, is given in §3.3.1.2 for masonry build-
ings.  

2.5.3 Limit state for the prevention of collapse (LSC) 
Control procedures for the attainment of the limit state of collapse depend on the 
choices made during the phase of the modelling of the structure (§2.4). 
 
In case of adoption of modelling with constitutive laws without degradation the check 
whether the limit state is reached/exceeded must be made a posteriori, since this is not 
detectable in the global response curve in a direct manner.  
The variable Y assumes in this case the expression:  
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where Ns is the number of the distinct sets I of elements whose joint collapse causes 
the global collapse of the structure (defined as “cut sets”) and Ii is the i-th set (see 
§A.5). 
As regards buildings in reinforced concrete in general the sets to be considered in the 
calculation of YSLC are provided in §4.6.2, with the values of the capacity to be adopt-
ed for structural elements indicated in §4.4.4. 
 
In case of adoption of modelling with constitutive laws with degradation it is neces-
sary to distinguish the case in which all potential failure mechanisms are included in 
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the modelling from that in which certain mechanisms are not detectable in the analy-
sis.  
In the first case the collapse of the structure, resulting from the local collapses of the 
structural elements, can be explicitly detected in the global curve of the response and, 
in dynamic conditions, can be identified with the occurrence of an indefinite increase 
of the displacements for infinitesimal increments of the intensity of the earthquake: in 
this condition the shear stress at the base is reduced to negligible levels.    
The variable Y assumes the expression:   

 ( )
' '

' '
0 0

1   con  1SLC
S SY
S S

= + ∆ − ∆ ≤ ≤  (2.9) 

that for ∆ = 0 reaches the unit value when the tangent S’ at the curve intensity S – dis-
placement d vanishes.  In order to avoid numerical problems in the simulation of the 
response in the region of dynamic instability one could as an approximation assign to 
∆ a small value, for example in the range between 0.05 and 0.10, which is equivalent 
to associating the collapse to a reduction of  to a corrresponding fraction of the ini-
tial tangent S’0 instead of zero. The condition on the tangent S’ serves to exclude sec-
tions of the S-d curve in which there could be an excessive “hardening” (S’ > (S’)0) 
that would lead to negative values of YSLC, or to an inversion (S’ < 0) that would cor-
respond to values of YSLC >1, both cases being not meaningful.     
In the most common case in which some mechanisms cannot be detected throughout 
the analysis, a mixed approach is adopted with the following formulation of the varia-
ble limit state:  

  (2.10) 

where the maximum of the local ratio D/C is calculated on collapse mechanisms that 
are not modelled (n.m.). 
 
Finally, in the case of modelling with degradation, it is possible as an alternative to 
perform the check for the limit state for the prevention of collapse through a multi-
scale approach that accounts for the state of the structural elements, of the strains in 
significant macroelements (walls and floors) and of the global response, taking into 
consideration the deterioration of the structure; these controls are calibrated in such a 
way as to be representative of the conditions that are mentioned above.  In cases 
where use is made of methods that resort to an equivalent oscillator, the variable YSLC 
can be expressed in terms of displacement, by appropriately defining the value of the 
capacity dSLC (§3.3.1.3):    

  (2.11) 
The values of both the local (member) and of the walls’ capacities that are useful for 
the calculation of dSLC are given in §3.4.3 and §3.4.4 for masonry buildings.   
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2.6 Verification methods  

2.6.1 Calculation of the average annual frequency of exceeding the limit state  
The average annual frequency of exceeding the generic limit state is obtained by 
maing use of the theorem of total probability, as the sum of products of the probabil-
ity pSL(s) of exceeding the limit state (YSL>1) conditional upon the level S = s of the 
seismic intensity, for the average annual frequency of S in the region of s:   

  (2.12) 

where the sum is extended to a number of points n such as to render the estimate sta-
ble12. To this end it is possible to fit to the average hazard curve  defined, as indi-
cated in §2.2.1, in nine points (S = si, 1/  RiT ), a quadratic function in logarithmic 
space  -S: 

  (2.13) 

The conditional probability of exceeding pSL(s) is called the fragility curve of the 
structure and is described by the equation:   

  (2.14) 

where the parameters to be determined are the average  and the standard devia-

tion  of the logarithm of the intensity SY=1 that induces the attainment of the 
limit state (YSL = 1). The standard deviation of the logarithm is often also denoted by 
the symbol β and is called “dispersion”. 
The fragility curve can be evaluated according to one of the three methods that are de-
scribed later in §2.6.2, §2.6.3 and §2.6.4, that differ both in the method for the deter-
mination of the seismic response (demand) as well as for the model used (capacity):   

• Method A - §2.6.2: the probabilistic characterization of the limit state variable 
YSL is based on a dynamic incremental analysis of a complete model of the 
building with records selected in accordance with §2.2.2. 

• Methods based on the analysis of an equivalent oscillator derived from a static 
non-linear analysis of the complete model of the building: 
o Method B - §2.6.3: the probabilistic characterization of the limit state var-

iable YSL is based on the dynamic incremental analysis of the equivalent 
oscillator with records selected in accordance with §2.2.2.    

o Method C - §2.6.4: the probabilistic characterization of the limit state var-
iable YSL is based on the use of the median spectrum and of those fractiles 
at 16% and at 84% of the records selected in accordance with §2.2.2, to 
obtain the maximum displacement of the equivalent oscillator. 

                                                 
12 In literature there are available closed form solutions, with varying approximations, of the integral in 
(2.12). 
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2.6.2 Method A: incremental dynamic analysis on the complete model  
The parameters of the distribution of SY=1 are evaluated by means of the technique 
known by the name of Incremental Dynamic Analysis (IDA). 
The technique involves a non-linear dynamic analysis of the complete model of the 
structure subjected to each of the seismic motions (pairs or triplets of time histories) 
selected according to §2.2.2, scaled to increasing levels of intensity.  
For each motion and intensity level S=s, calculations are made of the value of the var-
iable of limit state Y. The coordinate points (Y, S), define in the response-intensity 
plane a curve that is called “the IDA curve”. The set of curves obtained for the n mo-
tions allow the identification of a sample of n values of the random variable SY=1, as 
shown in Fig. 2-6(a) by the red diamonds, with which to estimate the parameters 

 e .   
 

 
Fig. 2-6 IDA Curves: (a) without randomness of the structure (b) with randomness of the structure.  

 
The effect of the uncertainties modelled with continuous random variables (§2.3.2.1) 
can be quantified in a simple manner by associating with each of the selected motions 
of the ground a distinct realization of the random variables, by sampling from their 
respective probability distributions.  The final result, as shown in Fig. 2-6(b), is a 
bundle of IDA curves, and therefore of values of SY=1,characterized by a greater vari-
ability.  

2.6.3 Method B: incremental dynamic analysis on the equivalent oscillator 
The parameters of the distribution of SY=1 are evaluated by means of the IDA tech-
nique, applied in this case to the equivalent oscillator, obtained as shown in §2.4.1.1, 
subjected to seismic motions selected in accordance with §2.2.2, scaled to rising lev-
els of intensity.  It is necessary to consider the simultaneous excitation by the orthog-
onal components of the seismic motion.  A sample application this approach is given 
in §C.7.1. 
For each motion and intensity level S=s, the maximum value of the displacement d is 
converted to the value of the variable of limit state Y, through the relationship d-Y ob-
tained during the corresponding non-linear static analysis.  In the general case of a 
non-symmetric oscillator it is necessary to register for each level S = s both the maxi-
mum displacement d (+) as well as the minimum displacement d (-), and to allocate to 
each of them the corrresponding value of the variable limit state Y. The value of Y in 
the IDA curve of the structure will be Y = max (Y(+), Y(-)).   
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The set of IDA curves obtained for the n motions allows the identification of a sample 
of n values of the random variable SY=1, as already shown in Fig. 2-6, with which to 
estimate the parameters  and .   
The effect of uncertainties modelled with continuous random variables (§2.3.2.1), can 
be quantified, as already indicated for Method A, by associating with each of the se-
lected ground motions a separate realization of the random varibales by sampling 
from their respective probability distributions.  Then the static non-linear analysis 
must be repeated for each of the n samples, each of which leading to a separate equiv-
alent oscillator.  The final result, also in this case, is a bundle of IDA curves, and 
therefore of values of SY=1, characterized by a greater variability.    

2.6.4 Method C: non-linear static analysis and response surface analysis  
The parameters of the distribution of SY=1 are evaluated through the use of non-linear 
static analysis, with the demand obtained by means of the response spectra of the 
seismic motions selected according to §2.2.2. It is necessary to consider the simulta-
neous excitation by the orthogonal components of seismic motion.  In many cases, 
with particular reference to masonry buildings, it is possible to perform separate anal-
yses in the two in-plan directions as indicated in §3.2.1.5. The effect of the uncertain-
ties modelled with continuous random variables (§2.3.2.1) is quantified by means of 
the use of the technique of response surface.   
In this method the factors that contribute towards the total uncertainty are assumed as 
statistically independent, therefore the parameter 

1ln YSβ σ
=

=  representing both, is giv-
en by the following expression: 

  (2.15) 

where βS measures the effect on SY=1 of the variability of the seismic demand at a giv-
en intensity, due to the difference between the time histories of the motion, evaluated 
on the median capacity curve (§2.6.4.2), whereas βC measures the effect on SY=1 of 
the uncertainty in the capacity curve (§2.6.4.3).   

2.6.4.1 Determination of the median of S conditioned to Y=1 
The determination of the mean value 

1ln YSµ
=

, equal to the logarithm of the median of 
SY=1, is performed using the median spectrum (50% fractile) of the time histories se-
lected in accordance with §2.2.2 (on the approximate assumption that the median 
spectrum induces the median response13), scaling it up to the value of the intensity S 
such that the demand in displacement coincides with the capacity corresponding to 
the considered limit state (§3.4 or §4.4). The curves that represent the relationship be-
tween the measure of seismic intensity S and the limit state variable YSL are referred to 
in this method as ISA curves (Incremental Static Analysis) , in analogy with IDA 
curves.  
The determination of the displacement demand d can be performed according to two 
alternative models:    
 

                                                 
13 The median capacity curve should be strictly calculated by means of simulation and evaluation of the 
50% fractile of the curves obtained for multiple samples of the basic variables.  Willing to use a single 
non-linear static analysis, it is current practice to assume in approximation that the curve obtained by 
using the average values is the median.  

1ln =YSµ
1ln =YSσ
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• Inelastic spectrum method: this is the method adopted by Eurocode 8 and by 
NTC 2008 and is easy to implement in the case where for the equivalent oscil-
lator a bilinear law can be assumed; the required displacement depends on the 
elastic period of the equivalent oscillator (larger than the initial elastic one of 
the structure, to account for the deterioration of the stiffness during the re-
sponse phase prior to reaching the maximum strength), and eventually also on 
the deficit of strength compared to that needed for the structure to remain 
within the elastic range, in the case of rigid structures (T<TC).   

• Method with overdamped spectra: in this method it is possible to use a capaci-
ty curve of any shape; the required displacement is determined by considering 
a linear system with secant stiffness and equivalent viscous damping as func-
tions of the ductility, i.e. compatible with the displacement; typically in the 
elastic phase of the response the damping is set equal to 5% and rises with an 
increase of the non-linearity (the reduction of spectral ordinates as a function 
of the damping is operated using the factor η as defined in Eurocode 8 and in 
NTC 2008).    

2.6.4.2 Determination of the uncertainty of the seismic demand βS 
The term βS is evaluated, in the assumption of a lognormal distribution of SY=1, as a 
function of the values SY=1,16% and SY=1,84% calculated, on the median capacity curve, 
using the response spectra fractiles at 16% and 84% of the time histories selected ac-
cording to §2.2.2:   

 1,16% 1,84%ln ln
2

Y Y
S

S S
β = =−

=  (2.16) 

2.6.4.3 Determination of the uncertainty on capacity linked to random variables βC 
The influence on the variable SY=1 of continuous random variables (§2.3.2.1) related 
to the mechanical and geometrical properties of the structure is estimated through a 
linear response surface:   

 1 0
1

ln
N

Y k k
k

S xα α ε=
=

= + +∑  (2.17) 

that expresses the logarithm ln SY=1 in the space of the normalized random variables 
xk, defined in such a manner that they are valued ±1 in correspondence to the fractiles 
at 16% and 84%. In case of variables with normal distribution:   

  (2.18) 

where µX,k e σX,k are respectively the mean and the standard deviation of the variable 
Xk. In (2.17) the normal variable ε represents the error term that describes the devia-
tion of the linear response surface from the actual variation of ln SY=1 in the space of 
the normalized random variables xk.   
The estimate of the N parameters αk is done by means of a least squares regression on 
M = 2N different configurations, generated through a full factorial combination at 2 
levels, where the uncertain normalized variables assume a value of +1 or -1. For the 
generic m-th (m = 1,…,M) combination a non-linear static analysis is performed to de-
termine the value of the seismic intensity that leads to the limit state, using the median 
spectrum used in §2.6.4.1. 
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Placing the values assigned to the variables xk for each of the M combinations in the 
rows of a matrix Z, with dimensions M×N, referred to as “matrix for experiments”, 
and the values obtained by ln(SY=1,m) in a vector Y, with dimensions M×1, the coeffi-
cients αk    (k = 1,…,N) that multiply the normalized variables are thus obtained by 
the following vector:    

  (2.19) 

The contribution of the “structural” uncertainty (i.e. of the variability of the capacity 
curve) to the total variability, in the hypothesis of statistical independence between ε 
and xk, is provided by the formula:  

 

2
1 1 i j

N N
C i j x xi j εβ α α ρ σ

= =
= +∑ ∑

  (2.20) 

where σε is the standard deviation of the residuals and ρxixj the coefficient of the cor-
relation between xi and xj. 

( ) YZZZα TT 1−
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3 Masonry buildings  

3.1 Knowledge of the structure  
The choice of models with which to perform the assessment requires a knowledge of 
the structure not purely geometrical but including the construction technique and his-
tory too. By consideration of construction phases, structural modifications, degree of 
connection among walls and characteristics of horizontal elements, it is possible to 
identify the possible local damage mechanisms to be analysed in the assessment of 
seismic safety. Also the global model assumes choices that require the implementa-
tion of diagnostic surveys, both for a proper definition of the geometry and of the 
links as well as for the assignment of the mechanical properties of materials.    

3.1.1 Aspects of knowledge  
Elements of knowledge that are necessary for evaluation purposes, referred to in 
§2.3.1 are: 

• Geometry of the structural system 
• Construction details  
• Mechanical properties of materials  

 
This information can be obtained in an existing masonry building through the follow-
ing sources:  

• Historical-critical analysis  
• Geometrical-structural survey 
• Structural material survey 
• Visual investigations and experimental tests    

 
The historical critical analysis is aimed at an understanding of the system as a whole, 
composed by its architectural and structural parts, through the knowledge of changes 
(additions or modifications) that occurred over time with particular reference to those 
dependent on historical seismic events, useful for the purpose of a proper identifica-
tion of the resisting system and of its state of stress. Historical documentation (availa-
ble archive documents, iconographic sources, historical design tables, sketches, etc.) 
is paramount to the knowledge of the construction phases and of the trasformations 
that the structure has undergone throughout the time. Particular attention should be 
paid to the acquisition of information on damage suffered after previous earthquakes 
and on the following interventions that were carried out.      
Geometric-structural survey must be extended both to the overall geometry of the 
building as well as to that of the construction elements, including relationships with 
any possible adjoining buildings. 
The knowledge of the construction material must allow for the complete identification 
of the resisting body of the building, also taking into account the quality and the state 
of conservation of the materials and of their components. 

3.1.2 Preliminary analysis  
The evaluation of the seismic safety of an existing building requires accurate diagnos-
tic surveys and investigations, which involve a significant cost, within the total 
amount of the assessment, and an invasive impact on the building, especially in the 
case of historic buildings. Moreover, the knowledge will never be complete, due to 
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the huge variety of materials and solutions that can be encountered in a masonry con-
struction, typically not engineered but being the result of empirical construction rules.  
It is therefore necessary to address the investigations towards elements that mostly in-
fluence the response with a view to reducing the uncertainties of the assessment and 
at the same time avoid unnecessary or insignificant investigations, especially if ex-
pensive and invasive. To this end it is appropriate to carry out a sensitivity analysis 
that would help in the choice of the most suitable model and would identify the geo-
metric and mechanical parameters and the connections upon which the response 
would mainly depend.   
An essential starting point is a minimum basic understanding of the structure, suffi-
cient to allow the definition of a preliminary model.  Having identified the parameters 
Xk (k = 1,N) characterized by a significant uncertainty, it is necessary to estimate a 
plausible average value mXk and an interval of confidence, through the measure of de-
viation sXk, based on expert judgment and on the possible results of preliminary diag-
nostic investigations. Reference values for different types of walls are proposed in 
Table 3.1 (sXk = 0.5 µ (eσ-e−σ)), but in the presence of inhomogeneous walls in 
different parts of the construction and in the absence of reliable experimental data, it 
is considered advisable to assume a higher value for the variation sXk than those here-
in suggested.  
The non-linear static analysis performed with the values mXk constitutes the bench-
mark for the sensitivity analysis; from the capacity curve and from the median re-
sponse spectrum of the selected recordings (§2.2.2 and §2.6.4) it is possible to evalu-
ate a central value  of peak ground acceleration leading to the limit state of interest.  
A series of non-linear static analysis is then performed, assuming for all parameters 
the average values of these intervals with the exception of one, to which is attributed 
one of the two extreme values of the range. Having evaluated the corresponding peak 
ground accelerations, a sensitivity parameter is defined as: 

  (3.1) 

As regards the epistemic uncertainties that cannot be modeled as continuous varia-
bles, one proceeds to the definition of discrete epistemic variables (j = 1,…,M), for 
each of which two or more alternative options (p = 1,…,mj) are possible. In these cas-
es the sensitivity analysis must be performed by analysing all the possible combina-
tions (branches of the logic tree) and obivously utilizing for the random variables the 
values mXk.  
In the case where there is only one epistemic variable (j=1) characterized by two al-
ternative options (mj=2), the sensitivity parameter is defined by the relationship:  

 1 2'

1 2

2j

a a
a a

−
∆ =

+
 (3.2) 

where a1 and a2 are the ground accelerations leading to the limit state of interest by 
adopting the two alternative options.   
In the case where there are more than two alternative options, the preceding formula 
can be generalized as follows:     
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where ap is the ground acceleration that leads to the limit state of interest in the case 
where the p-th alternative option is considered.   
A further generalization is necessary in the case of M epistemic variables. The sensi-
tivity parameter of the variable j is obtained, having evaluated for each p-th option the 
mean 

p

j
aµ of the ground accelerations calculated on the branches of the logic tree 

characterized by that option, through the relationship:    
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From an examination of the values , obtained for the N continuous random varia-
bles, and '

j∆ , relative to the M epistemic variables, it is possible to identify the pa-
rameters that have the major influence on the response and for which it is necessary to 
deepen the investigation further, as a result of which it is possible to update the esti-
mate of the parameters, going so far as to define the corresponding probability distri-
bution. Typically the lognormal distribution is the most suitable, while for parameters 
that are limited within a finite interval the Beta distribution can be used. In the case in 
which, for the generic parameter Xk, the mean value mx,k is significantly different 
from that assumed in the preliminary model, it will be necessary to re-run the sensitiv-
ity analysis;  otherwise the sensitivity parameter can be updated as follows:    

  (3.5) 

where σXk represents the estimate of the deviation standard of the variable Xk, evalu-
ated on the basis of diagnostic investigations. In particular, insofar as regards the me-
chanical properties of the masonry, the execution of diagnostic investigations allows a 
better classification of the type of walls and eventually an estimate of the average val-
ues. Moreover, considering the difficulties to perform a statistically significant num-
ber of tests and the limited reliability of in-situ tests, it is not considered justified to 
assume values of σXk that are lower than those obtained from the dispersions σln indi-
cated in Table 3.1 (σXk = 0.5 mx,k (e

σ-e−σ)). Then, based on the new value of the 
sensitivity parameter ∆k , one needs to decide whether to consider in the evaluation 
this parameter as uncertain or to consider it as deterministic. 
The variables that result from the sensitivity analysis as significant and for which it is 
not possible to investigate further, will be considered as uncertain in the safety as-
sessment. For those of random nature, the values previously used are taken as a mean 
and standard deviation (µXk=mXk, σXk=sXk). Epistemic ones need the assignment of a 
subjective probability to alternative hypothesis.   
Finally, the variables that influence the response to a negligible extent will not be fur-
ther investigated; the safety assessment will take the average estimated values, for the 
random variables, and the model or parameter considered most reliable, for epistemic 
variables.     
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3.1.3 Experimental investigations  

3.1.3.1 Structural details  
Particular attention must be given to the following structural details:  

o type of horizontal elements (construction technology, the span direction, stra-
tigraphy of the floor; in the case of vaults, the key profile, the presence of re-
taining walls or fills) 

o systems of vertical connections (stairs), with particular reference to their in-
plane stiffness;  

o roof system (way in which thrust is eliminated); 
o presence of any recesses, cavities, filled gaps in the walls;  
o the quality of the connection between vertical walls; 
o the quality of the connection between horizontal elements and vertical walls 

and the possible presence and effectiveness of ring beams or other connect-
ing systems at floors level;    

o the presence of structurally effective lintels above openings;  
o the presence of structurally effective elements to support possible horizontal 

thrusts;  
o the presence of elements, even non-structural, with high vulnerability;  
o the presence of tie rods and their structural efficiency;  
o the type of masonry (single or double leaf walls, with or without filling, with 

or without cross connections, etc.), and its structural details (made of brick or 
stone, with regular or irregular pattern, etc.); 

o type of foundations.  
 
Details regarding these factors allow to reduce the number of variables affected by ep-
istemic uncertainty (or limit their range of variability).  

3.1.3.2 Mechanical properties of masonry  
The mechanical characteristics of materials which are of interest are those related to 
both deformability and strength, necessary for the modelling of structural behaviour.  
This aspect, for masonry structures, is strictly related also to the assembling of com-
ponents (pattern of blocks and joints), in addition to the results of standard mechani-
cal tests. In fact the analysis of the constitutive characteristics of the masonry can be 
of help in the selection of the appropriate class type for which the reference values of 
mechanical properties can be assumed, as can be found in literature or in technical 
standards.  
For the stochastic characterization of the mechanical properties of masonry use can be 
made, as indicated in §2.3.2.1, of a lognormal distribution of probability. Table 3.1 
provides reference values for the main types of masonry that can be found in the Ital-
ian territory (derived from those proposed in Table C8A.2.1 of Appendix C8A in the 
Commentary to NTC 2008, Circular No 617, 2 February 2009).  
The values proposed in Table 3.1 are representative of basic values for masonry 
buildings not complying with the rules of good practise (such as, for example, the 
presence of a good transversal connection or that of a good quality mortar, etc.); the 
average value may be eventually modified on the basis of the coefficients proposed in 
Table C8A.2.2 of the above-mentioned Circular, while maintaining the standard devi-
ation unaltered.   
The characterization of the mechanical properties should be investigated for at least 
one wall panel for each masonry type present in the building.   
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A reliable characterization of the mechanical properties of strength and stiffness is 
generally achieved by means of experimental tests of a destructive nature (compres-
sion, shear-compression, shear-diagonal) which enable a direct characterization. In 
the identification of possible areas of sacrifice where carrying out a possible destruc-
tive test, account can be taken of the indications of historical research and of changes 
undergone by the structure. Given the destructive nature of the above-mentioned tests, 
they should only be carried out if justified and warranted by the outcomes of the sen-
sitivity analysis performed earlier. In order to limit the impact of these investigations, 
the results of experimental tests carried out on masonry buildings with similar charac-
teristics of that under examination and belonging to the same geographical context 
could be of particular usefulness.  
 
Table 3.1 Reference values for mechanical properties of different masonry types: mean values and stand-

ard deviation of the logarithm.  

Type of masonry fm 
[N/cm2] 

t0 
[N/cm2] 

E  
[MPa] 

G 
[MPa] 

Irregular stone masonry  µ 140 2.6 870 290 
σ ln 0.29 0.24 0.21 0.21 

Roughly cut stone masonry, having wythes of lim-
ited thickness and inner core  

µ 250 4.3 1230 410 
σ ln 0.20 0.19 0.17 0.17 

Uncut stonework with good texture  µ 320 6.5 1740 580 
σ ln 0.19 0.14 0.14 0.14 

Masonry blocks of soft stone  µ 190 3.5 1080 360 
σ ln 0.27 0.20 0.17 0.17 

Squared stone masonry  µ 700 10.5 2800 860 
σ ln 0.14 0.14 0.14 0.09 

Solid brick masonry and lime mortar  µ 320 7.6 1500 500 
σ ln 0.26 0.21 0.20 0.20 

Semisolid brickwork with cement mortar (eg. 
Double UNI perforations < 40%) 

µ 650 28.0 4550 1138 
σ ln 0.24 0.14 0.24 0.24 

Semisolid brick blocks (perc. perforations < 45%) µ 500 35.0 4500 1350 
σ ln 0.20 0.14 0.20 0.20 

Masonry made by hollow blocks with vertical dry 
joints (perc. perforations < 45%) 

µ 350 11.5 3150 945 
σ ln 0.14 0.13 0.14 0.14 

Masonry blocks of concrete or of expanded clay  
(perc. perforations between 45% and 65%) 

µ 175 11.0 1400 350 
σ ln 0.14 0.14 0.14 0.14 

Hollow concrete blocks (perc. perforations < 45%) 
µ 370 21.0 2960 740 

σ ln 0.19 0.14 0.19 0.19 
fm: compressive strength of masonry; t0: shear strength of masonry; E: modulus of normal elasticity; G: 
modulus of tangential elasticity 

 
The number of tests that can be performed on a homogeneous type of masonry will be 
generally very limited and will not allow a statistical treatment of the results. The in-
terpretation of the results should therefore necessarely consists of a reasoned judg-
ment in which even the use of a single experimental data can be significant.    
The systematic use of non-destructive testing or slightly destructive testing (sclero-
metric hammer test, sonic test, double flat-jack test) is crucial to assess the actual ho-
mogeneity of the characteristics of a given masonry type inside the building.  
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3.2 Modelling criteria  
Masonry buildings consist of a construction formed by several masonry walls (i.e. el-
ements having a small thickness compared to the in-plane size of the wall) and possi-
bly by masonry columns, connected by horizontal diaphragm elements (intermediate 
floors and roof) of different nature and material (vaults, timber or reinforced concrete 
diaphragms or composed by steel profiles and bricks). This section does not explicit 
consider other types of existing masonry buildings such as towers, churches, fortifica-
tions, city walls, etc.. 
Wall elements, besides carrying vertical loads, must also withstand horizontal seismic 
action. The horizontal elements contribute to connect together the vertical elements 
and, depending on their stiffness, possibly redistribute the seismic actions among the 
different walls.    
The mechanisms of damage observed in masonry buildings can be traced to two cate-
gories: mechanisms of the first and of the second modes.   
Generally the phenomena of interaction between the two classes of behaviour is ne-
glected.    

3.2.1 Global response: continuous structural elements and equivalent frame models  
In cases where local mechanisms are prevented, a global behavior develops and the 
building withstands all the horizontal seismic actions mainly by exploiting the walls 
strength in their respective planes.  The model of the whole building consists of vari-
ous interconnected walls, linked also through horizontal diaphragms characterized by 
their in-plane stiffness. The exclusive use of models that consider the infinite stiffness 
of horizontal diaphragms is only justified when diagnostic investigations actually 
support this hypothesis. The verification of the building through a separate analysis of 
each wall becomes necessary when horizontal diaphragms have a really negligible 
stiffness. These modelling approaches constitute two extreme cases that can be used, 
in the absence of more accurate and reliable methods, as alternative options for ac-
counting the epistemic uncertainty of the model.   
The in-plane modelling of the wall can be carried out with various different non-linear 
models, as long as they are able to reproduce the degradation of the stiffness, the re-
sistance to horizontal action and its progressive degradation until the collapse stage.  
For example, it is possible to use finite element methods, discretizing the wall through 
solid or plane elements with constitutive laws that are able to describe the behaviour 
of the masonry as an equivalent continuous material (Rots 1991, Lourenco et al. 1995, 
Lourenco et al. 2006, Calderini and Lagomarsino 2008), or models that discretize the 
wall through macroelements (panels), that have characteristics equivalent to those of a 
macro-portion of the wall and are connected between them with springs or with ap-
propriate interfaces (Caliò et al. 2012).    
A widely used modelling approach, extensively described below, is that which leads 
to the identification in the wall of vertical structural elements (piers) and horizontal 
elements (spandrels), connected through portions of finite size (nodes), assumed to be 
rigid and resistant (Magenes and Della Fontana 1998, Chen et al. 2008, Belmouden 
and Lestuzzi 2009, Grande et al. 2011, Lagomarsino et al. 2013). It is in this way that 
an equivalent frame is constituted (Fig. 3-1).   
Marques and Lourenco (2011) have compared the results obtained from different 
models based on the equivalent frame idealization. The reliability of this modelling 
approach was also discussed by means of a comparison between the results obtained 
by finite elements models (Calderini et al. 2012). The equivalent frame approach does 
not necessarily require the use of dedicated codes but can be implemented on general 
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purpose finite elements codes (Kappos et al. 2002, Salonikos et al. 2003, Pasticier et 
al. 2008). It can also be noted that such approach is also a viable option for the model-
ling of mixed masonry-reinforced concrete buildings, as shown in (Cattari and Lago-
marsino 2013).    
 

 
Fig. 3-1  Idealization of a masonry wall into the equivalent frame  

 
The most significant aspect of the finite element modelling, or that with macroele-
ments or based on the equivalent frame approach is that the collapse mechanisms are 
not predetermined apriori, unlike what happens in the case of two quite simplified 
models still adopted in practice: 

a) Strong spandrels-weak piers: it assumes the spandrels as infinitely rigid and 
resistant, concentrating the deformation and the damage only in masonry 
piers;  

b) Weak spandrels-strong piers: it assumes the spandrels as nor resistant ele-
ments that couple masonry piers only with respect the horizontal displace-
ment.  

The first model leads to an overestimation of the stiffness and strength of the struc-
ture, with a reduced displacement capacity; the second one to an underestimation of 
the strength (often of a considerable amount) to a benefit, however, of the displace-
ment capacity. These models can constitute a useful reference in the presence of un-
certainties regarding knowledge about the structural details of the building, for the 
sensitivity analysis or as possible alternatives in the application of the logic tree ap-
proach.    
The single 2D-walls are then assembled in 3D models. In this regard there are several 
possible different modelling strategies: a) to consider for each node 6 degrees of free-
dom (d.o.f.), attributing to the wall a modest amount of out-of-plane stiffness; b) to 
condense the degrees of freedom, keeping only 3 degrees of freedom for the nodes 
that belong to a single wall and 5 degrees of freedom for those at the intersection 
among two or more walls (in this case by virtue of the absence of out-of-plane stiff-
ness of the wall, the rotation around the vertical axis is not taken into account). In the 
case of an imperfect coupling between the walls, it is possible to couple only some of 
the degrees of freedom or to include in the model equivalent beam elements of appro-
priate stiffness.      
The horizontal diaphragms are considered as stiffening elements that rule the distribu-
tion of seismic actions among the walls. In general the out-of-plane behaviour of the 
horizontal elements is not explicitly modelled given its small relevance on the global 
seismic response, and being the out-of-plane response of the walls neglected. The as-
sumption of an infinitely rigid slab in its plane is justified in the case of reinforced 
concrete diaphragms (even if lightened) or in steel or timber diaphragms, provided 
they have a top slab of suitable thickness and well connected. In the case of traditional 
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horizontal elements typical of old masonry buildings (timber diaphragms, covered 
with timber boards or tiles; steel beams with tiles or small brick vaults; stone or bricks 
vaults) it is instead necessary to consider in the model their deformability in the hori-
zontal plane, as well as possible limit values of resistance and drift. Expressions for 
the calculation of the stiffness of different diaphgrams types are provided, for exam-
ple, in ASCE/SEI 41/06, NZSEE 2006.   
In the following paragraphs some criteria are introduced for the resistance of the ele-
ments that define the equivalent frame model of a masonry building, that is vertical 
piers and spandrel beams. The failure criteria of these elements are expressed in terms 
of generalized forces (N, V, M) and of generalized deformation components (dis-
placement and rotation at the end sections of the element). 
In the case of the adoption of continuous models, such as finite elements with dis-
cretization through bidimensional or solid elements, the ultimate conditions of the 
wall result from the integration over proper sections of the local response of the mate-
rial, described by appropriate constitutive laws, amied to incorporate the degradation 
of stiffness and strength. The information given later in §3.2.1.1 and §3.2.1.2 is not 
therefore necessary. Particular attention should be given in this case to the following 
aspects: i) the dependence of the response from the discretization adopted; ii) the con-
vergence of the solution; iii) the availability of algorithms capable of following the 
response in the softening phase, in the context of a pushover analysis under a con-
trolled load pattern. It is noted that even in the case of an analysis with continuous 
models it is always necessary to define a posteriori generalized strain quantities, as 
subsequently explained in §3.3.1, for the quantification of limit states, that requires 
the assessment of the angular deformation of the panels (drift).  

3.2.1.1 Models for pier elements  
In the equivalent frame model the constitutive formulation of the vertical structural 
elements (pier) aims to reproduce  - through generalized stress and displacement vari-
ables at both ends - a complex variety of behaviours, such as for example: shear fail-
ure due to diagonal cracking, failure of end sections under normal force and bending, 
coupling between axial displacement and rotation due to opening of corner joints (up-
lift), different hysteretic cyclic responses in relation to the type of failure. There are 
various formulations of macroelements that, on a mechanical or on a phenomenologi-
cal basis, are capable of representing many of these response phenomena through ap-
propriate internal variables.    
The simplest method, which captures most of the aspects above, is that of a non-linear 
beam, with a constitutive law represented in terms of shear force and drift, whose pa-
rameters are defined as follows:  

a) the elastic stiffness is that of a shear beam having the same section of the pier 
(typically using reduced elastic moduli, referred to as “cracked”, to better ap-
proximate, with a linear behaviour, the non-linear response of the actual panel 
until it reaches its strength limit); 

b) the shear strength is evaluated by means of appropriate failure criteria depend-
ing on the mechanical properties of the masonry, the geometry of the panel 
and the stress state;  

c) the post-peak behaviour is brittle or ductile depending on the failure mode 
(shear or flexural) and can be modelled with varying levels of detail. The most 
simple approach considers a horizontal branch with limited ductility, whose 
extent is defined by a limit value of drift, followed by a sharp reduction to ze-
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ro of the resistance; more accurate models can describe the progressive degra-
dation of resistance, for example through a series of discrete descending steps;  

d) the hysteretic cyclic response is diversified as a function of the failure mode 
and of the level of deformation that has been reached.     

The failure domain of masonry piers in the N-V plane is provided by the envelope of 
the two criteria that identify the rupture at the end sections under crushing (due to 
normal force and bending) and that at the centre of the panel for shear. Several formu-
lations are suggested below, taken from scientific literature and from various stand-
ards although it cannot be excluded the use of other criteria as long as they are of 
proven validity.   
With regard to normal force and bending, neglecting the tensile strength of masonry 
and considering a suitable non-linear distribution of compressive stresses, in the case 
of a pier with rectangular section the ultimate moment Mpf  at one end can be calcu-
lated as:   

   (3.6)  

where: l and t are the length and the thickness of the pier, respectively; σ0 is the aver-
age normal compressive stress, referred to the total area of the section; fm is the aver-
age compressive strength of the masonry. Given the shear length h’, i.e. the distance 
between the end section and that of the beam with zero moment, the ultimate shear 
force under normal force and bending is evaluated by: 

   (3.7)  

Regarding shear failure, the failure criterion should be differentiated in relation to the 
masonry type.   
In the case of irregular masonry or when, even in the presence of regular texture, the 
blocks are weaker than the mortar, the response tends to be isotropic and the failure 
occurs with a diagonal crack upon reaching the limit value of the diagonal tensile 
strength. The shear strength is given by the formula (Turnšek e Čačovič 1970, 
Turnšek e Sheppard 1980): 

   (3.8) 
where: b is a corrective coefficient related to the stress distribution in the section, de-
pending on the slenderness of the panel (b=h/l, not exceeding, however, 1.5 and not 
less than 1, where h is the height of the panel); ft and t0 are, respectively, the diagonal 
tensile strength and the initial shear strength (ft =1.5 t0). In the case where ft is de-
rived from diagonal compression tests, the value is assumed to be equal to the diago-
nal load at failure divided by two times the average section of the tested panel.    
In the case of masonry with regular texture, or formed of blocks that are sufficiently 
regular and with mortar weaker than blocks, the shear failure occurs with stepwise 
cracks along the joints. This is the case of masonry with solid brickwork and lime 
mortar, masonry of stone squared blocks, masonry with soft stone blocks with mortar 
of inferior characteristics; this failure type also occurs in masonry of split stones, pro-
vided they have an elongated shape and are well coupled together. The shear strength 
can be obtained by the formula:    
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  (3.9)  

where:  is the equivalent shear strength of the masonry, related to cohesion of the 
mortar joint (fvm0) and the texture;  is an equivalent friction coefficient, that is func-
tion of the friction coefficient on the joint (µ) and of the masonry texture (for masonry 
with square blocks or solid bricks one would generally assume =0.4; lower values, 
down to 0.2, are recommended for masonry piers with rough and irregular blocks); 
Vt,lim is related to the failure of blocks (estimated, for example, as a suitable fraction 
of the compressive strength of the blocks). This criterion is derived from that put for-
ward by Mann and Muller (1980), generalized so as to consider the different geome-
tries of the panels, by means of the coefficient b. As an alternative to the conventional 
limitation Vt,lim, the failure of the blocks can be explicitly taken into account through 
the following failure criterion (Mann and Muller 1980):  

 0
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where: fbt is the tensile strength of the block.   
 
The drift of the element can be estimated at the two ends of the panel in terms of 
chord rotation, through the following expressions (Figure 3-2):  

 

0
'

0
'

i
i i

j
j j

u u
h

u u
h h

θ j

θ j

−
= −

−
= −

−

 (3.11) 

where: ji and jj are the rotations at the end section in the nodes i and j; uj and ui are 
the transversal displacements of the two nodes, respectively; u0 is the transversal dis-
placement at the contraflexure point;  h is the height of the element and h’ the shear 
length (computed from the i-node).  
 

 
 

Fig. 3-2. Definition of the terms useful for the calculation of the drift  
according to (3.10) 
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As an alternative, formulations may be adopted that consider an average drift of the 
panel, such as provided by the formula:  

   (3.12) 

In the case of a predominant flexural behaviour and in presence of low normal stress 
values, the pier behaviour is characterized by a higher ductility, both because the pan-
el is able to withstand higher values of drift as well as because the loss of resistance is 
minimal and takes place as a result of plasticization localized only in the corners and 
of the effects of geometric non-linearity.    
Instead in the case of a shear failure the behaviour is of the brittle type, with lower 
values of drift and major drops in the resistance.   
In the shear-drift curves (V-θ) it is possible to identify three degrees of damage: se-
vere (3), very severe (4) and collapse (5), indicated by the letters DL3, DL4 and DL5 
in Fig. 3-3: these refer to the degrees of damage usually used in modern macroseismic 
scales (EMS98, Gruntal 1998). Values of drift that correspond to the first two levels 
of damage are recommended by national and international standards. Damage level 5 
corresponds to a condition where the masonry pier also loses the ability to carry the 
axial load N; once reached this limit, in the equivalent frame models usually the ele-
ment is transformed into a rod but at this stage the structure must be considered as 
collapsed. 
By way of example, multilinear constitutive models are proposed in the following, 
represented in a dimensionless form in Fig. 3-3; they are sufficiently accurate for an 
evaluation of the global response and easy to be implemented in codes based on the 
equivalent frame approach. Table 3.2 shows indicative ranges for drift values, sug-
gested for the various failure modes. These values, according to the actual state-of-the 
art, are based, however, on a number of experimental tests that are still insufficient for 
a complete validation, especially for some masonry types and stress conditions.      
 

   
Fig. 3-3. Constitutive shear-drift laws for masonry piers: failure under normal force and bending (left) and 

shear failure (right). 
 

Table 3.2. Indicative intervals for drift values  
and for the residual resistance for the different states of damage.  

 Drift (%) Residual resistance  
damage  3 4 5 3→4 4→5 

normal force 
and bending 

0.4 ÷ 0.8 0.8 ÷ 1.2 1.2 ÷ 1.8 1.0 0.8 ÷ 0.9 

shear  0.25 ÷ 0.4 0.4 ÷ 0.6 0.6 ÷ 0.9 0.6 ÷ 0.8 0.25 ÷ 0.6 
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Experimental tests, both in the laboratory as well as in-situ, show that often the two 
aforementioned failure mechanisms interact, in particular when the difference be-
tween the two limit values Vpf and Vt is limited (for example, the shear failure in the 
middle of the panel occurs in the presence of reduced crushed zones at the ends); in 
those cases also the drift values associated with different levels of damage are inter-
mediate. These mixed failure modes can be considered by defining a constitutive rela-
tionship characterized by drift values θi, associated with different levels of damage 
(i=3,5), depending on the ratio Vpf/Vt through the following relation:    

   (3.13)  

Residual resistance can be defined in a similar manner in the different parts of the 
curve.  

3.2.1.2 Models for spandrels elements   
The behaviour of masonry spandrels was tested in a systematic manner only recently 
and presents different features from vertical piers for several reasons: 1) the masonry 
texture is rotated 90° to the axis of the element; 2) at the ends of the spandrel there is 
an interlocking with the adjacent vertical piers, instead of a continuous joint; 3) nor-
mally the spandrel is supported by a lintel (arched, in stone, timber, steel or reinforced 
concrete), that introduces further resistance; 4) sometimes other elements (tie beams, 
tie rods) are coupled to the spandrel.    
In the absence of specific macroelements, formulated on a mechanical or phenomeno-
logical basis, it is possible to use a non-linear beam model, with an appropriate consti-
tutive law in terms of shear force and drift.    
The presence of a structurally effective lintel is an essential condition to be able to in-
clude the spandrels in the equivalent frame model, as it prevents collapse for vertical 
loads; its contribution to shear strength and deflection can possibly be explicitly mod-
elled.      
The failure criteria that are subsequently proposed, which have no binding nature for 
the application of assessment methods proposed in this document, refer exclusively to 
the contribution offered by the masonry part of the spandrel.  
For normal force and bending, unlike the case of pier elements, the resistance domain 
can be calculated by relying on a tensile strength (ftf) that is generated at the section 
ends as a result of the connection with the portions of the adjacent masonry. The fail-
ure mechanisms may involve the crisis by the tensile stresses in the brick (ftf,b) or by 
sliding across the horizontal mortar joints (ftf,g). The horizontal tensile strength may 
be therefore given by the formula (Cattari and Lagomarsino 2008):    

  (3.14) 

where: σy is the average normal stress acting on the horizontal mortar joints at the end 
section (in the absence of more accurate assessments, it may be estimated as a frac-
tion, conservatively assumed equal to 0.5, of the average normal stress σ0 acting on 
the adjacent pier elements); fvm0 is the cohesion of the mortar joint (that can be con-
servatively neglected); f is a coefficient accounting for the interlocking (in the case of 



CNR-DT 212/2013 

  34 

walls made of bricks or regular blocks f=a/2b, where a and b are respectively the 
width and the height of the block). Having estimated the tensile strength of the span-
drel ftf, the resistance M-N domain can be calculated by the conservation of the plane 
section assumption and an elastic-plastic stress-strain bond with controlled ductility in 
traction and compression (with regard to compression strength one should use that in 
the horizontal direction  fmh, usually less than that in the vertical direction). 
For the shear failure, resistance criteria introduced in §3.2.1.1 may be utilized in rela-
tion to the different types of masonry.  
The value of the normal force N acting on the spandrel (on which its resistance de-
pends) cannot always be assessed in a reliable manner from the equivalent frame 
model, for various reasons: a) the presence of rigid diaphragms; b) the way in which 
the horizontal forces are applied; c) the uncertainty in the modelling of the interaction 
between the spandrel and other horizontal tensile-resistant elements. Usually the val-
ues of N are, however, rather modest. It is therefore appropriate to take into account 
the contribution to the resistance of the spandrel provided by the acting normal force 
only if the calculation model provides a reliable estimate, viceversa: 1) in case there 
are not other coupled tensile-resistant elements, the resistance of the spandrel is eval-
uated on the assumption that N=0; 2) in case there is a coupled element that is tensile-
resistant, the maximum value of the normal stress (Nmax) that is believed the spandrel 
can develop will be estimated.  
Having reached the limit value of resistance, the spandrels may show a phase of deg-
radation of the resistance (softening) even more highly pronounced than that of piers.  
The type of lintel and the presence of a possible tensile-resistant element coupled to 
the spandrel determine its greater or lesser ductility (Fig. 3-4). In the case of spandrels 
supported by a masonry arch, behaviour is very fragile, characterized by a very lim-
ited ductility and with residual resistance values that are decidedly modest (Fig. 3-4a); 
the presence of a tie rod marginally increases the ductility. In the case of lintels made 
of wood, steel or reinforced concrete, there is a higher ductility prior to the fall in re-
sistance, which turns out to be lower than in the case of the arch (Fig. 3-4b); the pres-
ence of another element that is resistant to tension increases the ductility and, if this is 
a ring beam, it can lead to the hardening of a branch of the response (Fig. 3-4c). 
Similarly to the case of piers, it is possible to identify on the drift-shear curve increas-
ing levels of damage severe (3), very severe (4), collapse (5); they can be associated 
both with the fracture of the masonry portion of the spandrel as well as with the loss 
of efficiency of the lintel.  
 

   
(a) (b) (c) 

Fig. 3-4. Constitutive drift-shear laws for spandrels supported by: a) a masonry arch; b) a lintel in timber, 
steel or reinforced concrete; c) a lintel coupled to a tensile-resistant element. 

 
Table 3.3 shows the indicative ranges of the values of drift and of residual resistance.  
The values of residual strength should be intended as purely indicative: more accurate 
estimates can be made in specific cases through simplified criteria on mechanical ba-
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sis (Beyer 2012). In general, experimental evidence suggests drift values that are sig-
nificantly higher than those adopted for piers (Beyer and Dazio 2012, Gattesco et al. 
2008, Graziotti et al. 2011). 

 
Table 3.3  Indicative ranges of the values of drift and of residual resistance  

for the various damage levels.  

damage Drift (%) Residual resistance   
3 4 5 3→4 4→5 

Lintel without   
tie rod or tie beam 0.40 ÷ 0.60 0.80 ÷ 1.20 1.80 ÷ 2.20 0.40 ÷ 0.60 

Lintel with   
tie rod or tie beam 0.80 ÷ 1.20 1.60 ÷ 2.00 2.40 ÷ 2.60 1.00 0.60 ÷ 0.80 

Arch 0.15 ÷ 0.25 0.45 ÷ 0.75 1.20 ÷ 2.00 0.30 ÷ 0.50 
Arch with   
Tie rod 0.20 ÷ 0.40 0.50 ÷ 0.80 1.40 ÷ 2.40 1.00 0.40 ÷ 0.60 

3.2.1.3 Models for horizontal diaphragms  
In the case of high-rise buildings with walls having different stiffness and strength, 
significant angular deformations may arise in the horizontal diaphragms, such as to 
produce ductile or brittle failure conditions. In particular this latter case occurs in the 
presence of horizontal elements of limited thickness. The equivalent frame model can 
provide a non-linear modelling of horizontal elements with control of their angular 
deformation in the horizontal plane.   
At present the literature is lacking to experimental data on this issue.  

3.2.1.4 Tie beams and tie rods  
Tie beams and tie rods may be introduced in the equivalent frame model.  
The latter have the function of increasing the resistance of the spandrels, thanks to the 
state of horizontal compression resulting from the initial pre-stress and from a similar 
increase that occurs as a result of the opening of cracks. This latter effect is not caught 
by the model in case a non-linear beam element is used for the spandrels which does 
not consider the coupling between axial and flexural components; in this case the 
equivalent frame model leads to an underestimation of the actual axial load acting on 
the spandrel.    
Rigorous modelling of tie beams would require the development of coupled spandrel-
tie beam characterized by appropriate stiffness and failure criteria; however, literature 
on this subject is very limited. It is nonetheless possible to add the tie beams to the 
equivalent frame as non-linear independent beams and simply connected to the same 
nodes. The deformable portion of the tie beam may be intermediate between the 
length of the spandrel and the distance between the nodes (some simulations of exper-
imental data have shown that the first solution may provide results that are quite ac-
ceptable).  

3.2.1.5 Non-linear static analysis  
The determination of the seismic response of a masonry building through a non-linear 
static analysis and the use of response spectra make it possible to assess the attain-
ment of various limit states taking into account the simultaneous presence of the two 
orthogonal components of motion and of the contribution of different modes of vibra-
tion. The procedure that concerns the method C (§2.6.4) makes reference to the global 
response of the building considering both components of seismic motion.     
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When referring to ordinary masonry buildings that have sufficiently rigid diaphragms, 
the number of modes characterized by a significant percentage of participating mass 
is small. If the number of floors is limited (as frequently happens in masonry build-
ings) and the building is regular along its height, it is often possible to assume as a 
reference the response only of the first mode in each direction. Finally, if the con-
struction is regular in plan, the first modes along two orthogonal directions are sub-
stantially decoupled (absence of significant torsional effects). In these cases, the veri-
fication is reduced to a calculation of the response independently along two orthogo-
nal directions, considering only the excitation that occurs in the direction of the veri-
fication. Since equivalent frame models that are usually adopted only consider the re-
sponse in the plane of the walls, without taking account of interaction with out-of-
plane mechanisms, the seismic safety with respect to each limit state is defined by the 
greatest of the values of the average annual frequency of exceedance λSL obtained in 
two directions examined.   
In case in a given mode there is the presence of torsional effects, or when the ratio be-
tween the coefficients of participation in the orthogonal direction and in that accord-
ing to which the verification is performed, is, in absolute value, greater than 10%, it is 
necessary to proceed to the combination of the effects produced by the two compo-
nents of the seismic motion.  
In addition, when the participating mass on the first mode in a given direction does 
not reach 75% of the total mass, it is necessary to consider the contribution of higher 
modes by distinguishing between the following cases:  

a) If higher modes with significant participating mass, necessary to reach a total 
of at least 75% of the total mass, have frequencies that are sufficiently close 
one to each other (for example, a relationship between the minimum and the 
maximum that is higher than 0.70) and do not present on the individual walls a 
reversal of the sign of horizontal displacements at the various floors, the dis-
tribution of modal forces can be combined with suitable rules (CQC, in the 
presence of modes with close frequencies, or SRSS), so as to define a distribu-
tion of forces with which to perform a single non-linear static analysis. This 
situation occurs in the presence of flexible diaphragms or in buildings that are 
extended and articulated in plan, for which the horizontal diaphragms are not 
stiff enough to ensure a rigid coupling between the different walls.  

b) If the higher modes that should be taken into account present on the individual 
walls an inversion of the sign of horizontal displacements at different levels, it 
is necessary to perform a non-linear multi-modal static analysis, i.e. to run 
separate analyses with the distribution of forces corresponding to the differrent 
vibration modes and then appropriately combine the effects. This is the case of 
high buildings or buildings that are irregular in height.   

In all these cases the definition of the variables YSL is more complex than subsequent-
ly indicated in §3.3.1. In Appendix A.6 there is an outline of the procedures that are to 
be followed.    

3.2.1.6 Damping   
Masonry buildings are characterized by a significant cyclic hysteretic dissipation that 
is added in the non-linear phase to the viscous dissipation that is ever present (usually 
assumed equivalent to 5%). The simulation of dissipative mechanisms is performed 
differently depending on the method of assessment that is adopted.   
If method A is adopted (§2.6.2), the constitutive laws of the elements (in particular 
piers and spandrels) must be formulated in a cyclic context in order to be able to eval-
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uate the seismic response through an incremental dynamic analysis of the entire build-
ing model.    
In case that method B (§2.6.3) is adopted, the constitutive hysteretic law of the equiv-
alent oscillator can be derived from cyclic non-linear static analyses (pushover) or on 
the basis of qualitative considerations related to the dominant mechanisms of damage.  
The form of cycles in the equivalent system with a single degree of freedom assumes 
in fact some recurring features:  

a) in the case that shear damage mechanisms are prevalent, the capacity curve 
shows a progressive degradation of the resistance and dissipative cycles that 
are somewhat wide, consequence to the friction that is generated in the pres-
ence of sliding on the joints of mortar;    

b) in the presence of flexural damage mechanisms, the capacity curve shows 
greater ductility and dissipative cycles that are narrower (whose form is re-
ferred to as “a flag”), close to the behaviour of a non-linear elastic type;  

c) in both cases the amount of dissipation increases with the spread of damage in 
the building, especially when this is localized in the spandrels and the system 
is such as to involve the large majority of walls.      

Finally, if one adopts method C (§2.6.4), in particular by evaluating the displacement 
demand d with the spectral method of overdamped responses spectra, it is sufficient to 
have a law that expresses the damping as a function of the displacement of the equiva-
lent oscillator d, or of the ductility demand d/dy when the capacity curve is approxi-
mated with a multi-linear function (dy is the displacement at the end of the equivalent 
elastic branch). This function can be derived from the results of a pushover cyclic 
analysis (if available) or through the following relationship:    

   (3.15) 

where: ξv e ξi are respectively the viscous and the hysteretic dampings, ζ is the max-
imum hysteretic contribution (occurring for very large displacement), that depends on 
the form of the cycles, and κ is a coefficient that regulates the rate with which the 
damping grows with the displacement (Table 3.4 proposes possible intervals for the 
two parameters)  
 

Table 3.4. Reference intervals of ζ and κ for the determination  
of the hysteretic damping.  

 Shear Flexure with normal 
force 

 (Takeda “wide”) (Takeda “narrow”)  (“in the shape  
of a flag”) 

ζ 0.25 ÷ 0.45 0.15 ÷ 0.35 0.06 ÷ 0.20 
κ 0.40 ÷ 0.60 0.50 ÷ 0.80 0.80 ÷ 10 

 
For the application of method C, in the case of use of the overdamped spectra, it is 
however sufficient to have the definition of the equivalent damping corresponding to 
each of the three limit states, which can be estimated by cyclic pushover analyses and 
which need not necessarily follow a trend represented by (3.12).  
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3.2.2 Local response: models with discrete elements or with macro-blocks 
The response mechanisms of the masonry walls under actions outside their plane gen-
erally involve a collapse due to loss of equilibrium, that can be described with the 
kinematics of the masonry blocks that may be considered rigid. The interlocking be-
tween the walls and the connections by means of tie rods, tie beams and diaphragms 
tend to limit the occurrence of these mechanisms to parts of the building. For these 
reasons they are also called local mechanisms and the mechanical models refer only 
to the parts of the construction that are affected by the loss of equilibrium.      
The identification and analysis of local mechanisms can be performed with models 
with discrete elements (de Felice and Giannini 2001) or through limit analysis proce-
dures based on linear programming and discretization in rigid blocks (Baggio and 
Trovalusci 1998, Orduña and Lourenço 2005, Portioli et al. 2013) or in homogeneous 
equivalent elements (Milani et al. 2013). A simplified approach, adopted in NTC 
2008 and described by way of example below, is that of performing a limit analysis 
on a predefined kinematic mechanism composed by rigid masonry blocks (macro-
block model) (Doherty et al. 2012, Lagomarsino 2014, D’Ayala and Speranza 2003, 
Casapulla and Maione 2011, Vaculik et al. 2012).  

3.2.2.1 Limit analysis (non-linear kinematic) 
A local mechanism is defined by a set of masonry blocks (assumed to be rigid), con-
nected to each other by means of internal linkages (hinges, connecting rods, etc.) and 
by connecting elements (rigid, elastic, by friction), that may for example simulate the 
presence of steel tie rods, beams or interlocking between walls. There are also exter-
nal linkages, that simulate the connection of the portion of the structure interested by 
the mechanism with the rest of the construction. All these linkages are such as to con-
stitute a kinematic chain with a single degree of freedom, whose act of motion is de-
scribed by a virtual infinitesimal displacement or rotation (Lagomarsino, 2013). 
The study of the seismic response of the mechanism requires the identification: of the 
entity and of the point of application of its own weights and of those that are carried 
by each block or element; of the applied external forces and of the internal ones in the 
elastic elements or due to friction. A system of horizontal forces is then applied, that 
is proportional, through a coefficient α, to the weights and is representative of the 
seismic action. It has to be noted that account should also be taken of all possible 
weights that do not weigth directly on the blocks but whose inertial seismic action 
would act on the blocks of the mechanism (for example a diaphragm that affects the 
kinematic mechanism with only a section of its own weight but, if they are not re-
strained, would exert a horizontal seismic action that is proportional to the whole 
mass).  
By applying the theorem of virtual work to infinitesimal motion it is possible to calcu-
late the multiplier α0 that activates the kinematic mechanism.  

   (3.16) 

where: 
N  is the number of blocks that constitute the kinematic chain;  
m  is the number of external forces, assumed as independent of the seismic action, 

applied to the various blocks;  
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Pk  is the resultant of the weight forces applied at the k-th block (the own weight of 
the block, applied at its centre of gravity, added to the other weights supported 
by the block); 

Qk  is the resultant of the weight forces not imposed on the k-th block but whose 
mass generates on it a seismic horizontal force, which is not transmitted effec-
tively to other parts of the building;  

Fk  is the generic external force applied to one of the blocks;  
dPy,k  is the virtual vertical displacement of the centre of gravity of the forces due to 

its own weight and to other supported weights Pk, acting on the k-th block, as-
sumed positive if upwards;   

dF,k  is the virtual displacement of the point of application of the external force Fk, 
projected in the same direction;  

dPQx,k is the virtual horizontal displacement of the centre of gravity of horizontal forc-
es α(Pk+Qk) acting on the k-th block, taking as positive the direction of the 
seismic action that activates the mechanism;   

Li  is the total work of any internal forces (lengthening of a tie rod, sliding with 
friction).   

 
The equation (3.16) corresponds to the application of the kinematic theorem of the 
limit analysis. The resultant multiplier α0 represents a conservative estimate of the 
true collapse multiplier: the two multipliers coincide if the chosen mechanism is the 
correct one.  
In the hypothesis that the section of the construction that is represented by the system 
of blocks behaves effectively as infinitely rigid until the activation of the kinematic 
mechanism, the multiplier α0 represents the peak acceleration (in units of g) of the 
structure at the point where the mechanism is linked to the rest of the building (in the 
case that the mechanism involves an entire wall down to the ground, α0 corresponds 
to the peak ground acceleration). 
In order to know the displacement capacity of the local mechanism up to the collapse, 
the horizontal multiplier α can be evaluated not only on the initial configuration but 
also on varied configurations of the kinematic chain, representative of the evolution of 
the kinematic mechanism and described by the horizontal movement dC of the control 
point of the system, wherever chosen. In the absence of internal resistant forces, that 
can grow with the increase of the displacement (such as for example the tension of a 
steel tie rod), the multiplier is progressively reduced up to a configuration for which it 
becomes zero for a displacement dC0 (loss of equilibrium in static conditions).   
The curve α−dC, obtained through a non-linear kinematic analysis, represents the 
pushover curve of the local mechanism. For its computation it is necessary to consider 
how the internal and external forces change and whether they persist or not with the 
evolution of the kinematic mechanism. For example, in a steel tie rod the tension in-
creases until it reaches the yield strength, so this will remain therefore approximately 
constant until failure (yielding corresponding to a point beyond which it will no long-
er offer any contribution); the restraint between two walls will contribute with friction 
forces up to the formation of a gap between the masonry blocks; the diaphragm will 
transfer forces until the beams will be pulled out of the walls (in case it is considered 
that such a movement will lead to the collapse, the pushover curve will be set to zero 
after this condition).     
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3.2.2.2 Definition of non-linear equivalent oscillator  
In order to evaluate the seismic demand of displacement it is necessary to determine, 
as shown in §2.4.1, the “capacity curve” of the local mechanism, in perfect analogy 
with what was done for the global response of the building.   
The parameters of the pushover curve, defined in the previous paragraph, are trans-
formed in such a way as to obtain the relation acceleration-displacement (a-d) of an 
equivalent non-linear system with one degree of freedom:   

   (3.17) 

   (3.18) 

where:  
g is the acceleration of gravity;  
dCx is the virtual horizontal displacement of the point of control;  
e* is the fraction of the participating mass, evaluated based on the virtual displace-
ments relative to the kinematic mechanism starting from the initial configuration as 
representative of the mode of vibration of the local mechanism:  

   (3.19) 

The resulting capacity curve considers the infinitely rigid behaviour of the mechanism 
until its activation; this is unrealistic because a wall subjected to action outside its 
plane shows an elastic response, even if often characterized by a low vibration period, 
before conditions occur that will activate the kinematic mechanism. It is therefore 
necessary to introduce an initial elastic branch in the capacity curve, by estimating a 
value of the period T0 on the basis of simplified models:    

   (3.20) 

This linear branch defines the capacity curve up to the intersection with the curve de-
fined above, derived starting from the transformation of the pushover curve obtained 
from a non-linear kinematic analysis.  

3.2.2.3 Models for dynamic analysis  
In case the evaluation of the seismic safety is carried out through non-linear dynamic 
analyses (Method A - §2.6.2; Method B - §2.6.3) it is necessary to properly define the 
cyclic behaviour.   
In order to define the behaviour of a non-linear oscillator with one degree of freedom 
it is necessary to determine the capacity curve by the application of seismic action in 
both directions. Besides the case of vertical cantilever elements, free to move out of 
the plane on both sides, or of systems of arches over piers, the local mechanisms are 
often characterized by an asymmetric behaviour; a façade (or its upper portion) may 
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in fact tilt towards the outside, but would hardly do so by tilting towards the internal 
part of the building, because of the presence of load-bearing walls and of horizontal 
elements that exert one-sided restraint. The collapse mechanism is therefore different 
in the two directions.  
With regard to cyclic behaviour, the mere overturning of rigid blocks gives rise to a 
non-linear elastic behaviour, in other words by downloading the system returns to the 
initial configuration without residual displacements and moving along the same 
curve; in the presence of elastoplastic connection elements (steel tie rods) or restraints 
with friction the kinematic mechanism presents instead a hysteretic response, that will 
eventually deteriorate (following the rupture of some element).   
The dynamic response of a rigid oscillating block can be studied through the well-
known model of Housner (1963) and the conditions for collapse due to overturning, 
for each time history of acceleration, can be evaluated by means of rocking spectra 
(Makris and Konstantinidis 2003). The dynamic response of the block, for its rigid-
deteriorating features, is dynamically very unstable; dissipation in fact is due solely to 
the shocks corresponding to the return to the initial configuration, and the response is 
very sensitive to the single impulse contained in the accelerogram. More in line with 
the experimental response (De Canio et al. 2012) are the results provided by a non-
linear elastic oscillator, characterized by a softening response evaluated by means of a 
kinematic non-linear analysis and provided with an equivalent viscous damping 
whose value can be put in relation with the restitution coefficient of the model of 
Housner (the values typically range from 4% to 8%). 
Even though the formulation can be quite complex, rather than resorting to the equiv-
alent oscillator, it is possible to write the equations of the dynamic equilibrium of the 
kinematic mechanism consisting of several blocks (Clemente 1998); this allows per-
forming the safety assessment through method A (§2.6.2). In this case it is obviously 
not necessary to define the capacity curve of the system.    

3.2.2.4 Spectral displacement demand  
In case the evaluation of seismic safety is done by means of the use of the capacity 
spectrum (Method C - §2.6.4) it is necessary to determine the displacement demand 
on the capacity curve with the method of the overdamped spectrum (§2.6.4.2). The 
intersection of the capacity curve with the response spectrum in the ADRS format 
gives rise to the displacement d1; the determination of this displacement may require 
an iterative process since the spectrum must be that which corresponds to the value of 
the displacement of the mechanism of rigid blocks ξm. T1 is defined as the equivalent 
period that corresponds to the displacement d1:   

   (3.21)  
Since the verification process does not use design response spectra which exhibit ris-
ing spectral displacements with the increase of the period, but the spectra of selected 
real time histories, it is not possible to observe larger displacements for lower equiva-
lent periods.  The maximum displacement of the equivalent system with a single de-
gree of freedom is therefore given by (Lagomarsino, 2013):   

   (3.22) 
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where: Sdm is the displacement response spectrum of the seismic input to be consid-
ered for the verification of the local mechanism.   
The method requires therefore the definition of a function providing the equivalent 
viscous damping or increasing values of the displacement (or of the secant period) 
and the process is iterative. In general it is possible to assume a constant equivalent 
viscous damping, that is not dependent on d; in this case the determination of the 
maximum demand for displacement is immediate, even in graphic form.  

3.2.2.5 Evaluation of the seismic demand at different levels of the building  
Seismic safety in respect of local mechanisms requires knowledge of the input at the 
height where the mechanism takes place. The motion at the base of the building is fil-
tered by the response of the construction, as function of its dynamic characteristics 
(natural frequencies) and of the heights to which the blocks of the mechanisms are 
connected to the structure (modal shape).   
In case where methods are adopted that are based on the use of an incremental dy-
namic analysis (Method A - §2.6.2; Method B - §2.6.3) a global model of the con-
struction is available by means of which to evaluate, through a step by step dynamic 
analysis, the motion at the height of the mechanism (for this purpose one can general-
ly assume an elastic model for the building, possibly defined by reduced mechanical 
properties to take account of cracking). The time histories selected for the IDA are 
therefore transformed into appropriate floor time histories to be used according to the 
procedures and the models described in §3.2.2.3. 
In the case where the evaluation of seismic safety is performed by using the capacity 
spectrum (Method C - §2.6.4) it is necessary to determine the floor acceleration-
displacement spectrum. This can be achieved through a simplified formulation from 
the ordinates of the response spectrum of the time history at the base of the structure 
corresponding to the natural periods of the building (Lagomarsino, 2014). Since the 
formulation is simplified, the displacement response spectrum Sdm(T) to be used to 
verify the mechanism is given, for each value of the period T, by the larger between 
the response spectrum of ground displacement Sd and the estimate obtained by adding 
the response contributions provided by the r modes of vibration considered to be sig-
nificant for the response of the local mechanism:   

   (3.23) 

In the choice of modes to be considered, it is necessary to take into account the possi-
ble amplifications of the motion at the upper floors of the building, as well as the in-
teraction between the filtered motion and the dynamic characteristics of the mecha-
nism (resistance and displacement capacity).  
The contribution to the displacement response spectrum provided by the k-th mode is 
given by the following formula:  
 



CNR-DT 212/2013 

  43 

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, 2

2

2

2

2

0.051

1.9

1 0.05

3.8 1.9

dm k

k
d k k k k

k km

k
d k k k m k k

k k

d k k k m k

S T
T
T

S T z T T
T T
T T

T
T

S T z T T T
T T
T T

S T z T T

ψ γ

η ξ η ξ

ψ γ η ξ η ξ

ψ γ η ξ η ξ

= 
  
  

  ≤
   − +      


      < ≤
  

− +  
 

 ≥

  (3.24) 

where: 
T  is the period for which the spectral ordinate is calculated;  
Sd(Tk) is the value of the ordinate of the displacement spectrum of the accelerogram 

at the ground, with damping at 5%, calculated for the period Tk of the building; 
γk  is the k-th coefficient of modal participation of the building;  
ψκ(z) is the k-th modal form, normalized to 1 at the top of the building;  
z  is the elevation of the substructure affected by the mechanism under considera-

tion;  
ξ  is the damping of the building;   
ξm  is the damping of the substructure under consideration;   
η  is the factor that alters the elastic spectrum for damping coefficients that are dif-

ferent from 5%, using the formula:  

   (3.25) 
The proposed formulation provides excellent results in the case where the response 
spectrum of the ground accelerogram is quite smooth (similar to the standard ones). In 
the case of recorded time histories the spectrum is often very irregular around the pe-
riod Tk; considering the inherent uncertainties in the estimation of the period of the 
structure it is appropriate to use in (3.22) instead of the value Sd(Tk) a mean value, 
evaluated in an appropriate neighbourhood of the period Tk. 
In the case of verification of local mechanisms in multi-storey residential buildings, it 
is generally sufficient to consider only the first mode of vibration of the construction.  
The coefficient of modal partecipation can be approximated by the expression:    

 
  (3.26) 

where n is the number of floors. For the first spectral form, a power law may be as-
sumed:  

   (3.27) 
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where: H is the height of the building, κ is an appropriate coefficient (κ=1 in the case 
of modal linear form). 

3.2.2.6 Critical modelling issues   
The reliability of the evaluation in respect of local mechanisms is primarily linked to 
the correct choice of the kinematic mechanism of collapse; the identification assumes 
an adequate knowledge of the construction details, an estimate of the efficiency of the 
linkage elements and the correct interpretation of the cracking pattern (especially if it 
is of seismic origin). 
The modelling of the out of plane response through rigid blocks presupposes that the 
quality of the masonry is very good. A wall of poor mechanical characteristics will 
tend to disintegrate before it is articulated in rigid blocks; even in the presence of 
good masonry properties, if the walls are not effectively linked one to each other 
transversely, the out-of-plane stability is reduced. This reduction can be accounted for 
by moving back the point around which the rotation of the block occurs (this corre-
sponds to consider the base section of the wall as plasticized under compression, in-
stead of assuming a rotation at the edge). Neglecting these aspects leads to assess-
ments that are not on the safe side.      
Another important aspect is the estimate of the contribution provided by the interlock-
ing between walls. Neglecting this aspect would lead, in many instances, to estimates 
that are excessively on the safe side. If the interlocking in a corner or in the connec-
tion between the façade and an internal wall can be considered as fully effective, a 
section of the transversal wall would be involved in the out of plane mechanism; the 
inclination of the splitting that defines this portion depends on the texture of the ma-
sonry walls. When the restraint in the corner is not particularly effective though is not 
negligible, one could introduce an horizontal frictional force on the surfaces of the 
connecting blocks, evaluating the vertical compression stress (increasing downwards); 
this contribution remains until the blocks separate.  
In flexural mechanisms rotations occur around a vertical axis that involve a frictional 
resistance that is quantifiable through a torsional moment, whose work can be taken 
into account in the numerator of (3.14). 
In the case of diaphragm resting on a wall (or a section of a wall) that is subject to 
overturning, if these are not connected at the two ends in such a way as to represent a 
bond, it is necessary to consider the stabilizing action provided by the only portion of 
the load that rests on the wall and the seismic one attributable to the whole mass of 
the diaphragm (in some cases it is possible to rely on a stabilizing contribution that is 
due to friction on the support at the other end).    

3.3 Quantification of limit states  
The evaluation of the performance of a masonry building is performed separately with 
respect to the global and the local behaviour, both because the methods of analysis do 
not interact as well as because it would be difficult, in a coupled evaluation, to assign 
a weight to the attainment of limit states that might interest local portions of a very 
limited extension but, at the same time, are absolutely relevant in some cases.  
In this way the result of the verification allows a more aware estimate of the risk, 
which helps in planning mitigation strategies and addressing possible interventions of 
seismic strengthening.    
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3.3.1 Global response  
The general guidelines regarding the quantification of the limit state (§2.5) refer to the 
state of damage of the components of a building. For masonry buildings these ele-
ments (piers and spandrels) are defined a-priori, in the case of modelling with equiva-
lent frames, or can be identified a posteriori, when non-linear continuous modelling 
(finite elements) or macroelements are adopted. The following indications, based on 
deformation levels that are reached in the elements of the building, can therefore be 
applied regardless of the modelling approach that is adopted.  
Masonry structures are characterized by a configuration that is irregular and complex 
in many cases; for this reason it is not meaningful to rely on a simple control of the 
ratio between demand and capacity at the level of the structural elements since: a) for 
the damage state limit (SLD), the achievement of an important level of deformation in 
one element might occur when the other elements are very far from this condition; b) 
for the limit state for the prevention of collapse (SLC) it is difficult to refer to prede-
fined failure mechanisms, in the case of walls that are characterized by an equivalent 
frame with a complex configuration.   
Limit states are therefore defined on the capacity curve through a multi-scale ap-
proach that considers: a) the exceedance of a predetermined level of drift in a number 
of individual elements (piers and spandrels); b) the interstorey drift in single walls or 
the attainment of predetermined levels of deformation in horizontal elements (if con-
sidered flexible); c) the response at global level on the capacity curve (fractions of the 
maximum resistance of the equivalent oscillator). 
In the sections below there is an explanation of the criteria corresponding to these 
three scales for the three limit states considered in the evaluation of an existing ma-
sonry building. In particular, in the case in which method C is used, indications are 
given for the evaluation of the displacement capacity dSL relative to each limit state, 
for using (2.6) and (2.11).    
Method A is able to represent the response of buildings, however complex. With re-
gard instead to methods that refer to the conversion into an equivalent oscillator, the 
verification procedures significantly depend on regularity. For ease of discussion, the 
specific indications for each limit state contained in the next three paragraphs refer to 
the case of a regular building, with diaphragms that have adequate stiffness and with a 
limited number of floors, for which it is assumed that it is possible to carry out a 
seismic assessment separately in the two directions considering, for each of these, on-
ly the first mode and one component of the seismic motion. Appendix A.6 describes 
the procedures to be adopted in order to consider, for every mode, both components 
of the seismic input, when the ratio between the participation coefficients in the direc-
tion of verification and the orthogonal one is less than 10 (§A.7.1), and to perform a 
static non-linear multi-modal analysis, when the percentage of the participating mass 
in the first mode is less than 75% (§A.7.2).    

3.3.1.1 Damage limit state (SLD) 
The multi-scale approach for the definition of the limit state variable YSLD in the case 
of masonry buildings is applied in a different way according to the verification meth-
od that is adopted.    
In the case where a non-linear dynamic analysis is run on the complete model of the 
building (Method A), the (2.5) is modified in the following manner:  

  (3.28) 
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where: YSLD,S is the limit state variable defined at the level of the structural element, 
on the basis of the accumulated damage in both piers and spandrels as defined below; 
YSLD,M is the maximum value of the relationship D/C in terms of drift in one of the 
macroelements (walls or diaphragms) that compose the building (this control may be 
considered significant even for damage to non-structural elements); YSLD,G is the ratio 
between the maximum displacement of a control degree of freedom over the time his-
tory of the dynamic response and the displacement corresponding to the attainment of 
the maximum resistance on the pushover curve, defined by using the same degree of 
freedom (assuming the maximum of this ratio, for both signs in the direction consid-
ered). 
Damage accumulated in the spandrels SSLD,F is an indicator defined as the percentage 
of spandrels in the building that reaches the damage level 4:   

  (3.29) 

where the summation is extended to all the NF spandrels of the building and H is the 
Heaviside step function, that has a value of 0 until the demand Dj in the j-th spandrel, 
in terms of drift, does not reach the capacity Cj=θ4. 
The cumulative damage in piers SSLD,M is an indicator defined as a percentage, 
weighted on relative resisting areas Aj, of the piers of the building that reach the dam-
age level 3: 

  (3.30) 

where the summation is extended to all the NM piers of the building.  
Then, the limit state variable at the level of the structural element is defined as fol-
lows: 

 ( ), , ,

1 max ,SLD S SLD F SLD M
SLD

Y
t

= ∑ ∑   (3.31)  

where tSLD is a threshold, defined by the owner, and representing the maximum ac-
cumulated permissible damage for the damage limit state (SLD) (for example, 3%); 
this makes it possible to avoid that the damage limit state (SLD) is reached when a 
single element (pier or spandrel) reaches a fixed threshold.  
The control at the level of a wall macroelement is performed by considering the inter-
storey drift θp,l, (p = 1,…,Np – number of walls; l = 1,,..,Nl – number of levels) and 
identifying the maximum value: 

 

  (3.32) 

Consistent with the definition of the drift in an element (Equation 3.11 in §3.2.1.1), in 
the presence of deformable spandrels, the inter-storey drift must be calculated by sub-
tracting the contribution due to the average rotation of nodes. 
The limit state variable associated to macroelements YSLD,M is defined by assuming a 
threshold limit for the inter-storey drift in the walls θSLD,M (§3.4.4) and eventually 
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taking into account, in an analogous manner, of deformations in the plane of the dia-
phragms (§3.4.5) if considered flexible:   

  (3.33) 

In cases where the verification is done by adopting a system equivalent to a single de-
gree of freedom (Methods B and C) it is possible to define directly on the capacity 
curve the displacement dSLD to be used to define YSLD through (2.6): 

  (3.34) 

where: dSLD,S, dSLD,M and dSLD,G are the displacements on the capacity curve for which 
the corresponding limit state variables YSLD,S, YSLD,M and YSLD,G reach the unit value.  
Drift values in elements, corresponding to the capacity of the damage limit state 
(SLD) are shown in §3.4.1, whereas the drift limits of macroelements are shown in 
§3.4.4 and §3.4.5. 

3.3.1.2 Severe damage limit state (SLS)  
In the case of masonry buildings, reference is made to a formulation that is analogous 
to that proposed for reinforced concrete buildings, that refers to a variable that 
measures the diffusion of damage in the construction. This is placed in a direct rela-
tionship with the possibility of damage repair.  
For a masonry building it is not significant to introduce the damage, and the relative 
repair cost, of non-structural elements since, unlike reinforced concrete structures, the 
latter have a marginal effect on cost (the walls being substantially almost all of struc-
tural type). It appears instead appropriate to attribute a different weight to damage in 
masonry piers and in spandrels, being the latter decidedly less structurally significant 
and easier to be repaired (indeed, spandrels do not support significant vertical loads). 
Moreover, in the case of piers, it is necessary to attribute a weight that is commensu-
rate with the corresponding resistant area. The equation (2.7) specializes therefore for 
the case of masonry buildings as follows:     

 

( )
1 1, ,

1

1

1  se  1

M F
SLS

n n
SLS ji

M i M j
i ji SLS j SLS

SLC

Y
DDw c w c

C C

Y

t
α α

= =

= 
   + −          

 ≥

∑ ∑
 (3.35) 

where: 
• the coefficient αM expresses the weight of piers on the overall economic val-

ue of structural elements of the building;  
• the summations are extended to cover the nM pier and nF spandrels.  
• the function conventional repair cost  is defined in a similar manner 

to the case of reinforced concrete buildings; the values of Cj for piers and for 
spandrels are given in §3.4.2. 

• the weights wi associated with the repair cost to piers are equal to Ai/SkAk 
where Ai is the area resistant to the i-th pier wall;  

• the weights wj associated with the repair costs of spandrels are all equal and 
equivalent to 1/NF. 

( )ii CDc
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• YSLC is the variable that controls the achievement of the limit state for the 
prevention of collapse, as defined in §2.5.3 and later in §3.3.1.3. This check, 
which assumes that the limit state for severe damage (SLS) can never follow 
the limit state for the prevention of collapse (SLC), is necessary since in the 
case of particular collapse mechanisms (for instance, of a weak storey) the 
damage does not spread in a significant manner over the building and the cost 
function (3.32) does not rise above a certain value.  

 
In the following paragraphs, the weighted sum that appears in the equation (3.35) is 
also indicated as CG, the conventional global repair cost.   
In the case of methods B and C,  the displacement dSLS is defined on the basis of the 
achievement of the condition YSLS=1. 

3.3.1.3 Limit state for the prevention of collapse (SLC)  
Analogousely to what introduced for the damage limit state (SLD), the multi-scale 
approach for the definition of the limit state variable YSLC is applied in a different 
manner according to the verification method that is adopted.    
In the case where a dynamic non-linear analysis is run on the complete model of the 
building (method A) YSLC is computed as:   

 

 (3.36)  

where: 
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having defined SSLC,M through an analogous formula in (3.29) where the capacity for 
piers is assumed to correspond to the attainment of the damage level 5; tSLC is a 
threshold that is defined by the owner and represents the maximum permissible dam-
age for the severe damage limit state (for example 3%)14. 
The limit state variable associated with macroelements YSLC,M is defined similarly to 
the case of damage limit state (SLD), assuming a different threshold limit for the in-
ter-storey drift in the walls (§3.4.4) and for deformations in the plane of horizontal el-
ements (§3.4.5): 

  (3.38) 

The limit state variable associated with the global response of the building YSLC,G is 
the ratio between the maximum displacement of a control degree of freedom on the 
time history of the dynamic response and the displacement corresponding to a degra-

                                                 
14 The equation (3.35) has a structure that is similar to that of the general equation (2.10), with the limit 
state variable YSLC,G that corresponds conceptually to the control on the slope of the global curve IDA 
(the degradation of 40% on the capacity curve corresponds to a condition precedent to the plateau of 
the IDA curve, which in the equation (2.10) identifies the limit state for the prevention of collapse 
(SLC) with the reduction of the tangent to the IDA curve to a fraction ∆ of the initial tangent), and with 
the variable relative to single elements, YSLC,S, and to the macro-elements (walls, ceilings), YSLC,M, that 
correspond to the check of local failure modes that are not reflected in a clear manner on the global re-
sponse (for example, because of limitations in modelling). The equation (3.36) represents a way to 
maintain control on any possible local collapses in a more accurate manner than the simple serial undif-
ferentiated approach in relation to the importance of the elements.   
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dation computed as a percentage of the total base shear of the building equal to 40% 
(resistance degraded to 60% of the maximum shear capacity). 
In the case where the verification is done by adopting an system equivalent to a single 
degree of freedom (Methods B and C) it is necessary to define directly on the capacity 
curve the displacement dSLC: 

   (3.39) 

where: dSLC,S, dSLC,M and dSLC,G are the displacements on the capacity curve where the 
corresponding limit state variables YSLC,S, YSLC,M and YSLC,G reach the value equal to 1.   
The values of drift in elements corresponding to the capacity for the limit state of pre-
vention of collapse (SLC) are given in §3.4.3, whereas the limit drift for macroele-
ments are illustrated in §3.4.4 and §3.4.5.   

3.3.2 Local mechanisms  
The verification with respect to the different limit states is carried out considering var-
ious mechanisms that are assumed as possible, accounting for the geometric and 
structural characteristics of the building. Each mechanism is modelled separately and 
leads to an outcome. In the case in which different possible local mechanisms are ana-
lyzed for the same macro-element, the outcome of the evaluation will refer to that 
which will result more vulnerable (in general not identifiable a priori). In the presence 
of alternative mechanisms, associated with assumptions on the structural or mechani-
cal characteristics where knowledge is incomplete, reference will be made to the use 
of logic tree technique.  
The modelling of the out of plane response of the part of the building that is involved 
in the local mechanism, constituted by a kinematic mechanism of rigid block, leads to 
the definition of a capacity curve that is representative of the response of an equiva-
lent single degree of freedom system, obtained through the application of the kinemat-
ic theorem of the limit analysis. The capacity curve of the mechanism, according to 
what appears in §3.2.2.2, consists of two branches: 1) a first elastic branch, directly 
associated to the equivalent elastic period of the local mechanism under examination; 
2) a curve, often linear, obtained by means of a non-linear kinematic analysis. Fig. 3-5 
shows two typical capacity curves for a local mechanism involving or not also the 
presence of a tie-rod.  
 

 
Fig. 3-5. Displacements corresponding to the attainment of various limit states on the capacity curve of 

local mechanisms: mechanism without resistant elastic-plastic elements (left); mechanism with resistant 
elastic-plastic elements – tie rods (right). 

 
 



CNR-DT 212/2013 

  50 

Displacement values corresponding to the attainment of the various limit states are 
defined directly on this curve (Lagomarsino, 2013), since any check on the elements 
that constitute the kinematic mechanism are already considered in the evaluation of 
the curve (breaking of tie rods, extraction of beams, sliding between blocks, rupture 
by crushing, etc.). 
Having assessed the displacement demand d, by means of the methods described in 
§3.2.2, the variable that defines the condition associated to the attainment of the ge-
neric limit state is defined by the formula:    

  
(3.40) 

The displacement capacities dSL relative to the various limit states are specified be-
low.  

3.3.2.1 Damage limit state (SLD) 
The damage limit state (SLD) related to the out of plane response corresponds to the 
activation of the mechanism, that is to the rotation or the relative sliding of the blocks 
in correspondence with the kinematic links between them, beyond the limited elastic 
deformation (if considered). In the building this corresponds generally to the for-
mation of cracks of a small width, without the occurrence of appreciable residual de-
formations; in the case of free-standing elements (vertical cantilever), the activation 
of rocking may not produce significant consequences at the end of the seismic shock.  
For this reason, for a masonry building, the achievement of the damage limit state 
(SLD) in local mechanisms can be in most cases considered of a physiological nature, 
in the sense that forcing to prevent it would require the adoption of strengthening in-
terventions  so invasive to be not justified.  
When the initial elastic deformation is considered, the intersection point between the 
elastic branch and the curve obtained by the kinematic analysis defines the displace-
ment to the damage limit state dSLD (Figure 3. 5, left). In the presence of connecting 
elements, such as tie rods, the estimated initial elastic period is ambiguous; the dis-
placement dSLD can be evaluated in correspondence with the attainment of the maxi-
mum resistance to the overturning (Figure 3.4, right).   

3.3.2.2 Severe damage limit state (SLS) 
The out of plane response generally involves limited cracks and residual damage at 
the end of the seismic shock, that are not particularly significant. It is only when one 
is very close to the collapse condition, as defined subsequently in §3.3.2.3, that the 
phenomena of disintegration become appreciable and such as to be representative of 
severe damage.   
For this reason, the limit condition of severe damage limit state (SLS) occurs shoatly 
before that of the limit state for the prevention of collapse (SLC):  

 00.3SLS SLDdd d= ≥
 

(3.41) 

where 0 is the displacement where the capacity curve becomes null.  
The lower limit is representative of kinematic mechanisms that are characterized by a 
limited displacement capacity; in these cases the system is stable in the elastic branch 
and the attainment of the damage limit state (SLD) coincides with the severe damage 
limit state (SLS).    
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3.3.2.3 Limit state for the prevention of collapse (SLC) 
The dynamic response of kinematic mechanisms of rigid blocks is characterized by a 
strong instability, in the sense that, for a given time history, a small increment of ac-
celeration values can lead to a large increase in demand with displacements close or 
up to the collapse; on the other hand the kinematic mechanism could possibly with-
stand the application of the same accelerogram, further increased in intensity.  
For these reasons, in order to define the displacement values that are compatible with 
the limit state for the prevention of collapse (SLC), it is necessary to refer to condi-
tions that are sufficiently far from these phenomena. Following the execution of sev-
eral non-linear dynamic analyses (Lagomarsino 2014), and considering various kine-
matic mechanisms and accelerograms, it was possible to confirm that the dynamic in-
stabilities do not occur, except in a limited number of cases, until the displacement 
demand does not reach the value: 

 00.4SLC SLSdd d= ≥
 

(3.42) 

Figure 3.3 shows, by way of example, displacements that correspond to various limit 
states for different recurrent situations.  
In cases where the evaluation is carried out with incremental dynamic analyses 
(Method A - §2.6.2; Method B - §2.6.3) the limit state for the prevention of collapse 
(SLC) can be directly estimated on basis of the value of the seismic action for which 
there is no convergence (collapse). In order to be on the safe side it may be considered 
that the limit state for the prevention of collapse (SLC) is reached when the slope of 
the curve IDA is reduced to a negligible fraction (for example 10%) of the initial 
slope.  

3.4 Capacity of structural elements and macroelements 
The following paragraphs provide indications on the deformation capacities to be 
used for the various limit states, for both single structural elements and macroele-
ments. It is to be noted that the present state of knowledge does not yet allow to pro-
vide reliable indications on the uncertainty that is associated with the values indicated 
and as a result these thresholds cannot be characterized as random variables (cfr. 
§4.4). 

3.4.1 Capacity of structural elements for damage limit state (SLD) 
The capacity values of the damage limit state (SLD) of piers and spandrels to be used 
for the calculation of accumulated damage (3.26) and (3.27), are given in Tables 3.2 
and 3.3. They refer to the level of serious damage for piers (Cj=θ3) and of very seri-
ous damage for spandrels (Cj=θ4). The drift values are obviously differentiated as a 
function of the failure mechanism and in the case of mixed mechanisms the drift is es-
timated by means of (3.10). The choice to consider serious or very serious damage 
levels at the scale of the element, by the definition of a limited damage (SLD) on a 
global scale, is justified by considering as acceptable these concentrations of damage 
in few elements.  

3.4.2 Capacity of structural elements for severe damage limit state (SLS) 
Insofar as piers are concerned, reference is made to a damage level that precedes a se-
rious level (Cj=0.5θ3), in that it corresponds to a situation where the element is not 
only in a condition to support the vertical loads but can be conveniently repaired. 
With regard to spandrels, reference is made instead to a very serious damage level 



CNR-DT 212/2013 

  52 

(Cj=θ4), since the damage of a spandrel has no serious consequences on the stability 
of the wall and the element can be efficiently reconstructed and coupled to the mason-
ry wall; nevertheless, in the case of spandrels that are supported by an arched masonry 
lintel, one may also consider a level of serious damage (Cj=θ3), given the fragility of 
such collapse mechanism.  

3.4.3 Capacity of structural elements for limit state for the prevention of collapse 
(SLC) 

In the case of the limit state for the prevention of collapse, only the capacity of pier 
masonry walls in controlled since the collapse of a spandrel does not result to be so 
significant in the context of the evaluation on the global collapse of the building.   
The limit state for the prevention of collapse (SLC) is considered to have been 
reached when even a single pier collapses (Cj=θ5) because it is no longer in a condi-
tion to support the vertical loads and this leads to instability that might to be extended 
to large portions of the building.  
The values that are to be considered are given in Tables 3.2 and 3.3. 

3.4.4 Deformation capacity of the wall macroelement 
In case of the verification of the damage limit state (SLD) it is necessary to verify that 
the inter-storey drift does not exceed the value θSLD,M=0.2%. 
In the case of the verification of the limit state for the prevention of collapse (SLC), it 
is necessary to verify that the inter-storey drift does not exceed the value 
θSLC,M=0.6%. 

3.4.5 Deformation capacity of the horizontal diaphragm macroelement 
In the presence of flexible diaphragms or vaults, if their deformation is modelled by 
means of elastic elements, it is appropriate to consider for the damage limit state 
(SLD) thresold reference values of the angular deformation. These must be based on 
data from literature or derived from laboratory experiments or from numerical anal-
yses.  Different values are found varying the different types of diaphragms and in the 
presence of vaults, in relation to their shape (barrel vaults, pavilion vaults, cross 
vaults, ribbed vaults), and slenderness (light/thickness ratio). Reference values for 
some types of diaphragms are proposed for example in ASCE/SEI 41/06. 
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4  Reinforced concrete buildings 

4.1 Knowledge of the structure  

4.1.1 Aspects of knowledge  
As already indicated in §2.3.1, the aspects of knowledge that are necessary for an 
evaluation include: 

• Geometry of the body of the structure 
• Construction details  
• Mechanical properties of the materials  

 
These aspects of knowledge are obtained from the following sources: 

• A historical-critical analysis.  
• Documents of the original design and of possible subsequent interventions 

(drawings and reinforcement, tests certificates). 
• Geometrical-structural relief. 
• Experimental surveys and trials. 

 
The first element to be obtained is the geometry of the structural system.  In the ab-
sence of design documentation that is adequate for the purpose, it is necessary as a 
preliminary step to carry out a full structural survey.   
The next step is the implementation of a preliminary analysis for the purpose and with 
the procedures shown in §4.1.2. After this analysis, the plan of the experimental in-
vestigations is drawn up with the tests to be carried out as specified in §4.1.3, aimed 
at: a) the verification of the correspondence of the construction with the design plans, 
where available, or to the acquisition of sufficient data to perform a simulated design 
of the reinforcement according to the rules that were in force at the time of the con-
struction; b) the knowledge of the properties of the component materials. 

4.1.2 Preliminary analysis  
The preliminary analysis is designed to determine in an approximate manner the state 
of the structure and its possible critical areas with a view to directing the investiga-
tions, compatible with the needs of the use of the structure, towards the area where 
they are most relevant to the final judgement.  
It is known that a modal analysis with an elastic spectral response on a linear model 
with ”cracked” stiffness provides in many cases a good approximation the displace-
ment demand even beyond the elastic limit.  Such an analysis allows especially:  

- the determination of the number of modes that contribute in a significant man-
ner to the response, and therefore to the static non-linear method of analysis 
that is most appropriate to the verification.  

- the identification of the areas (floors, structural elements) that are critical 
(high D/C ratios), on the basis of the yield deformation capacity that is first es-
timated, where it is more important to check with greater care the construction 
details and materials.  For ductile mechanisms the approximate evaluation of 
the relationship θ/θy is often possible even in the absence of reinforcement de-
tails, the yield curvature being proportional to the dimensions of the section 
(known in good approximation) and to the  deformation εy of the steel, but on-
ly weakly dependent on the amount of reinforcement.   
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4.1.3 Experimental investigations  

4.1.3.1 Structural details  
Knowledge of the arrangements of the reinforcement (bends, length of the overlaps 
and of the anchorage, joints details, etc.) inside every principal element is a matter of 
considerable importance for the reliability of the outcome of the assessment of a 
building in reinforced concrete.  
In case the original executive drawings (or accounting records) are available, the nec-
essary compatibility checks require the stripping of some of their elements, with the 
removal of the plaster and of the concrete cover over sufficiently large bands to ena-
ble the examination also of the transverse reinforcement15. The number of these 
bands, to be performed in different floors, and especially in areas identified on the ba-
sis of the preliminary analysis, is linked to the degree of compliance that is found be-
tween original design and actual implementation.    
In the case of incomplete or missing executive drawings, the number of bands should 
be such as to allow the reconstruction of the criteria followed in the design of the 
structure, criteria that is to be adopted in a simulated design in the evaluation phase.  
Finally it is necessary to have an investigation of at least one beam-column joint that 
is not confined.  By means of partial chipping of the concrete cover and with the help 
of non-destructive instruments, it should be possible to identify the details of the an-
chorage of the reinforcement of the converging elements, the possible presence of 
stirrups in the joint, as well as the details of the continuation of vertical reinforcement 
in the upper floor.  

4.1.3.2 Mechanical properties of concrete and of steel  
Modelling by means of random variables of the compressive strength of concrete and 
of the yield strength of steel can be done, as shown in §2.3.2.1, by assuming a of 
lognormal probability distribution and estimating the two parameters: mean and 
standard deviation of the logarithm.  
With regard to the mean, this can be estimated:  

• Starting from the design specifications or from test records, with subsequent 
updates using the Bayes technique, if this information is available.   

• On the basis of investigations carried out at the time of the assessment.     
The number of tests that are to be performed must be related to the volume of the 
building.  
In the second case above the number of tests is in general larger than in the first case, 
and must be adjusted to obtain a stable estimate of the parameter. This number can be 
reached by means of non-destructive tests only if these have been properly calibrated 
by using a minimum number of destructive tests.  
As regards the standard deviation, this should reflect the actual variability of the me-
chanical properties within the structure in question and cannot therefore be estimated 
on the basis of literature data that refer to a sample of a population of contemporary 
structures. In the absence of more accurate determinations, or as an a priori value to 
                                                 
15 Relatively recent instruments make it possible to reproduce the layout of the reinforcement without 
having to remove the concrete cover.    
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be updated by means of the Bayes technique, use can be made of the values given in 
Table 4.1. 
 

Table 4.1 Recommended values for the standard deviation of the logarithm of the mechanical properties  
 

Properties  Symbol σ ln 
Cylindrical compressive strength of concrete  fc 0.15 

Yield strength of steel  fy 0.10 
 
As a marginal comment on the above considerations it is appropriate to add that, for 
the usual values of the average compressive strength of reinforced concrete in the 
range of 20 to 30 MPa, the results of the assessment is weakly influenced by the par-
ticular value used, and that the contribution of the uncertainty on the strength of the 
concrete on the probability of collapse is in the majority of cases negligible compared 
to that regarding the uncertainty on the construction details.  The comment above has 
value as long as the quality of the mix is maintained above the lower threshold indi-
cated.  In case that lower experimental values are detected, an accurate assessment of 
the resistance of the concrete is required.   
With regard to the steel, albeit within narrower limits, the considerations made con-
cerning the influence of the resistance of the concrete on the outcome of the tests are 
still valid.  Variations of the order of 10÷15% have an influence that is completely 
marginal.  Besides, to reduce the standard error in the estimate of the mean resistance 
of steel below these values would require a number of tests that would be completely 
unrealistic, given the double consideration that resistance is a function of the diameter 
of the bar and that the characteristic strength associated to the various classes is a 
guaranteed minimum, with variations over the minimum among different batches that 
are of the same order as mentioned above.    

4.2 Response in two and in three dimensions  
The models presented below (§4.3.1, §4.3.2 and §4.4) refer, with the sole exception of 
the beam-columns elements where the sectional behaviour is described by means of a 
fiber discretization, at a behaviour in a single bending plane. While this does not rep-
resent a limitation in the case of beams, or of joints (the external ones since the inter-
nal ones are always confined), with the exception of the corner ones, the columns are 
always subject to a system of biaxial bending.  
In the absence of models with a biaxial response capacity, as in the case of degrading 
models currently available (§4.3.1.4), the only option is to adopt in approximation the 
same model in the two orthogonal bending planes, ignoring the interaction.   
In the case of models without degradation where the check of the displacement with 
respect to the deformation thresholds corresponding to limit states is made a posterio-
ri, it is possible to take account of the interaction in an approximate manner through 
the “elliptical” rule:  

  (4.1) 

where θ2 and θ3 are the angular distortions in the planes of bending identified by the 
local axis 1 (lengthwise of the element) and, respectively, by the local axis 2 and 3, 
while θ2,SL and θ3,SL are the corresponding thresholds (uniaxial) at their limit state 
(SL). The limit state is reached in the element when y = 1. 
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This rule is proposed in (Biskinis and Fardis, 2010a,b) on the basis of limited experi-
mental evidence from biaxial tests.   

4.3 Modelling criteria  

4.3.1 Modelling of beams and columns  

4.3.1.1 Modes of failure of reinforced concrete beams and columns  
Beams and columns are subject to concomitant bending stresses (M), shear (V) and 
normal stress (N). The interaction between these stresses is one of the most important 
phenomena in the inelastic response near the collapse of structures in reinforced con-
crete that are not designed in accordance with criteria of capacity design.  Shear relat-
ed aspects represent in most cases the determining cause of the collapse, whether they 
precede the damage due to a flexural mechanism or whether they arise due to a reduc-
tion of shear resistance caused by cyclic deformation in bending.  
The reduction of shear resistance due to the inelastic bending response and the con-
current demand for ductility is a common element in several of the models of shear 
resistance available in technical literature, usually in the form of a linear reduction 
factor k(µ) function of (maximum) ductility µ , as shown in §4.4.6. 
The interaction between bending and shear in the determination of the tupe of failure 
of an element is illustrated in a schematic manner in Fig. 4-1 where for the sake of 
simplicity reference is made to a monotonic response. There are three instances.   
When the initial shear resistance VR,0 (i.e., not yet reduced as a result of the flexural 
response) is less than the shear demand in equilibrium with the bending strength 
(commonly called “plastic shear” and determined as Vy = My/LV) the shear failure oc-
curs in a fragile manner before the bending yield strength, for the value VR,0 for an 
angular deformation, drift or rotation with respect to the chord, θV (see §4.4.4.2). The 
subsequent behaviour is degrading until the formation of a full passing crack and slid-
ing along it, a state where the shear force is reduced to negligible values and the ele-
ment almost completely loses its bearing capacity, at an angular deformation θa (see 
§4.4.4.3). 
When the initial shear strength VR,0 is greater than the plastic shear, the element yields 
in bending. If the value of the residual shear resistance k(µ)VR,0 is smaller than the 
maximum shear Vmax (greater than the plastic shear due to hardening), the shear fail-
ure occurs after the yield in bending for an intermediate shear value between the ini-
tial resistance VR,0 and the residual one, at an angular deformation θV . The subsequent 
behaviour is again degrading until the formation of a through crack and of failure with 
an angular deformation θa. 
If even the residual value of the shear strength k(µ)VR,0 is greater than the maximum 
shear, the element continues to deform by bending in the inelastic field until the fail-
ure of the compressed part of the section with the buckling of the bars and/or the at-
tainment of the ultimate deformation capacity of the conrete and its expulsion. To 
these phenomena corresponds a degradation of the bending resistance with an angular 
deformation θf (see §4.4.4.1). The slope of the post-peak branch is associated with the 
ultimate deformation where the shear force goes to zero, and depends on the process 
of degradation of the concrete (post-peak slope of the σ-ε law) and on the level of the 
axial stress to which the element is subjected in relation to the loss of stiffness due to 
large deformations. The degradation occurs in a sharp manner and the bars are subject 
to buckling.  
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Fig. 4-1 Failure modes of a reinforced concrete element subjected to bending, shear and normal stress  

 
In general, in the case of existing buildings the most frequent failure modes, especial-
ly insofar as columns are concerned, are those arising from shear, either in the elastic 
range (mode 1, in Fig. 4-1) or in the palstic range (mode 2). In the next section mod-
els are presented in order to decribe the non-linear pure bending behaviour of the 
beam-columns elements. These models constitute the basis for more advanced models 
that describe the bending and shear behaviour, shown in section §4.3.1.4. 

4.3.1.2 Models of beam-columns with prevailing flexural behaviour  
Available models for the determination of the non-linear response of elements of 
beam-columns in the most widely udes computer codes belong to the following cate-
gories:   
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• Models with diffused inelasticity: 
o “stiffness” formulation: models where the displacement field is inter-

polated along the length of the element 
o “flexibility” formulation: models where the force field is interpolated 

along the length of the element  
o “mixed” formulations: models where multiple fields are interpolated 

along the length of the element 
• Models with concentrated inelasticity, also referred to as “plastic hinges”.  

 
Models with diffused inelasticity formulations in flexibility and mixed can be used in 
all cases.  Models with diffused inelasticity with a formulation in stiffness can be used 
in all the cases but generally require a finer discretization of the structural elements in 
order to be able to adequately descibe the variation of the deformations along the axis 
of the elements, or alternatively the use of higher order interpolation functions of dis-
placements. 
Models of concentrated inelasticity can be used when the possibility of formation of 
plasticized zones internal to the element can be ruled out.  However, in these elements 
it is neceessary to estimate the stiffness of the internal ‘elastic’ zone taking into ac-
count of the expected average cracking.   
All the listed models make use of sectional response models that provide the link be-
tween the section stress resultants and the corrresponding generalized deformations.    

4.3.1.3 Section models  
Available models for the determination of the response of the section of an element of 
a beam-column belong to the following categories: 

• Fiber  models (Fig. 4-2): in these models the section is discretized into com-
ponent (fiber) portions which are assigned the stress-strain relationship, gener-
ally uni-axial, of the corresponding material.  The relationship between stress 
resultants and generalized deformations is obtained starting from the behav-
iour of the fibers, in the generally adopted assumption of conservation of the 
plane section.   

• Direct models (Fig. 4-3): where the relationship between the stress resultant 
and generalized deformations is specified in a direct manner.  

 
Fiber models allow the correct description of the interaction between normal force 
and the two components of the bending moment in the cyclic range. In the version 
currently in use that is available in the most popular codes these models are not, how-
ever, adequate to capture the phenomena of degradation associated with high levels of 
deformation, such as buckling and slip of the bars, and expulsion of the concrete core 
in the absence of proper confinement.  
In fact, therefore, the fiber section models must be considered as models without deg-
radation for the purpose of §2.4 and §2.5.3.   
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Fig. 4-2 Fiber section models: for plane analyses (left), for spatial analyses (centre and right). 

 
Fig. 4-3 Direct section models: alternatives for the monotonic curve (left), effect of the interaction between 

the normal force and bending moment (right). 
 

Direct models can describe the phenomena of degradation mentioned above, but are 
limited in dealing with the interaction between the components of the stress resultants 
(normal force with bending - Fig. 4-3, right - in particular the latter is biaxial). This 
limitation is more relevant if the expected level of variation of the axial force in the 
elements is important. If a check is also carried out for the damage limit state it is 
preferable to adopt a multi-linear link that distinguishes between the uncracked elastic 
branches and the cracked elastic (Fig. 4-3, left). In case the link is of the bilinear type 
(without degradation) or trilinear (with degradation) for the slope of the first branch 
an intermediate value must be chosen between the initial stiffness and the secant one 
at yield (for example, secant at 40% of the threshold of yield). 
In conclusion, the direct models can be considered as models with or without degra-
dation for the purpose of §2.4 and §2.5.3, in function of the law adopted (Fig. 4-3, 
left).  

4.3.1.4 Beam-column models with shear or bending-shear failure  
Rigorous and robust models of this phenomenon that possess the necessary general 
features are still the subject of theoretical and experimental research. The available al-
ternatives for a practical application are three:  

• Modelling simplified at sectional level where the moment-curvature law is 
modified by the introduction of a degradation caused by the shear failure, re-
ducing the value of the moment to satisfy the equilibrium with the value of the 
shear in the post-peak branch (Fig. 4-4, left, corrisponding to the shear failure 
in the plastic range, mode 2, in Fig. 4-1). 

• Modelling of the interaction at the level of the element, adopting a beam for-
mulation that considers shear deformation and a corresponding sectional mod-
el that includes the shear and the associated generalized deformation (for ex-
ample, as shown in Fig. 4-4, right). 
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• Modelling consisting of an element that describes the bending with interaction 
NM (normally an element with distributed inelasticity with fiber section) and 
of one or two elements of zero length at the ends that describe the shear be-
haviour, the axial failure and eventually the effect of the sliding of the bars 
(Fig. 4-5, where there is only one element and describes contributions of shear 
and axial deformations).   

 
Fig. 4-4 (right) illustrates the simplified implementation of the second approach, 
where the overall response of the section (NMV) is obtained by the assemblage of a 
coupled NM behaviour with a uni-axial shear hysteretic law of a phenomenological 
type, independent from M and N. This approach may be considered an acceptable 
compromise for modelling in the dynamic field with degradation when the axial 
stress N is slightly variable. There are, moreover, other models that, while ignoring 
the bending stress-shear interaction, include a hysteretic law V-γ as a function of the 
normal stress.  
(Fig. 4-5) illustrates the third option. The column consists of the assembly of an ele-
ment of a beam-column in bending and normal force and of an element of zero length 
having shear and axial laws with their corresponding degrees of freedom. The beam 
element describes the axial flexibility and the bending flexibility of the column. 
Therefore the shear and axial laws in the element of zero length must have a stiffness 
that is respectively equal to KV = GAV/L (average elastic shear stiffness on the ele-
ment, with AV as the shear area) and KA»EA/L. The total vertical deformation is giv-
en by the beam element whereas the horizontal/transversal deformation is given by 
the sum of ∆ = ∆f+∆V of the beam element and the of the shear element. The element 
with zero length must be able to monitor the total displacement ∆ and therefore the 
corresponding angular distortion θ = ∆/L. When one of the limits θV, θf is reached 
(see Fig. 4-1) the element updates the response curve and imposes a degradation of 
the force V and/or N also in the beam element. The slope of the degradation branch 
(negative stiffness) is determined on the basis of the difference between the values of 
θa and θV. 
As regards the cyclic response, the monotonic shear and axial stress laws must be 
completed by laws of hysteresis suitably calibrated to reproduce experimental data.  

 
Fig. 4-4 Direct sectional models: alternatives for the monotonic curve (left), effect of the interaction be-

tween the stresses (right). 
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Fig. 4-5 Model consisting of a bending element and of elements at zero length for the shear, the axial fail-

ure and the sliding of the bars.     

4.3.1.5 Models for cyclic degradation  
The phenomenon of degradation is very relevant for elements in reinforced concrete 
that are not designed in accordance with modern criteria for seismic protection. As 
shown in §2.4 the degradation concerns both the stiffness as well as the resistance, 
and it is present both in conditions of increasing monotonic displacement, leading to a 
negative slope of the monotonic curve, as well as in conditions of cyclic displace-
ment. This type of behaviour is desribed in Fig. 4-6, that shows the monotonic curve 
of the analytical model together with the cyclic experimental response and with the 
corresponding simulated response. It can be observed that the state of zero shear is 
reached in cyclic conditions for lower values of deformation compared to those which 
correspond to the monotonic condition.  The simulation of such a behaviour requires 
models that allow the description of several cyclic degradation mechanisms: 

• Degradation of the strength  
• Degradation of the unloading stiffness  
• Degradation of the reloading stiffness  

In general the parameters of these models vary as function of the ductility and/or the 
energy dissipated through hysteresis in the cyclic deformation.     
By way of example, in the reasonable assumption that every element has a “maximum 
capacity of energy dissipation by hysteresis” Et, the yield strength at  the inversion af-
ter the branch i, Vy,i, can be made to depend on the dissipated energy Ei and on the 
strength on the branch Vy,i-1 (calculated at the inversion point after the branch i-1) in 
the form (Rahnama and Krawinkler, 1993)(Ibarra et al 2005): 

  (4.2) 

where: 

  (4.3) 
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The use of a model of this type requires the availability of predictive equations for pa-
rameters such as, for example, exponent c or the total dissipation energy capacity Et 
(the latter is provided as an example in a normalized form by equations such as 4.19). 

 
Fig. 4-6 Experimental cyclic response of a reinforced concrete column built according to old concepts and 

numerical simulation (adapted by Ibarra et al 2005).   

4.3.2 Models for beam-column joints  
Generally internal joints, confined by beams or by floors on all the four vertical faces, 
do not represent critical elements.  The external joints instead, and in particular those 
that were built before the introduction of modern seismic codes, constitute critical el-
ements for the response of the building.  
Modelling of these elements has not reached a level of development that is compara-
ble to that of the beam-column elements, and the solutions that are adopted in practice 
consist of rotational springs connected to rigid links to describe the shear deformation 
of the node (Fig 4-7 , left-centre). The constitutive law is characterized by a weak re-
sistance and by a rapid cyclic degradation (Fig 4-7 , right). In the case of corner nodes 
usually independent springs are adopted on the two orthogonal planes.     
 

 
Fig 4-7 Response model for internal nodes: geometry (left), constitutive law (right)  

4.3.3 Models for infill walls  
External infill walls can have a significant role, positive or negative, in conditioning 
the response of a framed structure in reinforced concrete. The role is generally posi-
tive if the distribution of panels is such as to stiffen and strengthen the structure in a 
uniform manner, negative in the case of an irregular distribution. Such an irregular 
distribution can also occur during the response itself, if the damages due to the seis-
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mic action are such as to eliminate, for example, a whole level of cladding, leading to 
a weak floor.  
Available models for practical use all refer to an idealization with equivalent struts, 
arranged cross-wise to form a brace. Expressions are available to determine stiffness, 
strength and ultimate deformability of the struts for panels without and with openings.  
Fig. 4-7 shows in a qualitative manner the arrangement of one of the rods and a typi-
cal constitutive uniaxial force-deformation law.    

 
Fig. 4-7 Equivalent strut for a panel (left), and typical cyclic law (left). 

4.3.4 Damping for dynamic analyses 
The dissipation of energy in a building in reinforced concrete is attributable to the fol-
lowing mechanisms: 

1. Dissipation in the structural elements (dependent on the level of displacement 
and to a limited extent on the frequency) 

2. Dissipation in the non-structural elements (dependent on the level of dis-
placement and to a limited extent on the frequency) 

3. Dissipation in the portion of soil in direct contact with the foundations that is 
subject to larger deformations (dependent on the level of displacement and to 
a limited extent on the frequency) 

4. Loss of energy by radiation into the ground (dependent on the frequency) 
 
A correct evaluation of displacements and deformations of the structure requires that 
the sources of dissipation that are not directly included in the model be explicitly con-
sidered.  This is usually done with the introduction of an equivalent viscous damping.  
The level of damping that is to be used must therefore be dependent on the modelling 
adopted.    

4.4 Capacity of structural elements  

4.4.1 Introduction  
As shown in Fig. 4-1 an element in reinforced concrete can have three types of behav-
iour.  For each type of behaviour characteristic points can be identified corresponding 
to force-deformation couples. Fig. 4-1, for simplicity, refers to conditions of mono-
tonic deformation, and therefore the thresholds of deformation indicated in them are 
those that determine the so-called backbone curve.   
In the following probabilistic models for these thresholds of deformation are present-
ed, indicating which models allow a difference to be made between the value of 
thresholds for cyclic deformations and those for monotonic deformations (Fig. 4-a). 
This distinction is in fact important in relation to the type of modelling adopted and 
hence of the type of control of the limit states. Whereas as the threshold correspond-
ing to the end of the elastic range (SL-DL, §4.4.2) is concerned the distinction be-
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tween monotonic or cyclic behaviour is irrelevant, with regard to advanced limit 
states it is necessary to adopt the correct values of the thresholds depending on 
whether the model is without or with degradation. 
For models with degradation it is necessary to define separately the monotonic curve 
(using monotonic thresholds) and the rules of cyclic degradation (see §4.3.1.5), ob-
taining as a result of the analysis a potential failure at a lower threshold of defor-
mation, as a result of the degradation itself.  
For models without degradation, and for all those modes of collapse that are not di-
rectly modelled, it is necessary to adopt thresholds that take into account cyclic deg-
radation for the control a posteriori16. 
It can be observed that in literature the identification of the point where the stiffness 
becomes negative is not uniform. There are two alternatives: some models adopt the 
point in correspondence with the peak of the resistance Vmax, while others adopt a 
point corresponding to the peak decreased by 20% (0.8Vmax). This difference must be 
taken into account in the determination of the constitutive law of the elements (calcu-
lating, for example, the peak deformation as a funtion of that at 0.8Vmax and of the 
slope of the branch with negative rigidity, as shown in Fig. 4-b). 
Finally, although the structure of this Guide is based on the characterization of the ca-
pacity in deformation terms, in §4.4.5.3 models of shear strength Vmax are introduced, 
that are necessary for instance to discriminate between elements that are prone to 
shear failure (fragile or ductile) or to flexural failure (§C.8.2).    

 
Fig. 4-9 (a) Monotonic threshold (model with degradation) and cyclic threshold (model without degrada-

tion) (b) definistion of different thresholds for the start of the negative stiffness. 
 

4.4.2 Capacity for damage limit state (SLD) 
The formulation of this limit state indicates negligible damage to structural elements.  
This condition translates itself into the condition of non exceeding yielding of the re-
inforcement, both longitudinal and transverse. 
The deformation capacity, expressed in terms of rotation with respect to the chord, is 
therefore equivalent to: 

  (4.4) 

                                                 
16 It can be observed that the adoption of this verification system of a limit state involves an inevitable 
approximation, in that imposed deformation cycles that are prescribed by the different test protocols 
are definitely different from those that occur during the seismic motion that is under consideration.  
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If the behaviour of the element is of the type 2 or 3 in Fig. 4-1, yield of the longitudi-
nal reinforcement precedes that of the transverse one and , otherwise 

, whose definition is given in § 4.4.4.2. 
The angular yield deformation  can be modelled as a variable with a lognormal dis-
tribution.  For the mean of the capacity use can be made of the expressions:   
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 (4.6) 

where the three terms represent respectively the contribution of the bending defor-
mation, of the shear deformation and of the sliding of the bars. In particular,  is the 
yield curvature, LV =M/V is the shear length, i.e. the distance from the end of the ele-
ment to the section of zero shear, h is the net height of the section and db the diameter 
of the longitudinal bars. 
The yield curvature can be obtained from a moment-curvature analysis of the section 
for the median values of the material properties (§4.1.3.2), or, if the knowledge 
achieved is not sufficient for a detailed evaluation, by means of the following expres-
sion:  

  (4.7) 

where  is the yield strain of the steel, d is the effective height of the section and the 
factor α depends on the type of the element (for example, 2.1 for beams and colums).  
The shear length can be reasonably assumed as constant and equivalent to half of the 
length of the element.   
The standard deviation of the logarithm of θy can be assumed equivalent to 0.32 
(Biskinis and Fardis, 2010b). 

4.4.3 Capacity for SLV 
The formulation of this limit state indicates a structure that is characterized by a dif-
fused state of damage that renders repair works uneconomic. The expression of the 
limit state variable (2.7) reflects this formulation being expressed in terms of the sum 
of the conventional costs corresponding to the damage.  The capacities to be used in 
the local relationships D/C are those that are relative to the limit state for the preven-
tion of collapse (SLC).  

4.4.4 Capacity of the limit state of the prevention of collapse (SLC) 

4.4.4.1 Deformation capacity: flexural failure  
The deformation capacity θf for the mode of failure 3 (Fig. 4-1), expressed in terms of 
rotation with respect to the chord, is modelled as a variable with a lognormal distibu-
tion. 
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Technical literature provides alternative models for θf. The following sections provide 
three of them. The first model is one of the two provided by the European norm 17 and 
in the form that is shown, it refers to elements with construction details that are seis-
mically adequate. In the case of existing buildings with elements that lack these de-
tails, the European norm indicates reductions to the value of θf. The second and third 
models that are shown, whose experimental bases are less wide but more homogene-
ous than those in the Eurocode, have the advantage of referring directly to elements 
that lack proper seismic details (Zhu et al, 2007) or of spanning the behaviour of both 
“new” as well as “old” members (Haselton et al, 2007). 
 
Model “Eurocode 8 Part 3” 
For the median use can be made of the formula:  

  (4.8) 

where ν is the dimensionless normal force, ω and ω’ are the mechanical percentages 
of the reinforcement in the tension and compression zone, α the confinement factor, 
ρsx and ρd the precentages of the transverse and diagonal reinforcement  (in the cou-
pling beams between the walls). 
The standard deviation of the logarithm of θf can be assumed equal to 0.40. 
The definition adopted for the threshold is that of a decrease of 20% with respect to 
the maximum shear.  Even if the statistical basis is not uniform18, the model allows 
for a distinction between a threshold for monotonic deformation (the equation given) 
and a “cyclic” threshold. Consequently this model is in principle suitable both for use 
in the case of models with degradation as well as for models without degradation. 
However, there does not exist a predictive equation obtained on the same experi-
mental basis for the other parameters necessary to establish a full constitutive law 
such as the negative post-peak stiffness and the parameters of cyclic degradation.  In 
practice, therefore, use of the expression is limited to models without degradation.   
 
Model “Zhu et al 2007” 
For the median, use can be made of the expression:  

  (4.9) 
where s is the spacing of the stirrups. 
The standard deviation of the logarithm of θf can be assumed equal to 0.35. 

                                                 
17 Eurocode 8 Part 3 provides a “mechanical” and a “statistical” model for the ultimate rotation with 
respect to the chord.  The “mechanical” model has limited usefulness in the case of existing buildings  
in that no indications are given with regard to the reduction of the capacity as a result of non-seismic 
details.  
18 The database of the tests assembled by the authors of the model (Fardis and Biskinis, 2010) contains 
mainly tests where the collapse is reached as a result of bending stresses (mode 3 in Fig. 4-1, 894 tests 
out of 1195, without taking into account those in which the collapse was not reached), and among these 
the larger share (778) are cyclical tests on “conforming” elements, in other words with modern seismic 
details.  It is therefore necessary to be aware that factors that take into account the monotonic defor-
mation or the absence of seismic details are based on a much smaller number of tests (respectively 76 
and 40). For the sake of completeness of information the number of tests with mode of collapse 1 is 81, 
while those with mode of collapse 2 is 220. 
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For this model the definition adopted for the threshold is that of a decrease of 20% of 
the maximum shear and the experimental basis is constituted by cyclical tests (85 out 
of 125 tests, all on “non-conforming” elements, as already indicated in §4.4.4), limit-
ing it use to cases of models without degradation.  
 
Model “Haselton et al 2007” 
For the median, use can be made of the expression:  

  (4.10) 

where fc is in MPa. 
The standard deviation of the logarithm of θf can be assumed equal to 0.46. 
For this model the definition adopted for the threshold is that which corresponds to 
the maximum shear Vmax. 
The experimental basis of this model is constituted by cyclical tests (255 tests, all on 
“non-conforming” elements). Furthermore, the model, by construction, provides the 
“monotonic” deformation threshold and can therefore be used only to establish the 
curve of monotonic load in the case of models with degradation. 
Haselton et al also provide a model only for the plastic part deformation at peak, that 
may be used together with formula (4.4-5) of θy:  

 ( )( ) ( ) ( )0.65 0.010.13 1 0.55 0.13 0.02 40 0.57 cf
f sl sha νθ ρ∆ = + +   (4.11) 

The standard deviation of the logarithm of θf can be assumed equal to 0.61. 

4.4.4.2 Deformation capacity: shear failure (brittle and ductile)  
The deformation capacity θV for modes of failure 1 and 2 (Fig. 4-1), expressed in 
terms of rotation with respect to the chord, is modelled as a variable with a lognormal 
distribution.  
Also in this case the literature provides several alternative models. Only that of Zhu et 
al (2007) is given here, compatible with those of θf and θa and usable in the case of 
models without degradation as indicated in paragraph 4.4.5.2. 
 
Model “Zhu et al 2007” 
For the median, use can be made of the expression:  
 

  (4.12) 

The standard deviation of the logarithm of θV can be assumed equival to 0.27. For this 
model the definition adopted for the threshold is that of a decrease of 20% compared 
to the maximum shear and the experimental basis is constituted by cyclical tests (40 
out of 125 tests, all on “non-conforming” elements, as already indicated in §4.4.4), 
limiting their use to cases of models without degradation. 

4.4.4.3 Deformation capacity: loss of axial bearing capacity  
The deformation capacity θa for modes of failure 1 and 2 (Fig. 4-1), expressed in 
terms of rotation with respect to the chord, is modelled as a variable with lognormal 
distribution.  
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Also in this case the literature provides several alternative models. Two are reported 
here: that of Zhu et al (2007), that refers to the loss of bearing capacity after the shear 
failure (brittle or ductile) and is compatible with those of θf and θV and usable in the 
case of models without degradation as indicated in paragraph 4.4.5.2, and that of 
Haselton et al (2007), that refers to the case of loss of bearing capacity for bending 
failure, and is usable in the case of models with degradation.  
 
Model “Zhu et al 2007” 
For the median, use can be made of the expression:  

  (4.13) 

where the effective friction coefficient µ on the crack of shear failure is given by the 
formula:  
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where α = 65° and dc = h-c is the dimension of the confined core parallel to the direc-
tion of the shear.   
The standard deviation of the logarithm of θa can be assumed equival to 0.35.  For 
this model the experimental base is quite small (28 tests, all on “non-conforming” el-
ements, as already indicated in §4.4.4) and constituted by tests of cyclic type, thus 
limiting it use to cases of models without degradation.  
 
Model “Haselton et al 2007” 
For the median, use can be made of the expression:  

  (4.15) 

The standard deviation of the logarithm can be assumed equival to 0.72. 
The experimental basis of this model is constituted by tests of a cyclic nature (255  
tetsts, all on “non-conforming” elements). Furthermore, the model, by construction, 
provides the threshold for “monotonic” deformation and is therefore usable only to 
establish the curve for a monotonic load in the case of models with degradation.  

4.4.5 Operational guidance for modelling  
The definition of a constitutive law of the elements must be based on a set of  predic-
tive models (for deformation thresholds, for levels of stiffness, for degradation pa-
rameters) that are consistent with each other (in other words, obtained at the same 
time on the same experimental basis). The next two paragraphs contain indications 
that are relevant as function of the type of modelling.  

4.4.5.1 Model with degradation  
At present the only set of coherent usable models to establish the constitutive cyclic 
law of beam-columm elements in reinforced concrete is constituted by the equations 
of Haselton et al (2007). These equations have been obtained by means of regression 
on 255 cyclic tests using as a base model of the response that of Ibarra, Medina and 
Krawinkler (2005). The model requires seven parameters, five of which are necessary 
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to establish the monotonic curve and two for degradation.  Of these last two, one is 
identically equivalent to 1.0. In addition to the equations for θf and ∆θa already pro-
vided, the following equations are necessary.  
 
Secant stiffness at 40% of the yield moment  
To be used as an intermediate value between the initial one and that at the yield (the 
model of Ibarra does not differentiate between stiffness at stage I and II), median val-
ue:    

  (4.16) 

with standard deviation of the logarithm equival to 0.38. 
 
Secant stiffness at yield  
Necessary to identify the yield point together with the corresponding moment, median 
value:   
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with standard deviation of the logarithm equival to 0.36. 
 
Ratio between the ultimate and yield moment  
Median:  

  (4.18) 

with standard deviation of the logarithm equival to 0.10 (fc in MPa). 
 
Degradation parameter γ 
Median:  

  (4.19) 

with standard deviation of the logarithm equivalt to 0.50. The equation provides in a 
normalized form the the total energy dissipation for hysteresis used in models such as 
the one in Eq.(4.3) 

4.4.5.2 Model without degradation 
In the case of models without degradation it is possible to use both mechanical formu-
lations (fiber section models) as well as phenomenological (multi-linear models of the 
moment-rotation law). 
In both cases the a posteriori check of the limit states must be carried out by means of 
the Eurocode model for θy (SLD) and of the models of Zhu for θf e θV (SLS and 
SLC). 
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4.4.5.3 Statistical dependence  
The parameters of the constitutive law of an element are linked among themselves by 
physical constraints, a fact that introduces a statistical dependence among the random 
variables describing them.  Strictly speaking, therefore, rather than a group of predic-
tive marginal models such as those indicated in the previous two paragraphs, it would 
be necessary to make use of a joint probabilistic model of the parameters vector. Un-
der the current state of the art a model of this type is not available.  
Besides the internal statistical dependence on an element just indicated, there is also 
statistical dependence between the parameters of different elements. This dependence 
arises from two causes. The first one concerns the median of the models, where com-
mon variables often enter such as, for example, the strength of materials, that in turn 
present a statistical dependence. The second concerns the error terms (epsilon) that 
measure the variability around the medians. These latter can be considered as the sum 
of two terms that are linked to factors that are not included in the median, the first that 
does not vary from one element to another and that consequently introduces depend-
ence (quality of execution, curing conditions of the concrete, etc), and the second that 
varies from one element to another thus reducing the dependence. In literature models 
of this type are not available.   
Appendix C (§C.6.2) gives an example of how the problem can be faced in practice, 
with reference to structures in reinforced concrete.  

4.4.6 Shear strength  
Technical literature provides alternative models for shear strength Vmax. Common 
characteristics for all models are: a) the presence of three additive contributions, due 
to the axial force N, the concrete and the steel; b) the presence of a term that reduces 
the resistance in function of the maximum ductility reached.  
In the following two among the three currently more widely used are presented. The 
first is that provided in the European norm (CEN, 2005) with reference to elements 
with construction details that are inadequate from the seismic point of view (existing 
buildings). The second model is that of Sezen and Mohele (2004) and is reported be-
cause it is used to discriminate between shear (brittle or ductile) and flexural failure 
associated with the models for deformation capacity of (Zhu et al, 2007). In both cas-
es the shear strength under cyclic action is modelled as a variable with lognormal dis-
tribution and the expressions are given may be used to determine the median.  
 
Model “Eurocode 8 Part 3” 
This model envisages two distinct equations for columns and beams and for squat 
walls.  For beams and columns, the median is provided by the following expression 
(units MN and m): 

  (4.20) 

where: 
h  total height of the section 
d  effective height of the section 
x depth of the neutral axis 
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N normal force, positive if in compression, zero if in tension 
Ac area of the section bd for rectangular section, for circular section 
Dc confined core diameter 
ptot total geometric percentage of the longitudinal reinforcement 
Vw contribution by the reinforcement equal to pwbzfy, for rectangular sections, and to 

, for  circular sections 

Asw area of circular stirrups 
s spacing of stirrups 
D diameter of the section 
c concrete cover 
 
The term  represents the plastic part of the ductility experi-
enced by the element.   
For squat walls the median of the shear strength under cyclic action must not exceed 
the limit corresponding to the crushing of diagonal struts given by the following ex-
pression (units MN and m): 

  (4.21) 

The standard deviation of the logarithn may be assumed in both cases eqival to 0.25. 
 
Model “Sezen e Mohele 2002” 
The model refers only to columns and the median is given by the following expres-
sion (units MN and m): 

  (4.22) 

where  is the whole area of the section, and the term of the reduction due to 
the (total) displacement ductility equals  equals 1.0 for  and 0.7 for 

, with a linear variation in the middle.  In this model the influence of the nor-
mal force does not translate itself into a separate contribution to the resistance but into 
a change of the term giving the contribution of concrete.  Further the reductive factor 

 is applied to the total contribution by concrete and steel, instead of only to the 
first term.  
The standard deviation of the logarithm may be assumed to be equival to 0.15. 
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4.5 Capacity of the non-structural elements  
Non-structural elements can be divided in three general categories:  

1. Architectural elements: for example, external infill walls and partitions, doors, 
ceilings, etc. 

2. Installations: for example, water services, electricity, gas, lifts and elevators, 
air conditioning, etc. 

3. Contents: for example, furniture, equipment, any other object that contributes 
towards an economic assessment of the damage. 

 
From the point of view of the capacity to withstand seismic action, non-structural el-
ements are divided into:  

1. Elements that are mainly sensitive to inter-storey movement  
2. Elements that are mainly sensitive to the acceleration of the storey  

 
The capacity of non-structural elements is expressed by means of a distribution, as-
sumed to be lognormal and referred to as the “fragility curve” of the element, for each 
limit state (generally two, damage limit state (SLD) and limit state for the prevention 
of collapse (SLC)) characterized by two parameters:  

• the median of the capacity (in terms of drift or of acceleration at the storey, 
depending on the type of the element) 

• standard deviation of the logarithm 
 
The values that are to be used depend on the type of element under consideration and 
must be established on the basis of literature data or on the basis of specific tests.  
 
When the infill walls are included in the modelling through equivalent struts, their 
state of the damage can be recovered directly from the analysis.  The constitutive law 
of the equivalent struts must obviously be consistent with the fragility curves of the 
infill walls being taken into account.  

4.6 Quantification of the limit state for the prevention of col-
lapse  

4.6.1 Modelling with degrading elements  
The quantification of reaching or exceeding the limit state is obtained in global terms.  
The methods are different according to the method of analysis that is used.  
In cases where the analysis of the response is made through non-linear static analysis 
(methods B and C, §2.6.3-2.6.4), the global threshold of displacement corresponding 
to the limit state of collapse dSLC is identified in the capacity curve and corresponds to 
the end of the segment with a negative post-peak stiffness. The limit state variable is 
therefore determined by the expression (2.11). 
In cases where the analysis of the response is done through non-linear dynamic analy-
sis (method A, §2.6.2), the curves IDA are drawn in the plane θmax-S and for every 
time history of acceleration the value of the intensity leading to the limit state for the 
prevention of collapse is that which corresponds to the first attainment of a tangent to 
the curve equival to the 10% of the initial one.   
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4.6.2 Modelling with non degrading elements  
The quantification of reaching or exceeding the limit state is carried out in global 
terms through the local aggregated relationships D/C by means of the formulation 
(2.8) of the variable limit state YSLC. This formulation requires the preliminary identi-
fication of all the cut sets, an operation that is not trivial in dynamic cases, since the 
critical cut sets depend on the dynamic response and can therefore change from one 
time-history to the other.  
In general, in the evaluation of YSLC there must be included at least the following sets:  

• Single columns and squat walls: 
o collapse due to bending: relationship θ/θu with capacity given for ex-

ample by the equation (4.10) 
o shear collapse; relationship V/Vu with capacity given for example by 

the equations (4.20) and (4.21) 
• Storeys: 

o exceedance of the yield drift threshold by all the columns (a condition 
corresponding to an important decrease of the stiffness of the floor and 
to a localization of the displacement demand ). For each column the re-
lationship θ/θy is obtained, for example, using equation (4.5). For each 
storey, the storey drift is assumed as the minimum among the story 
columns.  
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A Comments to the text of the Guide  

A.1 Reliability basis of evaluation methods (Comment on §2) 

From the formal perspective of structural reliability theory, the problem of evaluating 
the average annual frequency of exceedance of a limit state λSL can be posed in the 
following terms. 
All sources of uncertainty which appear in the problem (geometry and activity of 
seismogenic sources, mechanical characteristics of the wave propagation path, includ-
ing the upper soil layers at the site, and of the structure, epistemic uncertainty in all 
models) are described by means of random variables grouped in a vector x. This vec-
tor is characterised probabilistically by its probability distribution, expressed for ex-
ample by means of a joint density function f(x). 
To check for violation of the limit state, one may use a function of x, formulated so 
that its value is one when the limit state is violated and zero in other cases, called the 
limit state “indicator” function ISL (x). 
Simulation is the most robust method for determining the frequency λSL: it is based 
simply on a large number of experiments and observation of the results, followed by 
their statistical analysis. 
The methods considered in this Guide belong to a specific subset of simulation meth-
ods, the effectiveness of which is based on the use of a hazard curve λS(s), i.e. the 
marginal distribution of a seismic action intensity parameter S, and of a set of motion 
time histories to describe the variability of the seismic action, given the same value of 
S. 
This section outlines the general Monte Carlo simulation approach and its specialised 
application to the problem under consideration, framing the methods proposed in this 
Guide within a broader theoretical context. 
 
The probability of an event E, defined as the union of mutually exclusive elementary 
events ei, is equal, according to the axioms of probability, to the sum of the probabili-
ties of the elementary events: pE = ∑pei. 
If the event in question is the violation of the limit state, and the generic elementary 
violation event ei corresponds to the occurrence of the value x of the random varia-
bles, and hence pei = f(x)dx, the probability of the compound event can be written in 
integral form as: 

  (A.1) 

where SL indicates the portion of the space of the random variables where the limit 
state is violated. 
The preceding integral equation can be rewritten introducing the function ISL (x): 

  (A.2) 

in which the integration is extended to the entire space of the random variables. It can 
be observed that the probability of exceedance of the limit state coincides in the pre-
ceding equation with the expected value of the function ISL(x). 
The Monte Carlo simulation amount to the estimation of the previous expected value 
by means of the arithmetic mean across a sufficiently high number of samples of x: 
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  (A.3) 

It can be shown that the estimator  converges to pSL, and that the variance around 
its mean pSL decreases with N and is proportional to pSL itself: 

  (A.4) 

An important result that can be derived is the rule which provides the minimum num-
ber N of simulations required to obtain a given confidence in the estimate19: 

  (A.5) 

Such a result is immediately justified in qualitative terms too, since being 
, if pSL and therefore  are very small, violation of the limit state is 

clearly a very rare event and an extremely high number of simulations (N) is required 
to obtain a number (NSL) of results that are favourable to the event itself. 
 
The average annual frequency of exceedance of the structural limit state λSL is deter-
mined as follows. The probabilistic model (joint distribution) f(x) contains a portion 
relating to seismogenic sources from which events can be sampled in terms of loca-
tion, magnitude and other parameters such as the faulting mechanism, etc. The model 
normally includes several sources, which are indexed by i. If λ i is the mean annual 
rate of events20 generated in the ith source, we may write: 

  (A.6) 

where is the overall event generation rate in the area that has an effect on 

the site of interest,  is the probability that the event is generated by the ith 
source, and pSL is the probability that the limit state is violated, conditioned on the oc-
currence of an event in any one of the sources. The Monte Carlo simulation is used to 
determine pSL. To this end the probabilistic model f(x) also contains the portions relat-
ing to the determination of the seismic motion at the site, given the event, and to the 
response and capacity of the structure. Fig. A-1 illustrates the simulation process with 
reference to the generic event i. The simulation begins with the sampling of the active 
seismogenic zone Z (the first random variable in the vector x), followed by sampling 
of the magnitude of the event M and the epicentre E. From the positions of epicentre 
and site, the distance R is calculated. The values of M and R constitute the minimum 
information needed to implement a stochastic motion model, which is used to produce 
artificial time histories of seismic motion at the site (such models often filter and 
modulate a random stationary acceleration time history with uniform frequency con-
tent, termed “white noise” and denoted as x5 in the figure, in order to match target 

                                                 
19 In particular, equation A.5 ensures a probability of 30% of the estimate ˆ

SLp  falling within the interval 

( )1 0.33 SLp±   
20 The average annual rate of events is the (only) parameter of the Poisson distribution implicitly as-
sumed in the whole document as a model for describing the temporal frequency of events. This as-
sumption is at the basis of the most up-to-date seismic hazard analysis on a national scale. 
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frequency content and duration compatible with M and R). The subsequent phases in-
volve the determination of the motion at the surface and of the corresponding struc-
tural response, by means of the relevant models. The uncertainty on the mechanical 
characteristics of the site and of the structure, as well as that on all models parameters, 
are included in the vector x through the sub-vectors x4, x6 and x7. 

 
Fig. A-1 Diagram of simulation procedure with reference to generic event. 

 
Calculation of the mean annual frequency in accordance with the procedure just de-
scribed generally requires – as mentioned above – a very high number of simulations. 
For example, for a value of λSL = 10-3, which corresponds to a mean return period for 
violation of the limit state equal to TR,SL = 1000 years, the number of simulations in 
accordance with Eq. (A.5) in the order of 10000 (λSL and pSL are numerically coinci-
dent for values of λSL < 0.1). 
To reduce the number of simulations, it is necessary to act on the variance of the es-
timator . Various techniques, termed variance reduction techniques, exist for this 
purpose. Some of these techniques consist in setting the value – which is then varied 
parametrically – of a number of the variables (conditioning), thus performing a series 
of lower-order simulations before removing the conditioning by weighting the results 
obtained with the probability of occurrence of the values of the variables for which 
conditioning was applied (total probability theorem). 
The methods considered in this Guide belong to this category, and are based on the 
following rewriting of Eq. (A.6): 

 (A.7) 

SLp̂
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the last member of which coincides with Eq. (2.12) provided in §2.6.1. The main ad-
vantage of this formulation is that it separates the contributions of the seismicity of 
the site in question at the frequency λSL and the fragility of the structure. As the pre-
dominance of the former contribution over the latter is well known and verified, this 
separation introduces the possibility of making an approximate – and thus “economi-
cal”, in computational terms – estimation of the fragility curve pSL(s). Different ap-
proaches to estimating the parameters of the fragility curve exist. The main alterna-
tives available given the current state of the art are described in the next section. 

A.1.1 Alternative approaches to determining the fragility curve 
(Comment on §2.6) 

The average annual frequency of exceedance of the limit state is calculated by means 
of the integral of the total probability (2.12), which requires the fragility curve of the 
structure pSL(s) to be known. 
In the literature, an alternative approach to the one represented by Eq. (2.14) for cal-
culating pSL(s) can also be found. This approach uses a direct definition of the fragili-
ty curve: 

 ( ) ( ) ln ln |
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 (A.8) 

where, by making the usual assumption of lognormal distribution for the limit-state 
variable, the parameters to be determined are the mean lnY S sµ =

 and the standard devia-
tion lnY S sσ =  of the logarithm of the limit-state variable YSL conditioned on the intensi-
ty level S = s. 
Figure A-2 illustrates how the fragility curve is determined starting from the IDA 
curves, using either Eq. (2.14) or Eq. (A.8). The first case (vertical section in the re-
sponse-intensity plane) uses the distribution of the seismic intensity values S which 
lead to the limit state (YSL=1), while the second (horizontal sections in the response-
intensity plane) is based on the distribution of the values of YSL associated with a 
fixed seismic intensity (S = s) (Vamvatsikos & Cornell, 2002). 
The parameters lnY S sµ =

 and lnY S sσ =  of the distributions conditioned on S = s can be 
obtained both from horizontal segments of the IDA curves and from the result of 
analyses conducted by scaling the selected records to increasing S = s levels. In the 
literature, this procedure is called MSA (Multiple Stripe Analysis) and is described, 
for example, in (Jalayer & Cornell, 2009). A conceptual advantage of MSA over IDA 
is that use can be made of a different selection of seismic motions for each stripe, 
which more accurately reflects the characteristics of the events that primarily deter-
mine the hazard at the intensity level considered. However, this approach requires 
specialist skills and tools for selecting the motions, which make it less attractive in 
practical terms (Bradley, 2013) (Lin et al, 2013). 
The fragility curves provided by the two methods are nevertheless very similar to 
each other, as shown for instance in (Jalayer et al, 2007). The important difference re-
gards the computational efficiency of the alternative approaches. A recent discussion 
of the advantages and disadvantages of the two techniques can be found in (Baker, 
2014). 
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Fig. A-2 Evaluation of fragility starting from the IDA curves using Eqs. (2.14) and (A.8). 

A.1.1.1.1 Example with reference to Method C 

This section provides an example of the horizontal-section approach by specialising it 
to the case of Method C. In this case, the method required n distinct probability distri-
butions of the variable YSL to be known for the n values of seismic intensity consid-
ered, i.e. the estimation of the parameters lnY S sµ =

 and lnY S sσ =
. This variant is therefore 

more laborious in terms of processing the data, although it is easy to automate. How-
ever, it does not increase the computational burden as the pushover analyses that need 
to be performed are the same. The total probability integral, in this case, must neces-
sarily be calculated in numerical form. 
 

Calculation of the median of Y conditioned on S 
For each value of seismic intensity S=si (i=1,…,n), the median of YSL is obtained by 
considering the seismic action and the capacity curve used in §2.6.4.2. 
The mean value lnY S sµ =

 of the logarithm of YSL is determined by calculating the dis-
placement demand with the median spectrum (50% fractile) of the motions selected in 
accordance with §2.2.2, scaled to intensity S = si, and relating it to the displacement 
capacity corresponding to the limit state under consideration (§3.4 o §4.4) on the me-
dian capacity curve. 
 
Calculation of uncertainty in seismic demand βS 

For each value of seismic intensity S=si (i=1,…,n), the term βS is calculated – assum-
ing lognormal distribution of Y conditioned on S, as a function of the values YSL,16 and 
YSL,84 of YSL calculated, on the median capacity curve, using the 16th and 84th fractile 
response spectra of the time histories selected in accordance with §2.2.2, scaled to the 
intensity S = si: 
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  (A.9) 

Figure A-3 shows the values to be used to calculate βS by means of Eq. (A.9), com-
pared with those used to calculate dispersion in the case of the method described in 
§2.6.4.2. 
 

  
Fig. A-3 Calculation of βS in the two methods by means of the formulas illustrated in: a) Eq. (2.17); b) Eq. 

(A.9). 
 
Calculation of uncertainty in capacity βC  

For each value of seismic intensity S=si (i=1,…,n), the influence on the variable YSL 
of the continuous random variables (§2.3.2.1) relating to the mechanical and geomet-
ric properties of the structure is estimated by means of a linear response surface: 

 0
1

ln
N

SL k k
k

Y xα α ε
=

= + +∑  (A.10) 

which expresses the logarithm ln(YSL) in the space of the normalised random variables 
xk, defined in §2.6.4.3 by Eq. (2.18). Calculation of βC then proceeds in the same way 
as for the case of vertical sections. 

A.2 The need to verify the limit state for the prevention of 
collapse (Comment on §2.1) 

The design of new buildings entails compliance with a series of requirements which 
ensure a high degree of overall ductility. Therefore, a positive outcome of the severe 
damage limit state (SLS) verification implies also an adequate margin of protection 
with respect to the limit state for the prevention of collapse (SLC).21 This is usually 
not the case for existing structures, which not infrequently exhibit a behaviour such as 
that shown in Fig. A-4, where safety for the SLS does not imply satisfaction of the 
SLC verification, which then needs to be checked explicitly. 

                                                 
21 This is also why many technical standards refer to the severe damage limit state as the life safety lim-
it state, since it is used as a proxy for the collapse one. 

2
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Fig. A-4 Variation in average annual frequency of exceedance of limit states for new and existing build-

ings. 

A.3 Remarks on epistemic uncertainty in the seismic hazard 
curve (Comment on §2.2) 

The seismic hazard curve for the site λS(s) which appears in the integral (2.12) of the 
risk is itself characterised by epistemic uncertainty. The sources of this uncertainty in-
clude, for example, the definition of the boundaries of seismogenic zones, of the low-
er and upper limit values for magnitude in each zone and the different available atten-
uation laws. The treatment of such uncertainties by means of a logic tree is an integral 
part of the probabilistic analysis of seismic hazard. The results are usually reported in 
terms of a median curve λS,50%(s) and fractile curves, for example λS,16%(s) e λS,84%(s). 
Fig. A-5 shows, for illustrative purposes, the logic tree used to determine the seismic 
hazard in Italy in the study conducted for the purpose of drawing up a seismic hazard 
map according to the Prime Ministerial Order 3274/2003 (OPCM), in which the pa-
rameters considered are: 

1. ranges of completeness of the earthquake catalogue 
2. ranges of the maximum magnitude for each source 
3. use of different attenuation relationships. 
4. use of different definitions of magnitude 

The weight of each branch (each branch leads to a hazard map for the whole country) 
appears in the right-hand column. The results have been presented in the form of me-
dian and fractile maps of peak ground acceleration. 

Existing

New



CNR-DT 212/2013 

  87 

 
Fig. A-5 Logic tree used in (INGV, 2004) to determine distribution of peak ground acceleration. 

 
If in the integral (2.12) we introduce the epistemic uncertainty associated with deter-
mination of the seismic hazard curve, represented by means of a random variable εH, 
the expected value of the risk with respect to the epistemic uncertainty on the hazard 
takes the following form: 

 ( ) ( ) ( )
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As the fragility curve PSL(s) is not dependent on the variable εH, it is possible to 
change the order of integration and, under suitable conditions of regularity, the order 
of integration with respect to εH with the order of derivation in respect of s, obtaining: 
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 (A.12) 

in which the internal integral represents the expected value with respect to the distri-
bution of εH of the derivative of the hazard curve, assumed equal to the derivative of 
the mean (i.e., unconditioned with respect to εH) hazard curve. 
Assuming for the variable εH  a lognormal distribution (Cornell et al, 2002) it is pos-
sible to obtain the mean hazard curve  starting from the median hazard curve 
λS,50%(s) by means of the following equation: 

Magnitude Branch
prob.

Branch
name

GMPERate & 
Mmax

Catalogue
completeness

( )sSλ
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  (A.13) 

which corresponds to Eq. (2.2) in §2.2. 
The standard deviation of the logarithm of εH,  is actually not constant 
with variation in intensity S. It can then be estimated in approximation starting from 
the median and from a fractile value of λS around the intensity  which corre-
sponds on the median hazard curve to the risk value λLS calculated with Eq. (2.12). 

A.4 Criteria for choosing seismic motion time histories 
(Comment on §2.2.2) 

In current professional practice, the most advanced procedure used to select seismic 
signals for the purpose of non-linear dynamic analysis of structures consists of four 
stages (represented graphically in Fig. A-6). They involve: 

1. obtaining – starting from a probabilistic analysis of the seismic hazard of the 
site under examination – the design elastic spectrum for the limit state consid-
ered: for example the uniform hazard spectrum22 (UHS); 

2. obtaining, from the disaggregation of seismic hazard, the magnitude-distance 
pairs (also called design earthquakes) which contribute most to the mean fre-
quency of exceedance of a chosen threshold of the spectrum ordinate associat-
ed with the fundamental period of the structure;23 

3. accessing a database of accelerograms to identify groups of records with simi-
lar characteristics (magnitude and distance) to those derived from the dis-
aggregation. This ensures that, as an initial approximation, the accelerograms 
selected are consistent with the source and propagation characteristics that are 
most important for the seismic activity of the site in question; 

4. Finally, selecting from among them the accelerograms which not only come 
from events that are similar to design earthquakes but also have a spectral 
shape that is similar to that of the reference elastic spectrum, for example by 
imposing on the mean spectrum of the records, including those that are 
scaled24 in amplitude, an assigned degree of spectral compatibility in a range 
of periods. 

 

                                                 
22 The UHS is the spectrum whose ordinates all have the same probability of being exceeded during the time inter-
val concerned (e.g. fifty years). These spectra are often assumed by codes as elastic design spectra. However an 
UHS does not represent the spectrum of any specific earthquake, as it accounts for all of the possible earthquakes 
(for example in terms of magnitude and distance) involved in the hazard analysis for the site in question. Alterna-
tives which enable this limitation to be overcome do, however, exist. 
23 Disaggregation often leads to at least one design earthquake being identified for each of the sources involved in 
the hazard analysis for the site in question. Strictly speaking, for each design earthquake identified, it is necessary 
to use an independent sample of accelerograms as, despite the fact that they contribute to the exceedance of the 
same spectrum ordinate, they represent earthquakes which differ in terms of other characteristics (e.g. significant 
duration). Furthermore, design earthquakes change according to the spectrum ordinate and the return period con-
sidered. Finally, it should be noted that in addition to magnitude and distance from source, often disaggregation is 
expressed in terms of epsilon (ε). This parameter measures the degree to which the spectrum for the reference 
earthquake deviates from the one predicted on average for the design earthquake in question. 
24 Scaling linearly in amplitude means simply multiplying the accelerograms by the ratio between the value of the 
design spectrum that it is desired to achieve and the value of the accelerogram before it is scaled. 
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Fig. A-6 Fundamental steps in the process of selection of seismic motion time histories. 

 
The procedure described above requires that the selection process be based on design 
earthquakes and the spectral shape. Magnitude and distance influence the spectral 
shape, and the latter (in particular around the fundamental period) contains a large 
quantity of information regarding the evaluation of the seismic response of multi-
degree-of-freedom non-linear structures, especially in terms of deformation parame-
ters. It might therefore seem superfluous to seek accelerograms with magnitude and 
distance obtained from disaggregation, as opposed to selecting them in order to have a 
spectral shape similar to the reference shape. On the other hand, it should be observed 
that considering also earthquake accelerograms obtained from disaggregation helps to 
ensure that, in selecting time histories, account is also implicitly taken of certain in-
tensity measures of the shaking which are not represented in the elastic spectrum (e.g. 
significant duration and/or potential for inducing cyclic damage), which depend more 
directly on the characteristics of the source and propagation of the seismic waves.25 
The importance of the spectral shape in the selection also explains why it is appropri-
ate to make the spectra of the individual accelerograms as similar as possible to the 
reference spectrum, at least around the fundamental oscillation period of the structure. 
This in fact helps to reduce variability in the seismic response of the structure from 
accelerogram to accelogram, which means being able to evaluate the behaviour of the 
structure conditioned on the scenario, with less uncertainty (or, equivalently, with 
greater confidence), for the same number of analyses. 
 
The procedure discussed, despite representing the best current practice for defining 
shaking time histories, does not take into account of the so-called near-field phenom-
ena, although these are significant for seismic design. Indeed, when a seismic event 
occurs, the zones near the source may be influenced by the effects of the directionali-
ty of the source. Such effects are connected to the prevailing directions of propagation 
of the fracture and the slip of the fault. Because of these, ground motion at a site that 
is in certain specific geometric conditions in proximity to the source, and particularly 
the time history of velocity in an orthogonal direction to the fault, during the initial 
                                                 
25 Representing the cyclic damage potential of an earthquake is important especially for structures characterised by 
degrading constitutive laws, as is often the case with existing structures. Nevertheless, it has been shown that only 
structures with strongly degrading characteristics are actually sensitive to parameters connected with the duration 
of the shaking. 
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phases of the signal may exhibit a low-frequency cycle (impulse) in which is con-
tained most of the energy that the entire signal carries with it.  
What actually happens is schematically represented in Fig. A-7a, for the sake of sim-
plicity with regard to a hypothetical strike-slip fault. It can be stated, roughly but ef-
fectively, that discretising the fracture into point-localised sources of mechanical 
waves, the initial zone of the fracture is the first to radiate towards the site while the 
subsequent parts radiate afterwards but have less distance to cover, this may cause 
constructive interference of the seismic waves and therefore the formation of a low-
frequency, high-energy impulse (Site 2). Far from the source or for sites which the 
fracture moves away from, this effect is lost and the energy carried by the signal is 
distributed more uniformly (Site 1).  
In cases where it occurs, the impulse brings about the amplification only at the fre-
quencies of the signal that approximate the impulse period (defined as Tp), as sche-
matically represented in Fig. A-7b. It will be noted that directionality implies a sys-
tematic variation in the spectral shape compared with earthquakes which do not ex-
hibit these characteristics (so-called ordinary earthquakes), and therefore how it can 
be significant for the selection of time histories based on the spectral shape. General-
ly, in fact, the impulse period Tp falls within the range of periods of structural rele-
vance (0.0 s ÷ 3.0 s) and even the structures that have a fundamental period equal to a 
certain fraction of the impulse period (e.g. 0.4 ÷ 0.5) may be subjected to an anoma-
lous elastic as well as inelastic demand, where the anomaly is intended in relation 
with the demand from ordinary earthquakes. 
The current state of the art in research provides models which make it possible to 
modify (at least theoretically) standard seismic hazard analysis to account for any di-
rectional phenomena, and thus readapt the selection procedure described above to 
take the phenomenon into account.26 However, near-field hazard analyses require 
highly detailed yet often unavailable information about individual faults. Explicit 
modelling of directional effects would therefore seem only feasible for critical infra-
structures, where a more detailed knowledge of the seismogenic characteristics of the 
region is necessary to guarantee a very high level of safety. 

 (a)  (b) 
Fig. A-7 (a) Simplified illustration of the impulsive effects of directionality and example relating to the 

Landers earthquake, California (1992). (b) Mean elastic acceleration spectra in the case of impulsive and 
ordinary signals; all of the spectra are normalized to the same PGA values. Note the systematic difference 

around the pulse period. 

                                                 
26 This requires the probability, based on site-source geometry. of observing impulsive signals, to be evaluated. It 
also needs empirical relationships between event magnitude and impulse period. Apart from these modifications, 
near-field hazard analysis proceeds in the same way as standard analysis. Its disaggregation, in fact, enables Tp to 
be added to the parameters which identify design earthquakes. Thus the procedure schematically illustrated in Fig. 
A-6, at least in principle, may be adapted to take impulsive signals into account. 

Site 2Site 1

Rupture propagation
Mean
Mean 2<Tp<3
Mean 1<Tp<2
Mean 0<Tp<1
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A.5 Determination of the overall state of a structure from the 
state of its component parts (Comment on §2.5.3 and 
§4.6.2) 

As observed in the Introduction (§1), the step from the qualitative description of the 
various limit states to an explicit definition of them with reference to the state of all of 
their structural components often leaves room for margins of subjective interpretation 
which may significantly affect the outcome of the evaluation. Moreover, the situation 
varies according to the limit state in question (§2.5). With regard to the collapse limit 
state, as already stated in §2.5.3, two formulations are possible. The second, which is 
adopted in the case of modelling with non-degrading constitutive laws, is based on an 
expression which aggregates the local D/C ratios of the structural elements (Jalayer et 
al. 2007): 

 
1,

,

max min
iS

j
SLC j Ii N

j SLC

D
Y

C∈=
=  (2.8) 

where Ns is the number of sub-systems and Ii is the set of components in the ith  sub-
system. The formulation of Y shown is based on the breakdown of the structure into a 
series of sub-systems made up of components arranged in parallel. Failure in a paral-
lel sub-system occurs when all of its components exceed the corresponding capacity 
and, given the connection in series of the sub-systems, failure of a single one of them 
is sufficient to bring about the failure of the whole system. 
The definition can be justified by observing that choosing the minimum D/C ratio in a 
given sub-system implies that the remaining components are in “worse” conditions; if 
in any case this minimum is still less than one, the sub-system does not fail. The sys-
tem, in contrast, fails when the maximum of the minima reaches the value of one. 
Fig. A-8 illustrates how the value of Y is calculated with reference to a simple two-
storey, two-bay frame. In the example, for illustrative purposes, structural collapse 
may occur through a ductile mechanism of generalised loss of stiffness on one storey 
(the “weak storey”: in the example two mechanisms of this type are possible), corre-
sponding to generally high, uncontrollable maximum and residual deformations, or as 
a result of fragile shear failure of members. Ultimately there are eight mechanisms in 
series: the soft storey at the first level, soft storey at the second level, and six shear 
failure mechanisms. The soft storeys in turn constitute sub-systems in parallel which 
require the plastic deformation of all of the members of the storey. The figure illus-
trates the D/C values for each elementary component and the corresponding aggrega-
tion into Eq. (2.8). 
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Fig. A-8 Representation of structural failure as a combination of alternative sub-systems (mechanisms). 
 

It should also be noted that the above mentioned formulation for structures of realistic 
dimensions becomes particularly laborious as, strictly speaking, it requires all possi-
ble failure mechanisms to be considered (sub-systems in parallel). Finally, it should 
also be added that that the previous considerations refer to problems that are static in 
nature. Under highly non-linear behaviour the critical mechanisms cannot be deter-
mined a priori, as they depend of the response of the structure, which is in turn 
strongly influenced by the frequency characteristics of each individual motion. 
In practice, in the case of the collapse limit state it is frequently assumed for the sake 
of simplification that the critical mechanism consists in the collapse of the weakest 
element, i.e.: 

 
,

max j
SLC

j SLC

D
Y

C
=  (A.14) 

which means having the collapse coinciding with the beginning as opposed to the end 
of the downward-sloping section of the curve (c) in Fig. 2-5. The degree of approxi-
mation associated with this choice is variable and highly dependent on the importance 
of the critical element to the global equilibrium. 
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A.6 Quantification of limit states in irregular masonry build-
ings for methods B and C (Comment on §3.2.1.5 and 
§3.3.1) 

Simulation of the seismic behaviour of irregular buildings using methods B and C re-
quires the definition of several equivalent non-linear oscillators and the correct com-
bination of their responses. 
In cases where for a given mode significant torsional effects are present (i.e. the ratio 
between the minimum and maximum participation factors is greater than 10%), it is 
necessary to combine the effects produced by the two components of the seismic mo-
tion. 
In addition, when the pushover analysis is conducted with a distribution of forces de-
rived from a deformation associated with a participating mass less than 75% of the to-
tal mass, it is necessary to consider the contribution of the higher modes, after having 
performed a multi-mode non-linear static analysis. 

A.6.1  Quantification of limit states considering the two excitation components  
In the case of irregular-in-plan buildings, the modal forms exhibit a coupling of dis-
placements in the two directions as a result of the torsional effects.  
Supposing, by way of example, that the ith mode is considered and for this mode the 
main direction (i.e. the one with the greatest participating mass) is X, the curve ob-
tained from non-linear static analysis refers to the base shear VX according to this di-
rection. The seismic response must however consider the contribution of the two exci-
tation components. 
A measure of the importance of these effects is provided by the participation factors 
ΓiX and ΓiY of the ith mode for to the two directions: 

 

 (A.15)  

where ji is the modal form (the superscript T denotes the vector transposition opera-
tion), M is the mass matrix, Mi is the modal mass of mode i, tX and tY are the drag 
vectors in the X and Y directions (the components of which are equal to 1 if the de-
gree of freedom is a translation in the X or Y direction, and zero in other cases). 
The procedure described below must be applied when ΓiY / ΓiX >0.1. 
The capacity curve which enables the contribution of seismic motion to the displace-
ment demand at the base directed in the X direction is obtained by converting the 
curve obtained from pushover analysis: 

  (A.16) 
where dX is the single-degree-of-freedom control displacement in the X direction. 
The capacity curve which enables the contribution of seismic motion to the displace-
ment demand at the base directed in the Y direction is obtained by converting the 
same curve, but by means of the corresponding participation factor ΓiY: 
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  (A.17) 

As ΓiY < ΓiX, the curve representing the response to actions in the Y direction has 
larger acceleration capacities and therefore the corresponding contribution to the 
overall response is smaller than the contribution due to the excitation in X direction. 
The definition of the limit state variables requires the evaluation of the same response 
parameters used in §3.3.1, §3.3.2 and §3.3.3, which are all a function of the displace-
ment dX that is: SSLD,F, SSLD,M, SSLC,M, G, dSLD,G, dSLC,G, θp,l, (p = 1,…,Np – number 
of piers; l = 1,…,Nl – number of levels). 
By using the relevant, appropriately reduced (overdamped or anelastic) response spec-
trum for the two directions, it is possible to express the functional relationships be-
tween the seismic intensity and the displacement demands due to the two excitation 
components: 

  (A.18) 

where Sa(T1), which is the measure of the intensity of the event consisting of the sim-
ultaneous application of the two components of ground motion, is defined as the ge-
ometric mean of spectral accelerations at T1 in the two directions, X and Y: 

  

(A.19) 

and the relationships between Sa(T1) and the intensities in the two directions Sa,X(T1) 
and Sa,Y(T1) are implicit in the definition of the functions fX and fY. 
The partial limit state variables must be defined, for each intensity value, by combin-
ing the effects produced by the two components of motion. 
Check at local scale is performed by combining the cumulative damage indicators, us-
ing the SRSS rule. To do so, a single cumulative function is defined as a function of 
the displacement on the capacity curve corresponding to the response due to the X 
component, while taking into account the fact that the displacement demand due to 
the Y component corresponds to a point dX|Y on this capacity curve which precedes 
dX, which is the displacement demand only due to the X component. dX|Y is computed 
as follows: 

  (A.20) 
It is thus possible to define, for example, for the SLS in the spandrels, the cumulative 
function which takes account of the complete seismic excitation response, starting 
from the response derived only for the X direction: 

   (A.21) 

With analogous expressions the cumulative damage functions for piers at the SLS and 
SLC are obtained, from which the limit state variables at the structural element level 
are given as: 
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It is therefore possible to define dSLD,S and dSLC,S, on the capacity curve resulting in 
the X direction, as the points at which  and  reach the value equal to 1. 
Check at the  macro-element (wall) scale is performed by defining the variable: 

 

  (A.24) 

If the effects are combined using the SRSS rule, the following is obtained: 

 

 (A.25) 

The displacement dSLD,M on the capacity curve resulting in the X direction corre-
sponds to the condition ; similarly, the displacement dSLC,M is defined. 
For check at the global scale, for each intensity value the relationship between the 
displacement demand and the corresponding limit value is evaluated. The values for 
the two directions are combined using the the SRSS rule, thus obtaining: 

 

 (A.26) 

where  is the displacement on the capacity curve associated to excitation in the 
X direction defined by means of check on the SDL at the global scale; it will be ob-
served that the second addend under the square root increases the limit state variable 
as a result of the concomitant excitation in the Y direction. 
The displacement dSLD,G is the value of the capacity curve in the X direction for which 

 reaches the value equal to 1. 
The values of dSLD and dSLC are obtained from Eqs. (3.31) and (3.37), as the minimum 
among the values defined above deriving from the checks performed at the various 
scales of the multi-criteria approach; these are always lower than or equal to those ob-
tained by neglecting the contribution of the seismic excitation in an orthogonal direc-
tion with respect to the direction of verification. 
Finally, for the SLS, the overall repair cost variable is obtained starting from the func-
tion CG(dX) determined from the response in the direction of verification: 

  (A.27) 

The displacement dSLS on the capacity curve for the response in X direction is the one 
corresponding to the condition , under the further condition that 
dSLS≤ dSLC. 
After establishing in a suitable position the points on the capacity curve correspond-
ing to the points at which the three limit states are reached, the verification is con-
ducted considering the displacement demand due exclusively to the seismic input 
component in the direction of verification. 
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A.6.2  Quantification of limit-states in the case of multi-modal analysis  
It is necessary to consider the contribution of higher modes when a percentage of 75% 
of the total mass is not reached, either by the first mode (in case of sufficiently stiff 
diaphragms) or by a SRSS combination of the modes for which displacement in the 
direction of verification do not change sign along the height (such as the case of high-
ly flexible diaphragms, a case in which each mode corresponds to one or more walls). 
In these cases, in addition to the principal mode, identified by the index 1 and defined 
as above, for performing a multi-modal analysis it is necessary to consider a number 
Nmm-1 of higher modes, until over 75% of participating mass is reached. 
In the discussion that follows, for the sake of simplicity, the index denoting the direc-
tion of verification is omitted, as the combination takes into consideration modes 
which act in the same direction. 
Having performed the pushover analysis for the generic mode i and once calculated 
the capacity curve, it is possible to evaluate the response parameters for the ith mode, 
required for the application of the multi-scale criterion, as a function of dI that is: the 
cumulative damage in piers and spandrels ( ); the overall repair 

cost function ( ); the interstorey drift in the various walls and at the different levels 
(  - p = 1,...,Np; l = 1,...,Nl). In addition, displacements for which SLS and SLC 

conditions at the global scale occur ( ) are evaluated. 
Having established the appropriately reduced (overdamped or anelastic) response 
spectrum, the function expressing the displacement demand of the ith equivalent oscil-
lator is derived for each mode as a function of the seismic intensity: 

  (A.28) 

The displacement demand for higher modes can be expressed as a function of the de-
mand on the principal mode: 

  (A.29) 

The partial limit state variables must be defined, for each intensity value, by combin-
ing the effects produced by the various modes. 
Check at the local scale is performed by combining the various cumulative damage 
functions, all expressed as a function of d1, using the SUM rule, as it may be conser-
vatively assumed that the first elements to be damaged on each mode are different. 
We may thus define, for example for the SLS in the spandrels, the cumulative func-
tion which takes account of the multi-modal response: 

   (A.30) 

With similar expressions the cumulative functions for the masonry piers at the SLS 
and SLC are derived, and from these the limit state variables at the structural element 
scale are obtained: 

 

( ), ,
1 max ;mm mm mm

SLD SLD F SLD M
SLD

Y
t

= S S   (A.31) 
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dSLD,S and dSLC,S  can then be defined, on the capacity curve in the X direction, as the 
points at which  and  reach the value equal to 1. 
Check at macroelement scale (wall) is performed by combining the effects for each 
wall and storey of the building using the SRSS rule: 

    (A.33) 
and defining the variable: 

 

  (A.34) 

The displacement dSLD,M on the capacity curve for the principal mode corresponds to 
the condition ; similarly the displacement dSLC,M is defined. 
For check at global scale, for each intensity value the relationships between the dis-
placement demand and the limit value on each mode  are evaluated; these are 
combined using the SRSS rule, thus obtaining: 

 

 (A.35) 

The displacement dSLD,G is the value on the capacity curve of the principal mode for 
which  reaches the value equal to 1.  

A similar formula is adopted to determine the function  and the displace-
ment dSLC,G. 
The values of dSLD and dSLC are obtained from Eqs. (3.31) and (3.37), as the minimum 
among the values defined above derived from checks carried out at the various scales 
of the multi-scale approach; these are always lower than or equal to those obtained 
when only the principal mode is considered. 
Finally, for the SLS the overall repair cost variable is obtained starting from the func-
tions  evaluated on the modes considered in the multi-mode analysis: 

  (A.36) 

The displacement dSLS on the capacity curve representative of the response of the 
principal mode is the one corresponding to the condition mm

G SLSC t= , under the further 
condition that dSLS≤ dSLC. 
After having established on the capacity curve, in a suitably forward position, the 
points of the principal mode corresponding to the points at which the three limit states 
are reached, the verification is conducted considering the displacement demand d1 
calculated on this capacity curve. 
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A.7 Viscous damping models for non-linear dynamic anal-
yses (Comment on §4.3.4) 

In linear and non-linear dynamic analyses, the most widespread practice is to use a 
constant level of viscous damping – in addition to the hysteretic damping modelled in 
accordance with the cyclic constitutive laws of structural elements – e.g. of 5% for re-
inforced concrete structures. For multi-degrees-of-freedom structures the most com-
monly used damping model is Rayleigh’s model, which provides a damping matrix 
proportional to those of mass and (initial) stiffness: C = αM+βKi. In this model the 
viscous damping ratio is not constant, but is frequency dependent. The proportionality 
coefficients are calculated in such a way as to obtain a critical damping ratio of ap-
proximately 5% within a given range of frequencies connected with the vibration 
modes of the structure. 
Theoretical considerations and the limited experimental data available suggest that 
such a practice may, at high levels of ductility, lead to an overestimation of viscous 
forces, and therefore an underestimation of the response of the structure. 
An alternative proposal is to utilise a viscous damping matrix which is proportional 
exclusively to the tangent stiffness matrix: C = βKt i.e. the istantaneous value of the 
stiffness matrix at each steps of the response analysis. The issue is still debated, and 
pending a widely agreed solution, the use of critical damping ratios lower than 5% to 
model the energy dissipation at low amplitude vibration may be justified. 
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B Example of application to a masonry 
building 

B.1 Premise 

The procedure for the evaluation of seismic safety on masonry buildings of Chapters 
2 and 3 has been applied to an existing residential building, damaged during the 
earthquake of May 29, 2012 in Emilia. The availability of the damage survey has al-
lowed us to validate the equivalent frame model used in the evaluation. 
Despite this, for the aims of the exemplification of the procedure, the assessment has 
been carried out by considering the same seismic hazard adopted for the application 
on the reinforced concrete structure (Appendix C, §C.4) and therefore not consistent 
with that of the Emilia region. 
A sensitivity analysis was performed in order to plan the investigations of structural 
details and material properties and to limit the number of uncertain variables to be 
taken into account in the risk analysis. 
The risk analysis referred to two of the three methods proposed in this docu-
ment. Method A (non-linear dynamic analysis on the MDOF model of the building) is 
considered as the best estimate. The method C is what is proposed for a more frequent 
and engineering practice oriented use, since it is based on the use only of non-linear 
static analyses, and so does not require that the model is able to describe the cyclic 
behavior of the elements and presents a significantly reduced computational effort. 
Given the characteristics of the building, which has good wall-to-wall connections 
and rigid diaphragms, the local mechanisms were not taken into account; the damage 
survey after the earthquake that hit the building confirmed the reliability of this hy-
pothesis. 

B.2 Description of the building 

The building is a three-storey residential unreinforced masonry structure made of sol-
id bricks and lime mortar (Figure B-1) and built in the first half of the last centu-
ry. The diaphragms are composed of steel beams and hollow clay tiles (with concrete 
screed), while the timber roof of pitched trusses and struts. The thickness of the load-
bearing walls, including the perimeter ones, is only 24 cm, as is typical in those areas 
of the Emilia region; in the perimeter walls, the lintels of openings, supporting span-
drel elements, are made through a brick masonry flat arch. No chains or reinforced 
concrete curbs have been detected. The building is isolated and the planimetric con-
figuration is fairly simple and regular; indeed, in the main façade presents a modest 
recess and some openings are not vertically aligned. The state of maintenance is quite 
poor. 
As already mentioned, on the occasion of the Emilia earthquake of 29 May 2012 the 
building substantially showed a global seismic response, with a severe in-plane dam-
age of walls but without the activation of local mechanisms. The global failure mode 
mainly activated is that associated to a spread damage on spandrels at various levels  
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higher than that of piers (of both internal and external walls), which present cracks 
mainly on the ground floor. The damage level occurred on spandrels (Figure B-2) was 
very severe (in some cases corresponding to the incipient collapse of the flat arch), 
with the activation of both the flexural mechanism (with cracks concentrated in the 
end sections) and the shear mechanism (with a stair-stepped path, that is with cracks 
through the mortar joints). The activation of the shear mode, although in the absence 
of tensile-resistant elements coupled to the spandrel, is made possible by the horizon-
tal tensile strength of masonry, guaranteed by the interlocking and friction on the hor-
izontal mortar joints. In the piers of internal walls a diagonal shear cracking mainly 
occurred (Figure B-3a), while the response of piers of external walls was dominated 
by flexural cracks (Figure B-3b) or a mixed failure mode. 
 

  
(a)                                                       (b) 

Fig. B-1 View of South and West façades (a) and the East façade (b). 

 

  
Fig. B -2 Damage in spandrels, with activation of both flexural and shear damage modes. 
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(a)                                                                         (b) 

Fig. B -3 Cracks in piers: (a) shear failure in an inner wall; (b) flexural failure in a pier, located at the sec-
ond floor of a perimeter wall, characterized by a low axial load. 

B.3 Assessment procedure 

The example of application is done with reference to the assessment methods A and C 
described in paragraph 2.6.2 and 2.6.4, respectively. 

B.4 Seismic action 

As indicated in §2.2.1, the seismic action is defined by a hazard curve and a set of 
records of natural motions (or artificial time histories) compatible with the local char-
acteristics and the mechanisms generating the dominant events of the site. 
Table C-1 shows the values of the three parameters (ag, F0 and TC*) which define the 
code spectral shape adapted to the iso-likely spectra at 16%, 50% and 84%, for the 
nine return periods considered by the INGV Hazard map. 
The seismic intensity measure is the spectral acceleration at the fundamental period of 
the structure (Sa (T1)). This period is assumed to be equal to the value provided by the 
simplified formula proposed in NTC2008 (T1=0.05 H3/4=0.26 s) which, as will be 
seen below, is very close to the values obtained from the modal analysis with the 
mean values of the parameters (§B5.3). As regards the site effects, similarly to the 
application on the reinforced concrete building discussed in Appendix C (§C.8.1), 
they were considered in a simplified manner through a deterministic factor, equal to 
1.25, independent of the period of vibration and the intensity. 
Table B-1 shows the parameters of the hazard curve (Figure B-4), as a function of 
Sa (T1) (16%, 50% and 84% percentile and the mean value) and the parame-
ter βH related to the epistemic uncertainty on the hazard. 
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Table B-1 Parameters that describe the hazard curve and the relative uncertainty. 
Tr λ Sa(T1)16% Sa(T1)50% Sa(T1)84% βH Sa(T1)m 

30 3.33E-02 0.102 0.131 0.150 0.192 0.133 
50 2.00E-02 0.144 0.173 0.199 0.160 0.175 
72 1.39E-02 0.174 0.205 0.251 0.185 0.208 

101 9.90E-03 0.211 0.245 0.303 0.183 0.249 
140 7.14E-03 0.249 0.286 0.358 0.181 0.291 
201 4.98E-03 0.291 0.337 0.424 0.188 0.343 
475 2.11E-03 0.431 0.528 0.660 0.214 0.540 
975 1.03e-03 0.562 0.713 0.891 0.231 0.732 
2475 4.04E-04 0.780 1.063 1.371 0.282 1.106 

 

The mean curve, defined in nine points, is then fitted by a quadratic function in the 
logarithmic space which is given by the expression (2.13). The parameters that mini-
mize the error are in this case the following: 

k0 = 5.14 x 10-4   k1 = 2.257  k2 = 0.0946 (B.1) 

 
Fig. B-2 Mean hazard curve (continuous line) and fractiles 84% and 16% (dotted line), in terms of peak 
ground acceleration (blue) and spectral ordinate Sa(T1 = 0.26 s) (red ) for the site under examination. 

 
Records of seismic motion used in the analysis were selected from disaggregated data 
(relative to the mean hazard curve in terms of peak ground acceleration), listed in 
§C.4.2 . Table B-2 provides details of the 30 selected events, each consisting of the 
two components NS and EW; compared to Table C-4, there are herein provided the 
values of the spectral acceleration of the two components corresponding to the period 
used as a representative of that fundamental of the masonry building examined 
(T1=0.26 s). Figures C-7, C-8 and C-9 show some time histories and the correspond-
ing acceleration response spectra. 
For the purposes of verification, as intensity measure of the event, which consists in 
the simultaneous application of the two components of the ground motion, the geo-
metric mean of the spectral accelerations in both directions NS and EW (Sa,NS(T1) and 
Sa,EW(T1)) is assumed as reference computed as: 
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    (B.2) 

 
 
 

Table B-2. Features of the selected motions (R in km, peak ground accelerations in m / s 2) and value of 
the intensity measure Sa (T1) to be used for scaling. 

# DB event M station R agX SaX(T1) agY SaY(T1) Sa(T1) 
1 AND Friuli (as) 6.0 ST28 14.0 1.386 3.443 2.322 5.059 4.174 
2 AND Montenegro (as) 6.2 ST75 17.0 1.731 3.510 2.721 3.126 3.312 
3 AND Preveza 5.4 ST123 28.0 1.404 5.704 1.330 3.430 4.423 
4 AND Umbria Marche 

(as) 5.6 ST86 20.0 0.963 1.972 1.316 2.155 2.061 

5 AND Umbria Marche 
(as) 5.6 ST265 21.0 1.073 2.105 0.802 1.913 2.007 

6 AND Izmit (as) 5.8 ST575 15.0 0.716 2.110 3.118 10.115 4.620 
7 AND Ano Liosia 6.0 ST1100 16.0 2.611 3.935 3.018 8.598 5.817 
8 AND Ano Liosia 6.0 ST1101 17.0 1.173 3.043 1.070 2.689 2.861 
9 AND Ano Liosia 6.0 ST1257 18.0 1.091 3.051 0.843 2.478 2.750 
10 AND Ano Liosia 6.0 ST1258 14.0 2.392 8.042 2.164 4.862 6.253 
11 AND South Iceland (as) 6.4 ST2482 21.0 1.088 3.683 1622 4.285 3.973 
12 AND South Iceland (as) 6.4 ST2557 15.0 1.251 3.305 1.140 2.541 2.898 
13 AND South Iceland (as) 6.4 ST2497 20.0 0.505 1.208 1.033 1.995 1.552 
14 AND South Iceland (as) 6.4 ST2556 20.0 1.047 1.791 0849 1.899 1.844 

15 S Near Miyakejima 
Island 6.4 TKY011 21.0 1.276 3.320 1.972 3.891 3.594 

16 S NW Kagoshima 
Pref. 6.1 KGS002 12.0 5.431 4.337 7.999 3.726 4.020 

17 S NW Kagoshima 
Prefecture 6.0 KGS002 16.0 4.529 2.714 7.818 4.993 3.681 

18 S South Iceland 6.4 102 24.0 1.275 1.325 0618 1.592 1.452 
19 S South Iceland 6.4 105 21.0 1.108 3.720 1.662 4.323 4.010 
20 S South Iceland 6.4 305 20.0 0.539 1.200 1.057 1.994 1.547 
21 S South Iceland 6.4 306 20.0 1.067 1.821 0892 1.924 1.872 
22 S Umbria-Marche 

(3rd shock) 5.6 NRC 20.0 1.314 2.149 0939 1.954 2.049 

23 S L'Aquila (as) 5.6 GSA 16.8 2.811 6.558 2.485 3.491 4.785 
24 S Parkfield 6.0 36177 19.4 3.430 9.661 2.248 5.183 7.076 
25 S Parkfield 6.0 36445 15.2 1.437 3.499 2.225 4.679 4.046 

26 S East Fukushima 
Pref 5.9 FKS011 24.0 1.798 2.212 1.564 2.569 2.384 

27 S Mid Niigata Pref 6.2 NIG021 21.0 2.499 4.876 2.799 8.427 6.410 
28 S Mt Fuji Region 5.9 SZO009 22.0 1.442 2.544 1.225 2.563 2.553 
29 S Mt Fuji Region 5.9 YMN006 20.0 2.373 3.337 1.629 2.771 3.041 
30 The Friuli (4th Shock) 5.9 SRC0 16.4 1.288 3.148 2.444 5.488 4.156 

 

Figure B-5a shows the response spectra of the 30 NS components, applied in this case 
in the X direction of verification (Figure B-7), normalized to the unit value of the in-
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tensity measure Sa,NS(T1). Figure B-5b shows the response spectra of the 30 EW com-
ponents, applied in the Y direction, normalized to the value Sa,NS(T1)=1 (that is, main-
taining its original ratio between the intensities of the two orthogonal components of 
each motion) . 
Figure B-6 shows the response spectra at fractiles 16%, 50% and 84%, of the individ-
ual records listed in Table C-4, necessary for the application of the method C (§2.6.4). 

  
Fig. B -5 Response spectra normalized to the value iSa(T1)=1:  a) in the X direction; b) in the Y direc-

tion. 
 

 

 

Fig. B -6 Median spectrum and those corresponding to the fractiles 16% and 84%: a) in the X direction; b) 
in the Y direction  
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B.5 Knowledge of the structure 

B.5.1 Modeling of the building and analysis criteria  

The building was modeled according to the equivalent frame approach. The structure 
is identified by the walls (elements bearing the vertical and horizontal actions) and the 
diaphragms (elements able to redistribute the horizontal seismic actions among the 
walls). Each wall is idealized according to a frame in which the non-linearity is con-
centrated in the structural elements (piers and spandrels) connected through rigid por-
tions (nodes). The diaphragms are modeled as elastic orthotropic membrane finite 
(plane stress) elements. The flexural behavior of the latter ones, in respect to the ver-
tical loads, and the out-of-plane response of the walls are not considered in this model 
and should be evaluated by appropriate local verifications. 
The choice of such an approach seems particularly appropriate for the case under ex-
amination, characterized by a rather regular distribution of the openings, which limits 
the arbitrariness of the idealization of the walls into the equivalent frame; moreover, 
since the building is characterized by a masonry made of solid bricks and lime mortar, 
the reliability of the constitutive law adopted for piers and spandrels is supported by 
the evidences of many cyclic tests carried out in laboratory and available in literature. 
Figure B-7 shows the plan layout of the building at the ground floor, where you can 
identify the load-bearing walls (in total number of 5 and 6 in the X and Y directions, 
respectively). 

 
Fig. B-7 Ground floor plan 

Figure B-8 shows the three-dimensional structural model and a possible equivalent 
frame mesh of the external façades: the piers, spandrels and rigid nodes are marked 
respectively in red, green and cyan. In particular, one observes in the wall 1 (east fa-
çade) the offset of the openings in the central part (in correspondence to the stairwell 
of the structure) compared to the adjacent ones: the identification of the spandrels por-
tions, misaligned with respect to the adjacent rows, reflects the evidence of damage 
shown in Fig. B-1b. Additional considerations about other possible alternatives mesh 
for the equivalent frame are discussed at §B.5.2. 
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Wall 1 (East façade) Wall 2 (South façade) 

 

 

Wall 3 (North façade) Walls 4 (West façade) 

Fig. B -8 Three-dimensional structural model, numbering plan of the walls and a possible equivalent frame 
idealization of the main façades (the dotted lines graphically identify the position of the center of gravity 

of the structural element with respect to the end nodes which it is attached to) 

The nonlinear static analysis is performed by adopting two load patterns: one propor-
tional to the first modal shape in the two directions X and Y; one proportional to the 
masses. The latter is thought to be the most consistent with the actual response, in par-
ticular close to the attainment of the SLC, as resulting from the simulations performed 
for validating the model (§B7.1). For the computation of the displacement demand 
through the nonlinear static analysis there is used the method of the overdamped spec-
tra, which has the advantage of not requiring the transformation of the capacity curve 
into an equivalent bilinear system and which is more reliable also for elevated ductili-
ty demand. 
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B.5.2 Aleatory and epistemic uncertainties 

A preliminary model has been defined starting from the data available even in the ab-
sence of specific diagnostic investigations (geometry, construction details and materi-
als). 
For the floors an estimate of the permanent and accidental load leads to assume a val-
ue between 2.0 and 3.0 kN/m2. For the timber roof there was assumed a value of the 
permanent load  between 1.2 and 1.8 kN/m2.  
Table B-3 shows the ranges of the values assumed for the stiffness parameters of dia-
phragms which have been calibrated by assuming: an effective connection of the dia-
phragms to the perimeter walls and, in the case of the roof, a good connection of the 
timber elements with the top of the masonry walls. In particular, the Young moduli,  
E1,eq  and E2,eq ,  represent the normal stiffness of the membrane in the direction of the 
main warping of the diaphragms and in the orthogonal direction, respectively; in par-
ticular, they affect the in-plane coupling among piers, hence influencing the axial 
force computed in the spandrels.  The shear modulus Geq instead influences the redis-
tribution of the seismic actions among the walls, both in the elastic and non-linear 
phases. The assumed variability of the moduli that define the diaphragms stiffness is 
very large because these parameters would represent in equivalent manner a set of 
constructive, geometric and materials aspects. 

Table B-3 Stiffness parameters assumed for orthotropic membrane elements that simulate the dia-
phragms  

Type t [cm] E1,eq [MPa] E2,eq [MPa] Geq [MPa] 
Plan 4 5000-50000 5000-50000 1250-12500 
Coverage 4 2000-20000 1000-10000 100-1000 

 

For masonry panels there was assumed a non-linear beam model described by a 
piecewise-linear behaviour and based on a phenomenological approach (Deliverable 
D26 2012). It allows one to describe: i) the non-linear monotonic response of the pan-
el associated with increasing levels of damage (denoted by i ranging from 1 to 5, up to 
collapse), assigning progressive residual strength (βEi) in correspondence with prede-
termined limit thresholds (θEi) of the drift θ (computed by the expression 3.11 or 
3.12); ii) the hysteretic cyclic response. On the basis of an appropriate assignment of 
parameters (both in a monotonic and cyclic context), such model is able to describe 
the distinctive features of the various failure modes (rocking and crushing, shear and 
mixed as well), which characterize the two different structural elements (piers and 
spandrels). The shear strength of the panel (Vu) is then calculated as the minimum 
value among those associated with the different failure modes, as a function of the 
normal stress acting in the element; mixed failure modes are activated at assigned in-
tervals of normal stress. 
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Fig. B -9 Piecewise-linear behavior assumed for masonry panels 

With reference to the criteria stated in §3.2.1, to interpret the diagonal shear cracking, 
there has been adopted the criterion proposed by Mann and Müller (3.6), while in the 
case of spandrels there was used the expression (3.11). 
As regards the stiffness and strength mechanical parameters, preliminary analyses 
were performed by adopting the ranges proposed for the masonry of solid bricks and 
mortar of lime in Table C8A.2.1 of the Commentary to NTC 2008 (Circular No 617, 
2 February 2009), shifted slightly to the low values to account for the poor state of 
maintenance and quality of the walls that was not particularly good in the Emilian ar-
ea. Table B-4 shows the intervals assumed. 

Table B-4. Mechanical parameters adopted for the masonry (M = piers; F = spandrels) 
 Mechanical parameters 

E 
[MPa] 

G 
[MPa] 

fm 
[MPa]   

[MPa] 

 

M/F 542-808 181-269 2.1-3.5 0.08-0.12 0.30-0.40 
Drift limit and residual strength 

θE3 θE4 θE5 βE3 βE4 
M flex 0.0046-0.0074 0.0078-0.0122 0.012-0.018 - 0.80-0.90 

shear 0.0023-0.0037 0.0039-0.0061 0.0056-0.0084 0.60-0.80 0.25-0.55 
F flex 

shear 0.0015-0.0025 0.0045-0.0075 0.015-0.025 0.30-0.70 0.30-0.70 

 
As regards the limit values of drift and the residual strength, as well as the parameters 
describing the cyclic response, there were assumed the intervals proposed in Tables 
3.2 and 3.3. Figure B-10 shows the simulation of experimental tests available: on two 
masonry piers characterized by a prevailing flexural (combined axial force and bend-
ing) and diagonal cracking shear response, respectively; and on a spandrel with a lin-
tel of the same type as those of the building under examination. 

0vmf µ̂
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Fig. B -10 Numerical simulation of some panels tested in laboratory, aimed at calibrating the hysteretic 

parameters of the piecewise-linear model adopted (in the case of piers reference was made to the experi-
mental results of Anthoine et al. 1995, in the case of spandrels to those of Beyer and Dazio, 2012) 

As regards the model uncertainties two aspects have been considered: a) the definition 
of the geometry of the equivalent frame; b) the flange effect in correspondence of the 
wall-to-wall connection. In particular, this latter effect can be simulated by linking the 
piers belonging to two walls to the same node (for simulating the case of full connec-
tion) or maintaining distinct nodes in the two walls, then connected by a fictitious 
beam of a stiffness equivalent to that offered by the interlocking. 
Both aspects lead to a different equivalent frame mesh, for which these uncertainties 
cannot be described by a random variable but must be treated through the logical tree 
approach. 
Regarding the assumptions adopted to define the geometry of the piers, two possible 
alternatives mesh were considered: Mesh-1) in which the height of the external piers 
has been taken as the average of that of the adjacent opening and the height of the in-
cident nodes; Mesh-2) in which the height of the external piers is equal to that of the 
adjacent openings. 
In the case of flange effect, the conditions of perfect coupling (Amm-1) and that rep-
resentative of an intermediate condition (Amm-2) were considered; further considera-
tion on this aspect are described in §B.5.3. 
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(a) (b) 

  

(c) (d) 
Fig. B -11. Equivalent frame  model (piers in red, spandrels in green, rigid nodes in grey): (a) plan view of 

masonry walls; (b) internal wall 7 in which the fictitious beams adopted for simulating the flange effect are 
indicated; (c/d) exemplification of the two assumptions adopted for the geometry of piers, by way of ex-

ample in the case of wall 2: (c) Mesh-1 and (d) Mesh-2. 

B.5.3 Sensitivity analysis 

The sensitivity of the response to several uncertain parameters was investigated 
through a series of non-linear static analyses performed by adopting for all parameters 
the central value of the range except one, to which was attributed either the maximum 
or minimum value of the set interval, respectively. 
Altogether the following parameters or groups of parameters are considered: 

1. Material: this is a group comprising the elastic modulus E, the shear modulus 
G, the shear strength of the masonry , the equivalent friction coefficient    

, the compressive strength fm. 
2. Floor diaphragm stiffness: a group comprising the equivalent shear modulus 

Gfloor, the elastic modulus in the main warping direction E1floor and the elastic 
modulus in the direction perpendicular to warping E2floor (all for a slab of con-
ventional thickness t = 4 cm). 

3. Roof diaphragm stiffness: a group comprising the equivalent shear modulus 
Groof,, the elastic modulus in the main direction of warping E1roof and the elastic 
modulus in the direction perpendicular to warping E2roof (all for a slab of con-
ventional thickness t = 4 cm). 

4. Floor masses: permanent and accidental load (factored) pfloor. 

0vmf
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5. Roof masses: accidental and permanent load (factored) proof. 
6. Constitutive law of piers : this is a group comprising the drift thresholds corre-

sponding to the attainment of progressing levels of damage (θM3, θM4, θM5) 
and the corresponding percentages of residual strength (βM3, βM4). Such values 
are also differentiated for the two main failure modes considered, that is crush-
ing and diagonal shear cracking. 

7. Constitutive law of spandrels: this is a group comprising the drift thresholds 
corresponding to the attainment of progressing levelsof damage (θF3, θF4, θF5) 
and the corresponding percentage of residual strength (βF3, βF4). 

8. Energy dissipation (method A) / damping (method C): in the case of method 
A, the dissipation of energy derives directly from the cyclic hysteretic behav-
ior of piers and spandrels (in addition to the viscous component), hence from 
the set of parameters that regulate it; if one uses instead the method C, based 
on the use of non-linear static analysis, the energy dissipation affects the com-
putation of the displacement demand trhough the use of overdamped spectra, 
which are based on the concept of equivalent damping. In particular, in the 
case of method C, in the sensitivity analysis there was used a correlation law 
between damping and ductility (3.15), assuming as uncertain the parame-
ter ζ, that is the asymptotic value of the hysteretic damping. 

Each group of parameters is considered as a single random variable; in the sensitivity 
analysis the parameters within the same group have been alternatively changed or 
placed all at the extreme upper or lower end of the range assigned. 
The acceleration that leads to the attainment of the limit states SLD and SLC has been 
assumed as response parameter to assess the sensitivity and it has been conventionally 
evaluated considering the median spectral shape shown in Fig. B-6 .The sensitivity to 
the parameters has been calculated as explained in §3.1.2, by adopting the expression 
(3.1) in the case of those of random nature and the expression (3.4) in the case of epis-
temic uncertainties leading to alternative models. Being j = 2 and m = 2  (see §3.1.2)  
the number of uncertain epistemic factors and the corresponding modeling options, 
the expressions to compute the sensitivity parameters assume the following form: 
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11 21 12 22 11 21 12 22

'
2

11 21 12 22

max , min ,
2 2 2 22
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 (B.3) 

where the acceleration a is relative to the limit state of interest and, in the subscript, 
the first index refers to the option taken for the uncertainty on the mesh (j = 1), that is 
the height of the piers, and the second refers to the option taken on the flange effect   
(j = 2); this subscript uniquely identifies the acceleration associated with each branch 
of the logic tree. 
The following are the results for the analyses performed in directions X and Y 
(see also Fig.B-7) with load pattern proportional to the masses. 
Tables B-5 and B-6 show the results of the sensitivity analysis for the random varia-
bles, respectively in directions X and Y and in the positive direction; by way of ex-
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ample, result refer to the choice of the first option for both the epistemic uncertainties 
(Mesh-1, Amm-1). 
Tables B-7 and B-8 instead show the results consequent to the epistemic uncertain-
ties; the value of '

j∆  resulting from each of epistemic uncertainty is associated with 
the more punitive (i.e. associated with the highest value) direction, whether positive 
or negative. 
 

Table B-5. Results of sensitivity analysis in the X direction (random variables). 

Parameter VAR. VALUE 
SLD SLC SLD SLC 

a 
[m/s2] 

a 
[m/s2] 

'
k∆  '

k∆  

  Mean 2.53 3.29 - - 

Masonry material 1 Maximum 2.76 3.80 0.2231 0.2714 Minimum 2.20 2.90 

Floor diaphragms stiffness 2 Maximum 2.41 3.31 0.0070 0.0217 Minimum 2.39 3.24 

Roof stiffness 3 Maximum 2.47 3.29 0.0467 0.0096 Minimum 2.35 3.26 

Floor mass 4 Maximum 2.43 3.25 0.0036 0.0313 Minimum 2.44 3.35 

Roof mass 5 Maximum 2.36 3.24 0.0976 0.0269 Minimum 2.61 3.33 

Constitutive law of piers 6 Maximum 2.53 3.49 0.0004 0.1368 Minimum 2.53 3.03 
Constitutive law of span-

drels  7 Maximum 2.41 3.40 0.2057 0.0732 Minimum 1.89 3.16 

Damping 8 Maximum 2.67 3.52 0.1194 0.1418 Minimum 2.37 3.05 
 

Table B-6. Results of sensitivity analysis in the Y direction (continuous random variables). 

Parameter VAR. VALUE 
SLD SLC SLD SLC 

a 
[m/s2] 

a 
[m/s2] 

'
k∆  '

k∆  

  Mean 2.50 3.78 - - 

Masonry material 1 Maximum 2.68 4.59 0.0855 0.3007 Minimum 2.46 3.46 

Floor diaphragms stiffness 2 Maximum 2.68 3.76 0.0115 0.0680 Minimum 2.71 4.02 

Roof stiffness 3 Maximum 2.53 3.80 0.0159 0.0002 Minimum 2.49 3.80 

Floor mass 4 Maximum 2.82 3.91 0.1106 0.0549 Minimum 2.54 4.11 

Roof mass 5 Maximum 2.65 3.78 0.0406 0.0060 Minimum 2.55 3.81 

Constitutive law of piers 6 Maximum 2.49 4.38 0.0036 0.1912 Minimum 2.50 3.65 
Constitutive law of span-

drels  7 Maximum 2.66 3.84 0.0888 0.0885 Minimum 2.44 4.17 

Damping 8 Maximum 2.56 4.07 0.0807 0.1386 
Minimum 2.36 3.55 
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Table B-7. Results of sensitivity analysis in the X direction (epistemic uncertainties). 

MODEL AND WAY OF 
ANALYSIS  BRANCH 

SLD SLC 
VAR. 

SLD SLC 
a 

[m/s2] 
a 

[m/s2] 
'
j∆  '

j∆  

Amm-1 
(j=2, p=1) 

Mesh-1 
(j=1, p=1) 

+ 11 2.53 3.29 
Mesh 
(j=1) 0.0772 0.0127 - 1.77 3.01 

Mesh-2 
(j=1, p=2) 

+ 21 2.48 3.35 
- 1.87 3.06 

Amm-2 
(j=2, p=2) 

Mesh-1 
(j=1, p=1) 

+ 12 1.96 2.85 
Amm 
(j=2) 0.5005 0.5087 - 1.84 3.24 

Mesh-2 
(j=1, p=2) 

+ 22 1.94 2.76 
- 2.03 3.27 

 

Table B-8. Results of sensitivity analysis in the Y direction (epistemic uncertainties). 

MODEL AND WAY OF 
ANALYSIS  BRANCH 

SLD SLC 
VAR. 

SLD SLC 
a 

[m/s2] 
a 

[m/s2] 
'
j∆  '

j∆  

Amm-1 
(j=2, p=1) 

Mesh-1 
(j=1, p=1) 

+ 11 2.50 3.78 
Mesh 
(j=1) 0.0928 0.0350 - 2.46 3.82 

Mesh-2 
(j=1, p=2) 

+ 21 2.87 4.05 
- 2.42 3.90 

Amm-2 
(j=2, p=2) 

Mesh-1 
(j=1, p=1) 

+ 12 2.75 4.65 
Amm 
(j=2) 0.4508 0.4947 - 2.84 4.35 

Mesh-2 
(j=1, p=2) 

+ 22 2.88 4.68 
- 2.41 4.08 

 
The analysis of the results shows that, among the random variables, the groups 1 (ma-
sonry material), 6 (constitutive law of piers), 7 (constitutive law of spandrels) and pa-
rameter 8 (damping) involve a significant sensitivity of the response. In the case of 
the epistemic uncertainties, the height of piers does not have a great influence with re-
spect to other parameters, while the flange effect is very significant. 
In the case examined, the sensitivity to the wall-to-wall connection quality is highly 
variable in relation to the direction of verification (X or Y) and the way of application 
of load pattern (positive or negative). This result is due to the architectural and plani-
metric configuration of the structure, which for example, in the X direction, has on 
one side two inner walls coupled with continuity at all levels while, on the other side, 
only one. Figure B-12 shows a plan view of the intersections between inner and outer 
walls that affect the sensitivity of the response to the wall-to-wall connection. 
In order to better clarify this aspect, Figure B-13 illustrates the capacity curves in X 
and Y directions, considering the load pattern applied to both positive and negative 
direction. In addition to the two conditions on wall-to-wall connection already intro-
duced  (Amm-1 and Amm-2), by way of example, there has been considered a further 
condition representative of the complete absence of coupling. The curves show that in 
the latter case the global response significantly changes (in this case one would also 
need to consider the activation of local mechanisms). In general it is evident that, for 
the examined case, the analyses in X and Y directions with positive sense are the ones 
most sensitive to this factor. The condition associated to the total absence of coupling 
is not realistic for the present case, considering the real seismic response exhibited by 
the building during the event of 2012 and the masonry type (since in general with 
brickwork it is constructively possible to achieve good conditions of coupling). 
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GROUND FLOOR PLAN 

 

 

 

GROUND FLOOR FIRST FLOOR SECOND FLOOR 
Fig. B-12 Localization on the plan view of the points where the conditions on the wall-to-wall connection 
were changed and planimetric configuration at the three floors which highlights how some internal walls 

are not continuous at all levels in X direction (reducing the sensitivity to this factor in particular in the 
negative sense) 

Based on the results discussed above, in the risk analysis illustrated in the following 
paragraphs the effect of following parameters has been assessed:1, 6, 7 and 8, for the 
random variables; the wall-to-wall connection (conditions Amm-1 and Amm-2) for 
the epistemic factors. 

B.5.4 Diagnostic surveys and investigations 

The sensitivity analysis made it possible to highlight what are the parameters that 
most influence the seismic response of the building under consideration. This enables 
to plan the campaign of diagnostic investigations in order to minimize the residual 
uncertainties, compatibly with the available resources and the need to limit the inva-
siveness of slightly destructive investigations, being the latter an important aspect es-
pecially in the presence of heritage buildings. These investigations appear therefore 
justified only when supported by a real need of deepening. 
In this case, among the uncertain parameters that have emerged as significant, the on-
ly ones on which it would be possible to learn more are those on the mechanical prop-
erties of the masonry. In this example we consider, for simplicity, that it was possible 
to perform a limited number of tests, sufficient to confirm the range of values initially 
adopted for the sensitivity analysis. As for the epistemic uncertainties of the model, 
the investigations on the structural details highlighted a good quality of the interlock-
ing between perimeter and internal walls, but this does not allow us to state that two 
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piers belonging to two orthogonal walls behave as a single, rigidly connected element 
(under the hypothesis of plane section). Thus, both models (Amm-1 and Amm-2) will 
be then brought forward in the analysis. 

 

 
Fig. B-13 The resulting pushover curves in X and Y direction (positive and negative) as a function of the 
three hypotheses assessed for the wall-to-wall connection (Amm-1, Amm-2 and absence of connection) 

B.6 Modeling and limit states 

B.6.1 Modeling of the site response  

As indicated in § 2.2.2, the change in the characteristics of the motion associated with 
the seismic response of the site under examination requires a detailed analysis of the 
local seismic response, which takes into account the uncertainty in the mechanical pa-
rameters of the soil. In this application, assuming that the building is on a type C soil, 
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it has been decided (§C.8.1) not to address in detail the issue and to take into account 
for the amplification in an approximate manner by a deterministic factor equal to 1.25 
that amplifies the intensity measure on rigid soil. 

B.6.2 Modeling of the uncertainties 

B.6.2.1 Logic tree 

Downstream of the results of the sensitivity analysis it was decided to perform risk 
analysis with two distinct models: the first of which considers a perfect coupling be-
tween orthogonal masonry panels while the second in which there is an elastic con-
nection aimed to simulated an intermediate interlocking. Based on observation of the 
structural details it was decided to give more weight to the first hypothesis (p1= 
0.6); consequently for the second hypothesis p 2 = 1-p 1 = 0.4. This choice is also 
supported, in this specific case, from the observation of seismic damage, which does 
not show any cracking in correspondence of the wall-to-wall connection. 
The size of the piers in the equivalent frame mesh (with respect to which the response 
was almost insensitive) was taken intermediate between the two hypotheses consid-
ered in the sensitivity analysis. Figure B-14 illustrates the mesh adopted for the five 
perimeter walls (as numbered in Figure B-8). In most cases there has been adopted a 
mesh consistent with the criterion "Mesh-2" described in §B.5.2 (also supported by 
the position of some cracks that occurred as a result of the seismic response to the 
event of May 2012), only in case of wall 3 instead was adopted the criterion"Mesh-1" 
(in order to avoid of defining unrealistically squat piers). 
 

 

 

 

Wall 4 (dir.X) Wall 5 (dir.X) Wall 1 (dir.X) 

 

 

Wall 3 (dir.Y) Wall 2 (dir.Y) 
Fig. B-14 Final mesh adopted in the risk analysis 
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B.6.2.2 Continuous random variables 

Diagnostic investigations have confirmed that the mechanical properties of the ma-
sonry of solid bricks and lime mortar are similar to those in the Table C8A.2.1 of Ap-
pendix C8A present in the Commentary to NTC 2008 (Circular No 617, 2 February 
2009), and are among the lowest values of the range. Since it was not possible, due to 
the limited number of tests performed and their poor reliability, to probabilistically 
characterize these parameters, there was assumed for all of them a lognormal distribu-
tion, with mean values centered in the range used for the sensitivity analysis and dis-
persion  β obtained considering the extremes of that range as corresponding to percen-
tiles at 16% and 84%. 
 
Table B-10. Probabilistic characterization of the random variables: the mean µ and the standard devia-
tion β of the logarithm for lognormal variables; and shape parameters p and q for Beta variables. 

Set Parameter Variable Distribution µ / p β / q Expected 
value 

1 Masonry 

E 

Lognormal 

6.49 0.2 675 
G 5.40 0.2 225 

 -1.06 0.15 0.35 

 
-2.32 0.2 0.1 

fm 1.00 0.25 2.8 

6 Constitutive 
law of piers 

dT3 

Lognormal 

-5.84 0.24 0.003 
dT4 -5.32 0.22 0.005 
dT5 -4.98 0.2 0.007 

dPF3 -5.14 0.24 0.006 
dPF4 -4.63 0.22 0.01 
dPF5 -4.22 0.2 0.015 
βT 3 

Beta 
0.77 0.33 0.7 

β T4 0.24 0.36 0.4 
β PF 1.317 0.233 0.85 

7 
Constitutive 
law of span-

drels   

dT3 = dPF3 
Lognormal 

-6.24 0.24 0.002 
dT4=dPF4 -5.15 0.25 0.006 
dT5 = dPF5 -3.94 0.25 0.02 

βT3 = βT4 = βPF Beta 0.125 0.125 0.5 

8 
Energy dissi-

pation of 
piers* 

αmT 

Beta 

0.120 0.08 0.6 
βmT Deterministic assumption 0.8 
γmT -0.010 -0.09 0.1 
dmT Deterministic assumption 0 
αmPF 0.480 0.12 0.8 
βmPF Deterministic assumption 0.8 
γmPF 0.840 0.56 0.6 
dmPF 0.750 0.75 0.5 

8 
Energy dissi-

pation of 
spandrels* 

αmT=αmPF 
Beta 

-0.023 -0.1275 0.15 

γmT=γmPF 0.330 0.77 0.30 

* The values of the quantities governing the hysteretic cyclic behavior of piers and spandrels (in addi-
tion to a viscous component) are used in the case of method A, while in the case of the method C, there 
was used a damping law, by assuming a range of variation of the parameter ζ (the asymptotic value of 
the hysteretic damping) between 0.25 and 0.4. Such values are assumed to correspond to the frac-
tiles16% and 84%. 
 

µ̂

0vmf
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The parameters defining the constitutive laws of piers and spandrels and the related 
levels of damage have been gathered from laboratory tests and cannot be verified on 
situ. The stochastic characterization is performed, similarly to the case of the elastic 
properties and strength of masonry, assuming the interval used in the sensitivity anal-
ysis as corresponding to the above percentiles. For the values of drift corresponding to 
the different levels of damage a lognormal distribution is assumed, while for the re-
sidual strength (which varies between 0 and 1) a Beta distribution is assumed. 
Table B-10 shows the stochastic characterization of uncertain parameters. 
Figure B-15 illustrates, by way of example in the case of piers, the effects of the vari-
ation of the parameters αm, γm and dm on the hysteretic response; in particular, the fig-
ure illustrates the maximum variation in the case where the parameters are set respec-
tively to the values at the 16% and 84% fractiles, with which the minimum or maxi-
mum dissipation is obtained respectively. 
The sampling of the 30 arrays of values of the random variables needed for the appli-
cation of method A was performed as follows. For each group there was sampled a 
standard normal variable u . The value of each variable Xi of the group was then ob-
tained by the transformation: 

  (B.2) 

in which Fi and Φ are respectively the cumulative distribution of Xi and the normal 
standard distribution. The sampling was carried out independently for each of the 
groups of random variables. 
 

 
Fig. B-15 Effect of the parameters αm, γm and dm on the hysteretic response at  scale of the single mason-

ry panel: a pier with a prevailing flexural (a) or shear (b) response 

Figure B-16 shows the distributions obtained for four uncertain parameters, each one 
belonging to a different group of random variables (Table B-10). 

( )[ ]uFx ii Φ= −1
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a)  b) 

c)  d) 

Fig. B-16 Histograms relating to the distribution of the stochastic sampling obtained for some of the vari-
ables belonging to four of the sets of random variables considered: a) the compressive strength of the 

masonry fm (from set 1 - Masonry); b) αmT (from set 8 - Energy dissipation of piers); c) βT3 (from set 7 – 
constitutive law of spandrels); θT3 (from set 6 - constitutive law of piers). 

B.6.3 Limit state variables 

For the three limit states considered proper variables were used as defined in §2.5, 
with specific indications for the global response of masonry buildings as clarified in 
§3.3.1. Limit states SLD and SLC are based on a multi-scale approach, which consid-
ers the damage and the seismic response at different scales: that of piers and span-
drels, through checks on the cumulative damage indicators; the masonry walls, 
through the interstorey drift (in this case checks on angular strain of diaphragms were 
not considered as they are almost rigid); the global response, described by the capaci-
ty curve. 
The limit state SLS is instead defined by an integral measure of the cost of repair of 
all the elements (piers and spandrels), evaluated according to the level of local dam-
age through a proper cost function. 
Regarding the application of the multi-scale approach to non-linear dynamic analysis 
with method A, the indications of §3.3.1 have been used. In particular the (3.25) has 
been used for the SLD, while the (3.34) for the SLC. In the case of the SLS we have 
assumed a conventional cost tSLS = 0.6. For the calculation of the cost function of 
global repair CG (3.32), the reference thresholds assumed correspond to a damage 
level slightly preceding the severe level ( Cj = 0.5θ3 ), in the case of piers, and to the 
severe level ( Cj = θ3 ), in the case of spandrels; the latter assumption is consistent 
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with the lintel type that characterizes the building, that is a flat brick arch without tie-
rods . 
In the case of the non-linear static analysis (method C), the points corresponding to 
the attainment of each limit state are identified on the capacity curve; then, for SLC 
and SLD, the limit state variable Y is defined by the ratio between demand and capac-
ity in terms of displacement of the equivalent non-linear single degree of freedom. In 
the case of SLS, the limit state variable is instead calculated through (3.33), taking as 
a conventional global cost value tSLS = 0.3, half of that adopted in method A. This 
choice is motivated by the fact that with the method A the two components of seismic 
motion are applied simultaneously (so the damage is spread in all the walls) while 
with the nonlinear static analysis only one direction is mainly activated. Moreover 
with the dynamic analysis the damage spreads further along the height, due to the 
contribution of the higher modes. 

B.7 Analysis and Verification 

B.7.1 Validation of the model 

The reliability of the modeling approach adopted was evaluated by simulating the 
seismic response of the structure after the event of May 29, 2012 (ML = 5.8, depth 9.6 
km with its epicenter near Mirandola). For the numerical simulation the recording of 
the station SAN0 located in San Felice sul Panaro (less than 500 meters away from 
the building under examination) were adopted, being installed after the previous event 
of 20 May 2012 in addition to those of the Rete Accelerometrica Nazionale 
(RAN)27 already present in the area. Figure B-17 illustrates the recordings in terms of 
acceleration and the relative response spectra; the NS component is mainly acting in 
the X direction, while the EO in the Y direction. 

 
Fig. B-17) a) Accelograms from SAN0 registration of 29 May 2012; b) response spectra in ADRS format. 

 

                                                 
27 http://www.protezionecivile.gov.it/jcms/it/ran.wp 
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The numerical simulation was carried out by performing nonlinear static and dynamic 
analyses, taking as reference the mean values of the mechanical parameters as intro-
duced in B6.2.2. 
Figure B-18 illustrates the results of non-linear static analysis (by way of example 
with a positive direction) performed in the X and Y directions as a function of various 
load patterns adopted, respectively, proportional to: 1) masses; 2) the product in each 
node of the mass and the corresponding height; 3) the first modal shape. 
 

 
Fig. B-18 Results of the non-linear static analyses in X and Y directions as a function of the various load 

patterns adopted 

In Figure B-19 (for the X direction) and B-20 (for the Y direction) the comparison, in 
terms of V-d curves, between the results of nonlinear dynamic and static analyses is 
shown. Dynamic analyses were performed by applying in addition to the NS and EW 
components also the vertical component (the results of the application of records with 
positive and negative ways are marked in grey and black, respectively). In the case of 
the non-linear static analysis, among the different load patterns adopted, the one pro-
portional to the masses in general provides results more consistent with those ob-
tained by the dynamic analysis. In the case of such distribution, in Figures B-19 and 
B-20 the displacement thresholds corresponding to the attainment of limit states SLD, 
SLS and SLC, as defined according to the criteria previously introduced (§B6.3), are 
also represented. The maximum displacement obtained from the dynamic analysis lies 
between the thresholds of limit states SLD and SLS defined from the static analysis, 
in the X direction, and slightly before the SLD, in the direction Y. This result is in 
agreement with the global damage level observed on the structure. These curves clear-
ly show that in the X direction the structure has reached a higher level of non-linearity 
of the response than Y direction; this is also consistent with the observed damage, 
which is more severe in the walls oriented along NS (X, Figure B-1). Moreover, the 
damage simulated by the nonlinear dynamic analyses matches well with that observed 
in terms of extent, severity and prevailing failure modes on panels (Figure B-21). 
Finally, the maximum acceleration compatible with the SLC, evaluated in the X di-
rection with the non-linear static procedure based on the use of overdamped spectra 
(obtained starting from those of Figure B-17b) is comprised between 1.64 and 8.2 
m/s2 (as a function of the load pattern adopted): a value that is compatible with the 
peak acceleration at the ground of the real seismic event, equal to 2.16 m/s2. 
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Fig. B-19 Direction X: comparison of the results of non-linear static and dynamic analysis 

 
Fig. B-20 Direction Y: comparison between the results of non-linear static and dynamic analyses 

 
Fig. B-21 Damage simulated for the walls 4 and 1 oriented in the X direction 
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B.7.2 Modal analysis and methods of non-linear analysis  

Before the application of the methods addressed to the risk analysis, a modal analysis 
has been performed on the two models of the logic tree, by referring to the mean val-
ues of the random variables (Table B-10). The fundamental period of vibration varies 
between 0.26 s and 0.27 s respectively for the case of the model Amm-1 (perfect cou-
pling) and Amm-2 (intermediate wall-to wall connection simulated by an elastic con-
nection); it activates a participating mass in the X direction of 86%. The first signifi-
cant mode in the Y direction corresponds to a period equal to 0.23 s for both models, 
with a participating mass comprised between 82% and 86% in the two cases. Figure 
B-22 illustrates the plan deformed shapes associated with the fundamental modes in X 
and Y directions, for the model Amm-1 (first branch of the logic tree). Figure B-23 
shows the two modal shapes in height, in terms of average floor displacement compo-
nents; one observes how such deformed trends are well approximated by a triangular 
shape. The fundamental period well agrees with that obtained by the formula suggest-
ed by the NTC 2008 (§B4), which was used to compute the seismic intensity measure 
Sa(T1). 
The ratio between the participation factors of first modes is equal to: Γ1Y / Γ1X = -
0.033, in the direction X; and Γ3X / Γ3Y = 0.055, in the Y direction. 

Mode 1 - T = 00:26 s 

 

Mode 3 - T = 00:23 s 

 
Fig. B-22 Plan deformed shape related to the modes 1 and 3 for model Amm-1 (first branch of the logic 

tree); the different colors are associated with the different levels of the building. 

 
Fig. B-23 Deformed shape in height of the modes 1 and 3 for model Amm-1 (first branch of the logic tree). 
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In applying the method C, in line with what is indicated in §3.2.1.5, the regularity of 
the dynamic response of the building allows, for both directions of verification, the 
use of non-linear static analysis considering only the first mode; moreover, it is not 
necessary to consider, for each direction of verification, the contribution due to exci-
tation in the orthogonal direction (bidirectional effect). 

B.7.3 Verification with Method A 

For simplicity and economy in the description of the case study, the method A is ap-
plied only to the first branch of the logic tree (Amm-1). 
For the non-linear dynamic analysis, 30 different models were used characterized by 
parameters generated in accordance with the probability distributions assumed; then, 
each of them is associated with one of the 30 selected records, applying the NS  
 

 

 
Fig. B-24 Cyclic response in X and Ydirections following the application of the event 1, scaled to the val-
ue Sa(T1)=6.25 m/s2 and comparison with the pushover curves obtained from non-linear static analysis. 



CNR-DT 212/2013 

  125 

component according to the direction X. The incremental dynamic analysis  is per-
formed by scaling the records so that the intensity measure takes on increasing values 
until, for each seismic event, the three limit states are achieved. 
 
The definition of limit state variable used for the application of the multi-scale ap-
proach in the case of the dynamic non-linear analyses has been discussed at §B.6.3. 
In order to exemplify the procedure, the results corresponding to the event 1 of Table 
B-2 (Friuli - M = 6.0 - station ST28), are illustrated in the following, being the com-
ponents of the event shown in Figure C-7. 
The Figures B-24 and B-25 illustrate the cyclic response (base shear / average top 
displacement of the structure), for the two main directions of the building, for the 
seismic event 1 scaled to two different levels of intensity Sa(T1) : 6.25 and 10.84 
m/s 2 . The cyclic response is compared with the pushover curves obtained by nonlin-
ear static analysis, performed in both directions and with two load patterns: a) propor-
tional to the first modal shape; b) proportional to the masses. On these curves the 
points at which the three SLs are achieved in the case of the load pattern proportional 
to the masses and by considering only the checks at the global scale, are also indicat-
ed. 

 

 
Fig. B-25 Cyclic response in X and Y directions following the application of event 1, scaled to val-

ue Sa(T1)=10.84 m/s2, and comparison with pushover curves obtained from the non-linear static analysis. 
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One can observe how the dynamic response is consistent with that resulting from the 
non-linear static analysis; in particular, for relatively low values of the seismic inten-
sity (Fig. B-24), those that lead to the SLD, both the two load patterns are in agree-
ment with the result of non-linear dynamic analysis, while for increasing values of the 
seismic intensity (Fig. B-25), the dynamic response is more consistent with the pre-
diction of the SLC obtained from the load pattern proportional to the masses. 
As regards the checks at the scale of structural elements introduced by multi-scale ap-
proach, Fig. B-26  shows the variation with time of the entities necessary for compu-
ting the limit state variablesYSLD,S and YSLS,S; results refer to the dynamic response al-
ready illustrated in Fig. B-24. The SLD has already been attained since the accumu-
lated damage in spandrels, for the damage level 3, has exceeded the threshold of 3% 
(while only two piers have reached the damage level 2). For the SLS the cost variable 
CG reaches at the end the value 0.3, which is lower than the limit threshold assumed 
(CSLS = 0.6). No figure is shown relative to the SLC because no pier has yet reached 
the damage level 5. 

 

      
Fig. B-26 Variation with time of the entities necessary for the calculation of the limit state variables at the 
scale of the element (the cumulative damage indicator SSLD  ) and the cost function (CG), resulting from the 

application of the event 1 scaled to the value Sa(T1) =6.25 m/s2. 

Figure B-27  shows the variation with time of the entities necessary for computing the 
limit state variable YSL,S for the three limit states, in the case of the dynamic response 
of Fig. B-25. The damage accumulated in piers, with reference to the damage level 2, 
and that in spandrels, with reference to the damage level 3, which are necessary for 
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the check on the attainment of SLD, are further increased with respect the level of 
seismic intensity already shown. The cost variable CG has exceeded the limit assumed 
for the attainment of SLS (tSLS = 0.6). Finally, for the SLC, the damage accumulated 
in piers with reference to the damage level 5 has exceeded the threshold of 3%. 

   

 

   

 
Fig. B-27 Variation with time of the entities necessary for the calculation of the limit state variables at the 
scale of the element (the cumulative damage indicators SSLD , SSLC  )  and cost function (CG), resulting from 

the application of the event 1 scaled to the value Sa(T1) =10.84 m/s2. 
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As regards the checks of the multi-scale approach at the scale of macroelements, Fig-
ure B-28 shows the variation with time of the maximum interstorey drift (which here-
in occurs in the wall 13 on the 3rd floor), obtained for the two levels of the seismic 
intensity already considered in the previous figures. It can be observed that in the first 
case the threshold of 0.2%, assumed as reference for the evaluation of the limit state 
YSLD,M, is exceeded, while, in the second case, even the threshold of 0.6%, adopted for 
the limit state variable YSLC,M, is exceeded. 
Table B-11 shows the values of the three limit state variables for the two levels of in-
tensity considered, obtained from (3.25) and (3.34) as the highest among the partial 
limit state variables, considered by the multi-scale approach. 
 
Table B-11. Limit state variables obtained from the multi-scale approach, from the response of the build-

ing shown in Figures B-25/26/27/28/29. 
Sa(T1)  
[m/s2] 

 

SLD SLS SLC 
YSLD,S YSLD,M YSLD,G YSLD YSLS YSLC,S YSLC,M YSLC,G YSLC 

6.25 1:37 2.72 0.96 2.72 0.77 12:00 0.91 0.60 0.91 
10.84 12.79 6.93 3.12 12.79 1.19 5.98 2.31 1.95 5.98 

 

 

 
Fig. B-28 Variation with time of the interstorey drift, relatively to the wall and diaphragm that present the 

maximum values, for the two levels of the intensity measure shown in the previous Figures. 

 



CNR-DT 212/2013 

  129 

The result processing described above has been performed for all 30 models, obtain-
ing the variation of all the parameters of response and of the limit state variables as a 
function of the seismic intensity. 
Figure B-29 shows the maximum displacement of the top of the building as a function 
of the seismic intensity, for the 30 models considered (and the relative recordings); on 
each curve the reaching of the limit states is indicated with a different colored 
dot. One observes, in particular for limit states SLS and SLC, how they are achieved 
by values very scattered both in intensity and displacement. Furthermore, in some 
cases, according with the analytical definition proposed for the SLS, these two SLs 
coincide; this happens when the condition of SLC occurs before the damage has 
spread significantly, that is when the condition CG < CSLS occurs on the cost func-
tion . This result is consistent with the behavior that often occurs in masonry build-
ings, with limited ductility and a rather brittle response, resulting in the activation of a 
failure mechanism that may involve a limited number of structural elements. 
Figure B-30 shows the curves resulting from the incremental dynamic analysis (IDA 
curves) in terms of the limit state variables YSLD , YSLS and YSLC , plotted against the 
seismic intensity measure  Sa(T1). The values of the seismic intensity measure for 
which each curve reaches the value 1 are analyzed statistically, assuming that they are 
distributed as a lognormal; the corresponding parameters are shown in the top of each 
of three graphs illustrated in Figure B-30. 

 
Fig. B-29 Incremental Dynamic Analysis (IDA) curves in terms of maximum displacement at the top of the 

building versus the seismic intensity measure, for the 30 models considered; the green , blue and red 
dots correspond to the achievement of the SLD, SLS and SLC, respectively. 
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         µ ln = -0.843, σ ln = 0.342                 µ ln = -0.309, σ ln = 0.247                 µ ln = -0.188, σ ln = 0.316 

 
Fig. B-30 Incremental Dynamic Analysis (IDA) curves in terms of limit state variable YSL (up above, the pa-
rameters that define the lognormal distribution adopted for statistically processing the intensity measures 

that lead to SLD, SLS and SLC). 

The mean annual frequency of exceedance of each LS is obtained from (2.12) discre-
tizing the curve of hazard evaluated in §B4. The resulting values are listed in Table B-
11, where they are compared with the reference limit thresholds presented inTable 2-
1, having assumed a class of use II, since the building is private and for residential 
use. The building complies the safety requirements for the SLD and SLS, while is 
vulnerable towards the SLC. 
Figure B-31 shows the fragility curves for the three limit states, defined by (2.13). It 
is worth noting how the curves associated to the SLS and SLC are very close, which 
means that this building, if it does not collapse, is repairable. It appears useful to re-
call that the introduction of the cost function aims to quantitatively define the limit 
condition of reparability associated with a concept of economic convenience; in-
stead, the criteria at the base of the SLC are able to highlight conditions of fragility of 
the construction, which can lead to the collapse even in the presence of a not very 
widespread damage. 
Finally, Figure B-32 shows the contribution of the different levels of seismic intensity 
to the total probability. The median value of the distribution of the seismic intensity 
measure which leads to the corresponding SL is indicated as well. 
 
Table B-11. Mean annual frequency of exceedance of the limit states SLD, SLS, SLC and their correspond-

ing return periods; comparison with the maximum tolerated threshold values. 

 λSLD λSLS λSLC 
Method A 0.0082 0.0023 0.0020 

Maximum tolerated thresholds 0.045 0.0047 0.0023 
 Tr,SLD Tr,SLS Tr,SLC 

Method A 122 426 508 
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Fig. B-31 Fragility curves of the three limit states. 

  
Fig. B-32 Distribution of the conditional probability for the computation of the limit states SLD and SLC 
(the vertical dotted line indicates the median value of the seismic intensity measure which leads to the 

attainment of SL). 

B.7.4 Verification with Method C 

The following shows the risk analysis according to the method C. 
In particular, the non-linear static analyses have been performed by adopting exclu-
sively the load pattern proportional to the masses, being this choice motivated by the 
comparison between the dynamic and static analyses described in §B7.3 that showed 
in this case a greater agreement in particular at the SLC. This load pattern is associat-
ed with a much more brittle behavior of the response, as shown in Figure B-18, be-
cause of the activation of a soft story mechanism at the ground floor. 
In more general terms, it would be necessary to consider other load patterns, then tak-
ing as final value of the risk analysis that obtained by a combination of the results 
through the logic tree technique. Conversely, in the absence of comparison of data 
with non-linear dynamic analyses or other evidence on the structural behavior, when 
it is therefore not possible to attribute a degree of reliability to each of the load pat-
terns considered, the final value of the risk analysis can be adopted, on the safe side, 
as the greater of those obtained by all the load patterns considered. 
Figures B-33 and B-34 show the results of non-linear static analyses in X and Y direc-
tions (positive and negative directions) for the two branches considered of the logic 
tree (Amm-1 and Amm-2); the analyses refer to the adoption of the mean values for 
all the random variables. 
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Fig. B-33 Results of the non-linear static analyses for the first branch of the logic tree (Amm-1) in the di-

rection X and Y, with positive and negative direction (mean values for all the random variables) 
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Fig. B-34 Results of the non-linear static analyses for the second branch of the logic tree (Amm-2) in the 

directions X and Y, with positive and negative direction (mean values for all the random variables) 

In Figure B-35 the pushover curves are converted into the corresponding capacity 
curves representing the equivalent single degree of freedom (by the factors Γ and 
m*). These capacity curves are assumed as the median value of the response of the 
building. 
In Figures B-33, B-34 and B-35 the positions of the limit states (SLD, SLS and SLC) 
are shown as resulting from the checks at different scales (structural element, wall and 
global) illustrated at §B6.3. In this case the limit states SLS and SLC coincide. For the 
definition of the SLS (via the (3.33)) the threshold tSLS = 0.3 was assumed, that is 
equal to half of that conventionally adopted in method A, where the cost function is 
calculated by non-linear dynamic analyses. This choice is motivated by the fact that 
the pushover analysis is performed by applying the load pattern only in one and single 
(if positive or negative) direction. In this regard, Figure B-37 illustrates the compari-
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son between the damage pattern of the walls 1 and 2 (as identified in plan in Fig B-
36a), obtained at the end of the dynamic analysis (for the recording 1 scaled to the 
value of Sa(T1) equal to 6.25 m/s2), and that resulting from the non-linear static analy-
sis performed in the X-positive direction and Y-negative direction (with load pattern 
proportional to the masses); the latter has been taken in correspondence of the step of 
the analysis on which a displacement equal to the maximum obtained from the dy-
namic analysis is attained. In general one observes how in the case of the dynamic 
analysis the damage is more widespread (consequence of the activation also of the 
higher modes): for example, in the case of wall 1, one notes how the damage in the 
case of the non-linear static analysis in the Y direction is concentrated exclusively in 
piers of the ground floor, while in the case of the dynamic analysis it extends even to 
some piers of the upper levels. Moreover, in the case of the static analysis, it is con-
firmed how the damage in the walls directed orthogonally to the direction of the anal-
ysis is much less widespread and with a severity level lower than that obtained by the 
dynamic analysis. Finally, Figure B-36b, by way of example for the static analysis in 
the X direction, illustrates the evolution of the cost function that, in correspondence of 
the maximum displacement, results equal to 0.185, thus significantly lower than the 
value of 0.6 obtained by the dynamic analysis. 
 

 
M*=2380380 kg; Γ1x=1.2919 

 

 
M*=2313867 kg; Γ1x=1.314 

 

 
M*=2263990 kg; Γ1Y=1.32 

 

 
M*=2196905 kg; Γ1Y=1.32 

 
Fig. B-35 Results of non-linear static analyses in terms of capacity curve (conversion of pushover curves 
into the equivalent single degree of freedom): X direction - positive and negative  directions for the two 

branches of the logic tree (mean values for all the random variables) 
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Fig. B-36 a) Identification in plan of the walls 1 and 2; b) cost function resulting from the non-linear analy-

sis in X- positive direction. 
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Fig. B-37 Comparison between the damage of the walls 1 and 2 obtained at the end of the non-linear dy-
namic analysis (event 1 scaled to the value Sa (T1) = 6.25 m / s2) and that resulting from the non-linear stat-

ic analysis (X- positive direction and Y- negative direction) in correspondence of the step in which the 
maximum displacement obtained from the dynamic analysis is attained  
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Tables B-12 (for the first branch of the logic tree - Amm-1) and B-13 (for the second 
branch - Amm-2) summarize the displacement capacity associated with the different 
limit states resulting from the checks at different scales and the final value associated 
with the more demanding condition. 

Table B-12. Displacement capacities for the different limit states, resulting from the checks at the scale of 
the structural elements (S), walls (M) and global (G): first branch of the logic tree (Amm-1) - median values 

of the capacity 
Dir. X (Amm-1) – Median capacities 

  dSL, S [m] dSL, M [m] dSL, G [m] dSL [m] 

SLD + 0.0262 0.0141 0.0497 0.0120 0.0120 
- 0.0191 0.0171 0.0466 0.0066 0.0066 

SLS + 0.0497 0.0331 
- 0.0287 0.0251 

SLC + 0.0332 0.0497 0.0332 0.0331 0.0331 
- 0.0252 0.0466 0.0282 0.0251 0.0251 

Dir. Y (Amm-1) – Median capacities 

  dSL, S [m] dSL, M [m] dSL, G [m] dSL [m] 

SLD + 0.0221 0.0121 0.0437 0.0091 0.0091 
- 0.0049 0.0049 0.0069 0.0032 0.0032 

SLS + 0.0437 0.0269 
- 0.0324 0.0323 

SLC + 0.0269 0.0437 0.0271 0.0270 0.0269 
- 0.0323 0.0463 0.0323 0.0323 0.0323 

Table B-13.  Displacement capacities atthe different limit states, resulting from the checks at the scale of 
the structural elements (S), walls (M) and global (G): second branch of the logic tree (Amm-2) – median 

values of the capacity 
Dir. X (Amm-2) – Median capacities 

  dSL, S [m] dSL, M [m] dSL, G [m] dSL [m] 

SLD + 0.0318 .0120 0.0174 0.0258 0.0120 
- 0.0272 .0151 0.0434 0.0085 0.0085 

SLS + 0.0692 0.0402 
- 0.0347 0.0347 

SLC + 0.0452 0.0692 0.0402 0.0463 0.0402 
- 0.0363 0.0434 0.0368 0.0366 0.0363 

Dir. Y (Amm-2) – Median capacities 

  dSL, S [m] dSL, M [m] dSL, G [m] dSL [m] 

SLD + 0.0289 0.0127 0.0127 0.0201 0.0127 
- 0.0005 0.0034 0.0068 0.0032 0.0005 

SLS + 0.0475 0.0330 
- 0.0447 0.0430 

SLC + 0.0357 0.0475 0.0330 0.0347 0.0330 
- 0.0447 0.0581 0.0430 0.0444 0.0430 

 

Figures B-38 and B-39 illustrate, by way of example for the analyses in the X-
negative direction and Y-positive direction of the first branch of the logic tree (Amm-
1), the evolution of: the cumulative damage indicators; the variable representative of 
the global repair cost; and the inter-story drift of walls. On the abscissa the displace-
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ment of the equivalent non-linear single degree of freedom is represented. The verti-
cal dashed lines indicate the displacements at which the limit states SLD and SLC 
were attained. One observes that the cumulative damage indicator in piers, associated 
to the damage level 3, reaches the threshold of 3% for a displacement greater than that 
which leads to the SLD: in this case the check at the global scale proves to be a deci-
sive factor, as evident from the Table B-12; the same happens in spandrels, where the 
damage level 4 is the reference one to be checked. The cost function, in the case of 
the analysis in X direction, reaches the reference value CSLS = 0.3 for a displacement 
slightly higher than that which leads to the SLC, for which, consistently with (3.33), 
the SLS is achieved simultaneously with the SLC; in the Y direction the cost function 
remains below 0.3. 

 
MODEL AMM-1 
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Fig. B-38 Evolution of the cumulative damage indicators of piers and spandrels and the global repair cost 
variable 
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Figure B-39 shows the evolution of the interstory drift at different levels for each wall 
of the building; the presence of rather rigid diaphragms produces quite uniform values 
among different walls. One observes that the interstorey drift is concentrated on the 
ground floor but still reaches the limit threshold always after the SL has been reached 
on the basis of one of the other two checks (structural element and global scales). 

 
MODEL AMM-1 

(Dir. -X; Mean parameters) 
MODEL AMM-1 

(Dir. + Y;  Mean  parameters) 
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Fig. B-39 Evolution of the interstorey drift, at different levels of the building. 
 
Now we proceed to calculate the mean annual frequency of exceedance of the three 
limit states according to what is described in §2.4.6; in particular it is computed 
through (2.12), which requires the assessment of the fragility through (2.14) by the 
evaluation of the parameters of the distribution of SY=1 , that is, the intensity S that 
leads to the attainment of a given limit state LS (Y = 1). 
In the following, the procedure is described and exemplified in detail in the case of 
Amm-1 and for the X direction. 
Figures B-40 and B-41 illustrate the ISA (Incremental Static Analysis) curves that 
correspond to fractiles 16%, 50% and 84% obtained from the non-linear static analy-
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sis and the use of a procedure based on the overdamped response spectra (§2.4 
.6.2). They were plotted with reference to the limit states SLD (Figure B-40) and SLC 
(Figure B-41), which in this case coincides with the SLS, consistent with what previ-
ously discussed on the definition of SLs for the structure under examination (which it 
is characterized by a rather brittle behavior). 
Based on these ISA curves it is possible to calculate the entities required for the calcu-
lation of the contribution βS  relative to the impact on SY = 1 of the uncertainty of the 
seismic demand as shown in §2.4.6.3, and graphically, in Figure A-8. 
 

 
Fig. B-40 ISA curves obtained by comparing the median capacity curve and the median response spec-
trum (at the 16% and 84% percentiles): Amm-1, X-direction (positive and negative direction) and SLD. 

 
Fig. B-41 ISA curves obtained by comparing the median capacity curve and the median response spec-
trum (at the 16% and 84% percentiles): Amm-1, X-direction (positive and negative direction) and SLC 
(which in this case also coincides with SLS). 

Table B-14 shows the resulting values of SY =1 (necessary for the calculation of the 
fragility through (2.14)) and SY=1,16 % and SY=1,84% (used for the calculation of βS 
through (2.16)). In particular, for the first branch of the logic tree (Amm-1), there are 
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shown the values for both directions examined (X and Y) with reference to the direc-
tion of load pattern application (if positive or negative) that proved most demanding 
(i.e., associated with the lower value of SY = 1 ). 

Table B-14. Values of SY = 1 obtained by comparing the capacity curve associated with the mean values of 
the random variables (median capacity curve) and the median response spectrum, at the 16% and 84% 

fractiles for the limit states SLD, SLS and SLC (first branch of the logic tree Amm-1) 

 SLD SLS = SLC 
Amm.1 - X (-) SY=1    (m/s2) 3,495 8,486 

SY=1,16% (m/s2) 5,126 11,152 
SY=1,84% (m/s2) 3,192 5,128 

Amm.1 - Y (+) SY=1    (m/s2) 5,780 7,317 
SY=1,16% (m/s2) 7,347 10,816 
SY=1,84% (m/s2) 4,484 4,949 

 

The dispersion βC , associated to the effect on SY =1 of the uncertainty in the capacity 
curve, is calculated by applying the response surface technique, as illustrated in 
§2.6.4.4. Table B-15 summarizes the 16 cases (M = 2 N ) obtained from the complete 
factorial combination at two levels of N = 4 random variables ; in the matrix of the 
Z experiments the values -1 and +1 refer to the use of the fractiles of the random vari-
ables respectively at 16% and 84%. Table B-15 shows the minimum values of SY =1 , 
for the three limit states considered, obtained from the comparison between the medi-
an spectrum and the capacity curves obtained in the two directions (positive and nega-
tive) from each of M combinations. Thus it is possible to calculate the coeffi-
cients α and β C  using equations (2.19) and (2.20). 

Table B-15 Experiment matrix of the M possible combinations of the N random variables and resulting 
values of SY = 1 (as a function of the three limit states considered) corresponding to the analyses performed 

in the X direction to the first branch of the logic tree (Amm- 1) 
Matrix experiments Z S Y = 1 (m / s 2 ) 

Masonry 
material 

Constitutive 
law of piers 

Constitutive 
law of 

spandrels 
Damping SLD SLS SLC 

-1 -1 -1 -1 4.469 5.003 5.003 
-1 -1 -1 +1 4.976 5.802 5.802 
-1 -1 +1 -1 4.471 4.904 4.904 
-1 -1 +1 +1 4.504 5.640 5.640 
-1 +1 -1 -1 4.343 6.676 6.676 
-1 +1 -1 +1 4.923 7.777 7.777 
-1 +1 +1 -1 4.675 6.263 6.263 
-1 +1 +1 +1 4.675 7.292 7.292 
+1 +1 +1 -1 4.947 8.077 8.077 
+1 +1 +1 +1 5.268 9.442 9.442 
+1 +1 -1 -1 5.091 8.356 8.356 
+1 +1 -1 +1 5.690 9.792 9.792 
+1 -1 +1 -1 4.949 6.502 6.502 
+1 -1 +1 +1 5.268 7.563 7.563 
+1 -1 -1 -1 5.127 7.916 7.916 
+1 -1 -1 +1 5.225 7.313 7.313 
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In Table B-16 the values of the contributions βC and βS  are summarized, as well as 
the total β values, obtained for the two directions X and Y, in the case of the first 
branch of the logic tree (Amm.1) as a function of the three limit states considered. On 
the basis of these values and those of SY=1 (already introduced in Table B-14), the fra-
gility curves can then be plotted as illustrated in Figure B-42. As already noted, the 
SLS is always achieved at the same time of the SLC (the curves in fact coincide). This 
result is due to the quite pronounced brittle behavior of this masonry building, mean-
ing that the building reaches the collapse with a not too widespread dam-
age. Moreover, one notes that this building is, in respect of SLD, more vulnerable in 
the X direction, while at the SLC it is more vulnerable in the Y direction (although for 
this limit state the response in the two directions is more similar). 

Table B-16 Contributions to the calculation of β: first branch of the logic tree (Amm-1) for the analyses 
performed in the X and Y directions 

 SLD SLS = SLC 

Amm.1 - X 
βS 0.237 0.388 
βC 0.067 0.194 
β 0.246 0.434 

Amm.1 - Y 
βS 0.247 0.391 
βC 0.094 0.188 
β 0.264 0.434 

 
Fig. B-42 Fragility curves for the three limit states, obtained for the first branch of the logic tree, consider-
ing the response in the two X and Y directions. 

The fragility of the building is obtained by assuming, for each level of the seismic in-
tensity, the greater of those obtained in the two directions X and Y. Figure B-43 
shows the final fragility curves for the first branch of the logic tree (Amm-1). 

 
Fig. B-43 Fragility curves for the three limit states, obtained for the first branch of the logic tree (Amm-1). 

Repeating the same procedures for the second branch of the logic tree (Amm-2), some 
analogous fragility curves are obtained as shown in Figure B-44, in which they are al-
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so compared with those of Figure B-43. It is worth noting that, despite the capacity 
curves obtained for the two models are rather different, in terms of seismic safety the 
results are very similar, at least with regard to the SLC. 

 
Fig. B-44 Fragility curves for the three limit states, obtained by the two branches of the logic tree. 

On the basis of the different weight assumed for the two branches of the logic tree, the 
final fragility curves can be easily obtained as illustrated in Figure B-45; in particular, 
it is useful to recall that a different subjective probability has been attributed to the 
two branches of the logic tree, equal to 0.6 for the hypothesis of perfect wall-to-wall 
connection (Amm-1) and 0.4 for the second branch (Amm-2). 

 
Fig. B-45 Final fragility curves for the three limit states, resulting from the combination of the results ob-
tained in the two branches of the logic tree (Amm-1 and Amm-2). 

Finally, we proceed to calculate the mean annual frequency of exceedance of the limit 
state  (λSL) applying the theorem of total probabilities, i.e. through the use of 
(2.12). The calculation of the integral requires to extend the summation to a number 
of points such as to make stable the estimate of λSL; in particular, to this end, we re-
call how the mean hazard curve has been approximated by a quadratic function in the 
logarithmic space whose parameters are defined in (B.1). 
Table B-17 shows the values of the mean annual frequency of exceedance of the limit 
 

Table B-17 Calculation of the mean annual frequency of exceedance of the limit state, obtained by com-
bining the results of the two branches of the logic tree 

 
λSL 

(Amm-1) 
λSL 

(Amm-2) λSL Target 
(Class II) 

Outcome 
of the veri-

fication 
Tr,SL 

SLD 0.01080 0.00891 0.00997 0.045 YES 100 
SLS 0.00301 0.00336 0.00315 0.0047 YES 318 
SLC 0.00301 0.00336 0.00315 0.0023 NO 318 

states for the two branches of the logic tree. The estimate of λSL is obtained by weigh-
ing the values obtained from the two branches through their subjective probabilities 
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(Amm-1, probability 0.6 and Amm-2, probability 0.4). The verification is then per-
formed by comparing these values with the corresponding maximum admissible 
thresholds (Table 2.1); in this case, being a residential building, the thresholds pro-
posed for class of use II have been assumed. 
In the specific case the building would not be verified in respect of SLC 

B.7.4.1 Assessment by the method described in  §A.1.1.1 

In the following the application of the alternative method for the evaluation of the 
fragility illustrated in Appendix A.1.1.1 and based on the use of non-linear static 
analysis is exemplified. 
In this case, the parameters that define the fragility (preliminary step necessary for the 
calculation of the mean annual frequency of exceedance of the limit states) are calcu-
lated with respect to the limit state variable YSL computed as a function of the level of 
intensity S = s, rather than with respect to the variable SY = 1 as described in B.7.4. 
The procedure requires that, for each intensity value, the fragility is evaluated for both 
directions and then the highest value is chosen. Similarly to what carried out in the 
case of method C, in the following the procedure is described and exemplified only in 
the case of Amm-1 and for the X direction. 
Figure B-46 illustrates the ISA curves obtained by applying a nonlinear static proce-
dure based on the use of overdamped spectra; the curves refer to the comparison be-
tween the median capacities curves (obtained from the analysis with the positive and  
 
 

 
Fig. B-46 ISA curves obtained from the comparison between the median capacity curve and the median 

response spectrum as a function of the positive and negative directions (X direction -Amm.1): the horizon-
tal dotted lines exemplify the potential use of such curves for 6 different values of the seismic intensity as 

shown in Table B-18. 
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Table B-18. Values of YSL obtained by comparing the median spectrum and the capacity curve associated 
with the mean values of the random variables (first branch of the logic tree Amm-1) 

TR 30 101 201 475 975 2475 
Sa (T1 ) 0131 0245 0337 0528 0713 1,063 
+ d [�] 0.00223 0.00452 0.00623 0.00977 0.01614 0.08553 
d − [�] 0.00194 0.00387 0.00533 0.00838 0.01533 0.08442 

YSLD 0.38 0.76 1.04 1.64 3.00 16.55 
YSLS 0.10 0.20 0.27 0.43 0.79 4.34 
YSLC 0.10 0.20 0.27 0.43 0.79 4.34 

 
negative directions) and the median response spectrum; in the abscissa the value of 
the displacement demand d is illustrated . Entering in this curve with a generic value 
of the intensity, the displacement demand may be obtained and, from this, one calcu-
lates the limit state variable YSL, that is then used to calculate the fragility. 
By way of example, Table B-18 shows the resulting values of d+ (positive direction) 
and d- (negative direction) that, when related to the displacements corresponding to 
the attainment of different SLs (Table B-12), allow to evaluate the values of YSL (e.g. 
for values of intensity corresponding to some of the return periods considered by the 
INGV hazard). 
We proceed now to the calculation of the different contributions of β (total standard 
deviation of the logarithm of the variable YSL ) according to the procedure outlined in 
Appendix A.6. 
The contribution βS due to the uncertainty on the shape of the response spectrum is 
evaluated from the median capacity and the displacement demand produced by the re-
sponse spectra at 16% and 84% fractiles. Figure B-47 shows the resulting ISA curves 
for two directions (positive and negative) of load pattern in the X direction; the hori-
zontal dotted lines correspond to the intensity values listed in Table B-18. The calcu-
lation of βS is carried through the (A.13) and the result is shown in Table B-19.  

 
Fig. B-47 ISA Curves calculated by comparing the median capacity curve with the response spectra at 
16% and 84% percentiles 

 



CNR-DT 212/2013 

  145 

Table B-19. Values of βs  calculated according to the approach set out in Appendix A.1.1.1- first branch of 
the logic tree (Amm-1) 

 TR 30 101 201 475 975 2475 

βS 
SLD 0.278 0.225 0.240 1.399 1.399 1.295 
SLS 0.278 0.232 0.250 1.399 1.399 1.295 
SLC 0.278 0.232 0.250 1.399 1.399 1.295 

 
It is worth noting how, according to such approach, a different value of the disper-
sion βS is obtained for each level of intensity, and not a single value as in the case of 
the application of method C described in §2.6.4 and exemplified in §B.7.4. It is ob-
served that the dispersion βS is very limited for the low return periods, when the re-
sponse is almost linear and the spectral acceleration at the period T1 provides a good 
measure of the seismic intensity, while with the increase of TR , when the structure 
progresses into the non-linear range, the variability of the shape of the response spec-
trum significantly affects and increases the value of βS. It is also noted that, for given 
values of the return period, the value of βS is almost always independent of the 
SL; this is because the way of application of the load pattern for which the building 
results more vulnerable is almost always the same. 
The dispersion βC due to the randomness on the capacity curve is obtained with the 
response surface technique. 

Table B-20 Experiment matrix of M possible combinations of N random variables and values of 
YSL corresponding to TR = 201 years - first branch of the logic tree (Amm-1) 

Matrix of Z experiments  TR = 201 years 

Masonry 
material 

Constitutive 
law of piers 

Constitutive 
law of 

spandrels 
Damping YSLD YSLS YSLC 

-1 -1 -1 -1 0.830 0.218 0.218 
-1 -1 -1 +1 0.830 0.218 0.218 
-1 -1 +1 -1 0.830 0.218 0.218 
-1 -1 +1 +1 0.830 0.218 0.218 
-1 +1 -1 -1 0.831 0.218 0.218 
-1 +1 -1 +1 0.830 0.218 0.218 
-1 +1 +1 -1 0.830 0.218 0.218 
-1 +1 +1 +1 0.830 0.218 0.218 
+1 +1 +1 -1 0.742 0.195 0.195 
+1 +1 +1 +1 0.701 0.184 0.184 
+1 +1 -1 -1 0.763 0.200 0.200 
+1 +1 -1 +1 0.663 0.174 0.174 
+1 -1 +1 -1 0.742 0.195 0.195 
+1 -1 +1 +1 0.701 0.184 0.184 
+1 -1 -1 -1 0.752 0.197 0.197 
+1 -1 -1 +1 0.660 0.173 0.173 

 

In Table B-20 are summarized the 16 cases ( M=2N ) obtained by the complete facto-
rial combination at two levels of N = 4 random variables and the matrix of experi-
ments Z. Table B-20 shows the maximum values of YSL obtained from the comparison 
between the median spectrum and the capacity curves obtained for the two directions 
of load pattern and for each of M combinations: by way of example the values corre-
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sponding to the seismic intensity with a return period equal to TR=201 years are 
shown. 
Thus it is possible to calculate the coefficients α and βC using equations (2.19) and 
(2.20). 
 
Once computed the values of βS and βC for the three limit states and the intensity lev-
els considered, it is possible to combine them through (2.15) in order to define the 
value of the total dispersion β. Table B-21 summarizes the partial and total values of 
the dispersion. It is possible to observe how with the increase of the level of seismic 
intensity s, in particular from T R = 475 years, the contribution of βS becomes prepon-
derant in relation to that associated to the capacity. 
Having repeated the analysis for the Y direction, it is possible to obtain, for different 
levels of seismic intensity, the values of YSLD , YSLS and YSLC , and the corresponding 
dispersions βSLD , βSLS and βSLC . By (2.14) one can then calculate the fragility. 
Figure B-48 shows the fragility curves obtained, for the first branch of the logic tree 
(Amm-1), considering the response in the two directions X and Y. 

Table B-21 Contributions to the calculation of β: first branch of the logic tree (Amm-1) - direction X. 

 T R 30 101 201 475 975 2475 

βS 
SLD 0.278 0.225 0.240 1.399 1.399 1.295 
SLS 0.278 0.232 0.250 1.399 1.399 1.295 
SLC 0.278 0.232 0.250 1.399 1.399 1.295 

βC 
SLD 0.106 0.087 0.083 0.405 0.606 0.167 
SLS 0.327 0.318 0.314 0.641 0.835 0.322 
SLC 0.327 0.318 0.315 0.642 0.836 0.323 

β 
SLD 0.297 0.241 0.254 1.457 1.525 1.305 
SLS 0.429 0.393 0.401 1.539 1.629 1.334 
SLC 0.429 0.394 0.402 1.539 1.630 1.334 

 
It is possible to observe how the trend of the fragility curves is not that of a lognormal 
distribution, and is quite irregular since the value of the dispersion estimated with the 
proposed procedure is not constant. In this specific case, the dispersion increases with 
increasing intensity, as both the dispersion of the spectral shape and the variability of 
the capacity curve increase. 

 
Fig. B-48 Fragility curves for the three limit states, obtained for the first branch of the logic tree, consider-
ing the response in the two directions X and Y according to the approach proposed in Appendix A.1.1.1.. 

The fragility of the building is obtained by taking, for each level of intensity, the 
greater of those obtained in the two directions X and Y. Figure B-49 shows the final 
fragility curves for the first branch of the logic tree (Amm-1). 
Repeating the same procedure for the second branch of the logic tree (Amm-2) the 
fragility curves shown in Figure B-50 are obtained and thus compared with those of 
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Figure B-49. It is noted that, despite the capacity curves obtained for the two models 
are rather different, in terms of seismic safety the results are more similar. 
Finally the results are combined using the technique of the logic tree, analogously to 
what illustrated in §B.7.4 and assuming the subjective probability equal to 0.6 for the 
first branch (Amm.1); the resulting fragility curves are shown in Figure B-51. 

 
Fig. B-49 Fragility curves for the three limit states, obtained for the first branch of the logic tree (Amm-1). 

 
Fig. B-50 Fragility curves for the three limit states, obtained by the two branches of the logic tree. 

 
Fig. B-51 Final fragility curves for the three limit states, obtained by combining the results obtained for the 

two branches of the logic tree (Amm-1 andAmm -2). 

 
One can then proceed to the calculation of the mean annual frequency of exceedance 
of the limit state by applying the theorem of total probability, as explained in 
§B.7.4.1. It is useful to highlight how, in this case, the computation of the integral 
must be carried out necessarily in numerical form, since the values of the parameters 
defining the fragility (µ,β) vary depending on the intensity level S = s. Table B-22 
shows the values obtained. 

Table B-22 Computation of the mean annual frequency of exceedance of the limit state according to the 
approach proposed in Appendix A.1.1.1., combining the results of the two branches of the logic tree 

 
λ 

 (Amm-1) 
λ 

(Amm-2) 
λ 

 
Target 

(Class II) 
Outcome of 
verification Tr,SL 

SLD 0.0125 0.0120 0.0123 0.045 YES 81 
SLS 0.00260 0.00262 0.00261 0.0047 YES 383 
SLC 0.00260 0.00262 0.00261 0.0023 NO 383 
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In the following a comparison of results obtained by applying the method C illustrated 
in §B.7.4.1  and the alternative procedure proposed in Appendix A.1.1.1 is illustrated. 
Figure B-52 shows the comparison in terms of fragility curves for the three limit 
states considered, while Table B-23 in terms of the values of the mean annual fre-
quencyof exceedance of the limit state (and their return periods). 

 
Fig. B-52 Final fragility curves for the three limit states compared as obtained by the method C and meth-

od illustrated in §A.1.1.1. (as resulting from the combination of two branches of the logic tree) 

 

It is noted that the results are in good agreement and provide substantially similar re-
sults in terms of verification. 

Table B-23 Comparison of mean annual frequency of exceedance of the limit state as obtained from the 
application of the method C and from that proposed in Appendix A.1.1.1. 

 Method C Method Appendix A.1.1.1. 
λSL Tr,SL λSL Tr,SL 

SLD 0.00997 100 0.0123 81 
SLS 0.00315 318 0.00261 383 
SLC 0.00315 318 0.00261 383 

B.7.5 Comparison of the two methods 

The comparison between the results obtained for the masonry building under exami-
nation by using the methods A and C confirms their reliability in the evaluation of the 
seismic safety through the adoption of non-linear analysis methods. The two methods 
are entirely similar from the point of view of the calculation of the fragility, computed 
with respect to the seismic intensity S that leads to a given limit state LS (Y=1). 
In Figure B-53 the fragility curves obtained for the three limit states are com-
pared; Table B-24 summarizes the values of the parameters that describe the fragility 
(SY = 1 and β) in the two cases. 
It is observed how the method C is always a little more on the safe side than the 
method A, as one might hope, since it is based on a more approximate method of 
analysis (i.e. static rather than dynamic), although non-linear. Method A also allows 
one to distinguish a minimum difference between limit states SLS and SLC, which in-
stead coincide in the case of method C, given the rather brittle nature of the response 
of the building examined as discussed in §B.7.4. 
The median value of the seismic intensity SY = 1 is in a good agreement in the two cas-
es; in general, the value obtained by method C is more on the safe side, apart the case 
of the SLS that this method cannot distinguish from the SLC; in this case, the value 
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obtained is still slightly higher. The values of β were higher in the case of method C 
for SLS and SLC, while there is a lower dispersion in the case of the first limit state. 

 
Fig. B-53 Final fragility curves for the three limit states, obtained by combining the results of the two 

branches of the logic tree (Amm-1 and Amm-2). 

Table B-24. Comparison of the results provided by the Methods A and C:  median value of the intensity 
that leads to the attainment of three limit states examined and corresponding values of β 

 SLD SLS SLC 

Method A SY=1 4.224 7.201 8.126 
β 0.342 0.247 0.315 

Method C SY=1 3.495 7.317 7.317 
β 0.246 0.434 0.434 

 

Table B-25 finally compares the values of the mean annual frequency of exceedance 
of the limit states SLD, SLS, SLC and the corresponding return periods of occur-
rence. As one would expect, already from the comparison of fragility curves, the val-
ues provided by the two methods are similar and more on the safe side in the case of 
method C. 

Table B-18. Comparison of the results provided by the Methods A and C: mean annual frequency of ex-
ceedance of the limit states SLD, SLS, SLC and corresponding return periods (compared with the maxi-

mum tolerated thresholds). 

 λSLD λSLS λSLC 
Method A 0.0082 0.0023 0.0020 
Method C 0.0108 0.0030 0.0030 

Maximum tolerated thresholds 0.045 0.0047 0.0023 
 Tr,SLD Tr,SLS Tr,SLC 

Method A 122 426 508 
Method C 100 318 318 

Maximum tolerated thresholds 22 213 435 
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C Application example of a reinforced concrete 
building 

C.1 Premise 

The procedure for the evaluation of seismic safety of concrete structures described in 
chapters 2 and 4 was applied to a school building actually existing, of which, howev-
er, were varied both the position, and hence the hazard at the site, and the properties 
of the materials. 
The risk analysis was repeated adopting both a modelling without degradation and 
with  degradation (§2.4 ). The first one corresponds to the current state of the art of 
non-linear analysis of reinforced concrete structures, and rests on foundations to be 
considered as well established both from a procedural viewpoint and that of the mod-
els available. 
However, it was decided to introduce also the second, while recognizing that it is the 
subject of ongoing research, the knowledge of which is not yet widespread in the 
technical-scientific community. There are lacking, for example, proposals for the in-
teraction between the stress resultants and in particular for the biaxial behaviour. The 
experimental results supporting the modelling of extreme behaviour such as the col-
lapse of the columns for loss of vertical bearing are still of an inadequate num-
ber. Furthermore it should be noted that these models exhibit a lower level of compu-
tational robustness than the consolidated models mentioned above. 
Therefore, the value of this second approach is to provide a frame of reference pend-
ing further developments in research and at the same time an order of magnitude of 
the differences that can be expected from the application of the two approaches. 

C.2 Description of the building 

The school complex consists of three separate buildings. The application refers to the 
main body, of which there are shown two facades in Fig. C-1 and C-2. The spatial ge-
ometry of the frame and a layout are shown, respectively in  Fig. C-10 and C-11. 
The structure was probably built in the early 60s. It consists of a reinforced concrete 
frame with emerging beams present in both directions and is on three levels (base-
ment, ground floor and first floor); the average height of the floors above ground is ~ 
3.8m, of the basement ~ 4.4m. 
The layout of the building (~ 530 m2) is very irregular with a large (in percentage) off-
sets on all fronts. The basement does not occupy all the footprint but two distinct por-
tions: one part to the southwest directly accessible from the outside (~ 150 m2), and a 
smaller portion (~ 90 m2) at the north-west stairwell. The foundations are of the direct 
type and placed on different levels.The walls against the soil of the underground 
rooms are built in reinforced concrete. 
The floor diaphragms are of brick and cement with an estimated thickness of 
20+5cm. The bays of the floor diaphragms alternate rather irregular spans: from a 
minimum of 3m to a maximum of 9m (ground floor atrium cover). 
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Upon a visual examination, the state of conservation of the structure looks rather 
good. 

 
Fig. C -1 Photo NE view. 

 
Fig. C -2 Photo NW view. 

C.3 Assessment procedure 

The application example is carried out with reference to the assessment method B de-
scribed in section 2.6.3 . The corresponding procedure for assessing the degree of 
protection with respect to the three limit states SLD, SLS and SLC for the building in 
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question consists of the following steps (in brackets there is indicated the section in 
which each step is described in detail for the case): 
 

1. Determination of seismicity of the site in question (§C.4 ) 
a. Data acquisition of the hazard at the site (§ (§C.4.1 ) in terms of spec-

tral ordinates in acceleration (fractiles 16%, 50% and 84%, for the nine 
average return periods from NTC2008) and possibly the values of M 
and R from the disaggregation procedure. 

b. Selection of a set of N recordings of motion (§C.4.2 , three orthogonal 
components) compatible with the hazard mentioned in point 1.a, using 
the criteria described in §2.2.2 and §A.4. 

2. Acquisition of data related to the soil, building materials, geometry, renforce-
ment and construction details (§ (§C.5 ) 

3. Assessment of available data and modelling of the uncertainties through a log-
ic tree and random variables (§ (§C.6 ) 

a. Choice of the uncertainties to be modeled by a logic tree, the corre-
sponding levels (branches) and weights (§ C.6.1) 

b. Determination of the probability distribution of the other random vari-
ables  

4. Choice of the method of analysis (in this case the method B, § C.7 ) 
5. Establishment of a structural model (§C.8 ) appropriate for the method of 

analysis and for the chosen mode of quantification of the limit states (model 
with degradation or without degradation, in this example both options are pre-
sented) 

a. Modeling of the site for the local seismic response (§ C.8.1 ) 
b. Modelling of the structure (§C.8.2 ) 

6. For each branch of the logic tree: 
a. Sampling of N realizations of the set of random variables. Each im-

plementation is associated with one of the N recordings of point 1.b 
and determines a distinct realization of the site-structure model. 

b. Execution of modal analysis of each structural model. Selection of sig-
nificant modes. Determination of the average fundamental period T 1 

c. Determination from the data referred to in 1.a of the average hazard 
curve (§2.2.1 ) on rock for the spectral ordinate at the fundamental pe-
riod Sa(T1) 

d. For each model: 
i. In accordance with the evaluation method B, and with the cho-

sen variant of static nonlinear analysis (pushover modal meth-
od, § §C.7.1 ), two pushover analyses are carried out (positive 
and negative signs of the pushing) with distribution of modal 
forces for each significant mode (point 6.b) 

ii. Determination of the characteristics of the equivalent oscillator 
(not symmetrical) for each significant mode (§C.7.1.1 ) 

iii. Determination of the incremental dynamic analysis curve by 
combining at each step the responses of the equivalent oscilla-
tors to the current seismic motion (at least two horizontal com-
ponents, § §C.7.1.2 ) 

e. Determination of the fragility curves for the three SLs 
f. Determination of the average annual frequency of exceeding the three 

SLs, λSLD, λSLs and λSLC. 



CNR-DT 212/2013 

  153 

 
The step 6.d is the only specific element of the evaluation method B, all others are 
common to all methods. 

C.4 Seismic action 

As indicated in § §2.2.1 , the seismic action is defined by a hazard curve and a set of 
recordings of natural motions (or artificial time histories) compatible with the domi-
nant mechanisms that generate events at the site on rock/rigid soil. The next two sec-
tions present the derivation of the average hazard curve for the site from the data pro-
vided in NTC2008, and the selection of natural records in a number equal to the min-
imum of twenty, as indicated in §2.2.2 . 

C.4.1 Hazard curve 

The starting data for the determination of the average hazard curve are the fractiles at 
16%, 50% and 84% of the spectral ordinates in acceleration provided for nine average 
return periods in NTC2008. Fig. C.3  shows the nine median response spectra. 

 
Fig. C.3 Median isoprobable spectra on rock for the site in question. 

 

Table C-1  shows the values of the three parameters ag, F0 and TC* of the normative 
spectral shapes approximating to the iso-probable spectra  at 16%, 50% and 84%. The 
table also shows the corresponding frequency λS=1/Tr.. Fig. C.4  shows the fractile 
hazard curves in terms of peak ground acceleration (black) and of spectral accelera-
tion for the average period of the models (see § C.8.2 ) corresponding to the first 
branch of the logic tree (§C.6.1) . 
The difference between the fractiles allows one to obtain the value of the term of epis-
temic uncertainty βH on the hazard according to equation (2.3), calculated as below, 
with reference to the first branch of the logic tree: 
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  (C.1) 

This value allows to amplify the median curve to obtain the mean curve, according to 
Equation (2.2). The calculated values for the nine return periods are shown in Table 
C-2. 
 

Table C-1 parameters of the normative spectral form approximating to the isoprobabile response spec-
trum and dominant event for varying average frequencies of exceedance at the site in question. 

Tr  λ ag Fo TC* ag16% ag84% 
30 3.33E-02 0.041 2.549 0.278 0.032 0.047 
50 2.00E-02 0.054 2.565 0.295 0.045 0.062 
72 1.39E-02 0.066 2.480 0.329 0.056 0.081 
101 9.90E-03 0.079 2.477 0.340 0.068 0.098 
140 7.14E-03 0.092 2.487 0.350 0.080 0.115 
201 4.98E-03 0.109 2.474 0.386 0.094 0.137 
475 2.11E-03 0.168 2.515 0.388 0.137 0.210 
975 1.03E-03 0.236 2.417 0.414 0.186 0.295 
2475 4.04E-04 0.365 2.329 0.430 0.268 0.471 

 
Table C-2 First branch of the logic tree: calculation of the uncertainty on the hazard curve and transition 

to the mean curve. 
Tr λ Sa(T1)16% Sa(T1)50% Sa(T1)84% βh λm 

30 3.33E-02 0.008 0.013 0.020 0.43 3.66E-02 
50 2.00E-02 0.019 0.026 0.037 0.34 2.12E-02 
72 1.39E-02 0.026 0.035 0.052 0.34 1.47E-02 
101 9.90E-03 0.034 0.046 0.065 0.32 1.04E-02 
140 7.14E-03 0.044 0.059 0.080 0.30 7.48E-03 
201 4.98E-03 0.054 0.073 0.098 0.30 5.20E-03 
475 2.11E-03 0.086 0.113 0.151 0.28 2.19E-03 
975 1.03E-03 0.122 0.163 0.224 0.31 1.07E-03 
2475 4.04E-04 0.188 0.250 0.371 0.34 4.28E-04 

 
To the mean curve, defined in nine points, is then adapted a quadratic function in log-
arithmic space given by the expression (2.13). The parameters that minimize the devi-
ation are in this case: 
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Fig. C-4 Median curve hazard (solid line) and 84% fractile (hatched), in terms of peak ground acceleration 

(black) and of spectral ordinate Sa (T 1 ≅ 1.52 s) (red) for the site under consideration. 

C.4.2 Choice of records of seismic motion 

Table C-3  shows the data of disaggregation (relative to the median hazard curve in 
terms of peak ground acceleration) for the site in question. The table provides the val-
ues of magnitude and distance for the average periods of exceedance from 30 to 2,475 
years. The values for all the corresponding frequencies are presented graphically 
in Fig. C-5. 
 

Table C-3 Disaggregation of the median value of the average frequency of exceeding of the peak ground 
acceleration for the site in question. 

Tr λ M R epi ε 
30 3.33E-02 5.644 51.221 0.233 
50 2.00E-02 5.703 43.917 0.280 
72 1.39E-02 5.728 38.624 0.317 
101 9.90E-03 5.742 34.767 0.348 
140 7.14E-03 5.755 31.585 0.381 
201 4.98E-03 5.765 28.666 0.422 
475 2.11E-03 5.810 23.058 0.566 
975 1.03E-03 5.877 20.526 0.718 
2475 4.04E-04 6.025 18.779 0.958 

 

 
Fig. C-5 Magnitude and distance from the dominant event provided by the disaggregation as function of 

the average frequency of exceedance. 
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The recordings have been selected in a range of magnitude between the values 5.6 and 
6.5, and of distance between 10km and 30km. These intervals, indicated in §2.2.2 as a 
choice generally appropriate in the absence of specific data from disaggregation, are 
in this case roughly centered around the values of disaggregation. The Fig. C-
6  shows the indicated range and the recordings selected, within the database used 
(aggregation of European ESD databases, and Italian databases SIMBAD and 
ITHACA). 
Table C-4  provides details of the selected recordings. In particular, it provides the 
values of the peak ground acceleration and spectral acceleration at the average fun-
damental period of the models in the first branch of the logic tree (§C.6.1 ). Three 
sample motions, which consists of two orthogonal components of horizontal accelera-
tion, are shown in the following figures, together with the corresponding response 
spectra. The figures report in the caption also the name of the files containing the time 
series, according to the name of the database used. 

 
Fig. C-6 Magnitude-distance couplings of the recordings of the database (5 km <R epi  <100 km). There are 

highlighted the points relative to the selected recordings and the bounds of the target ranges. 
 
 
 

 
 
 
 

Fig. C-7 Record No. 1: time histories of the orthogonal components of horizontal acceleration, and respec-
tive response spectra (the two vertical lines indicate the range of variation of the fundamental periods of 

the 30 realizations of the models A or B). 
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Table C-4. Characteristics of selected motions (R epi  in km, peak ground and spectral acceleration in m/s2, 

"as" indicates an aftershock). 
# DB Event M station Repi agX SaX(T1) agY SaY(T1) 
1 E Friuli (as) 6.0 ST28 14.0 1.386 1.029 2.322 1.734 
2 E Montenegro (as) 6.2 ST75 17.0 1.731 0.750 2.721 0.840 
3 E Preveza 5.4 ST123 28.0 1.404 0.522 1.330 0.537 
4 E Umbria Marche (as) 5.6 ST86 20.0 0.963 0.629 1.316 1.353 
5 E Umbria Marche (as) 5.6 ST265 21.0 1.073 1.201 0.802 1.077 
6 E Izmit (as) 5.8 ST575 15.0 0.716 0.522 3.118 0.524 
7 E Ano Liosia 6.0 ST1100 16.0 2.611 0.924 3.018 1.054 
8 E Ano Liosia 6.0 ST1101 17.0 1.173 0.571 1.070 0.805 
9 E Ano Liosia 6.0 ST1257 18.0 1.091 0.835 0.843 0.544 
10 E Ano Liosia 6.0 ST1258 14.0 2.392 1.039 2.164 0.763 
11 E South Iceland (as) 6.4 ST2482 21.0 1.088 0.579 1.622 0.921 
12 E South Iceland (as) 6.4 ST2557 15.0 1.251 1.135 1.140 0.559 
13 E South Iceland (as) 6.4 ST2497 20.0 0.505 0.736 1.033 0.758 
14 E South Iceland (as) 6.4 ST2556 20.0 1.047 0.946 0.849 0.875 

15 S Near Miyakejima 
Island 6.4 TKY011 21.0 1.276 1.070 1.972 1.006 

16 S NW Kagoshima 
Pref. 6.1 KGS002 12.0 5.431 0.711 7.999 0.552 

17 S NW Kagoshima 
Prefecture 6.0 KGS002 16.0 4.529 1.517 7.818 0.952 

18 S South Iceland 6.4 102 24.0 1.275 0.842 0.618 0.562 
19 S South Iceland 6.4 105 21.0 1.108 0.580 1.662 0.920 
20 S South Iceland 6.4 305 20.0 0.539 0.760 1.057 0.732 
21 S South Iceland 6.4 306 20.0 1.067 0.927 0.892 0.839 

22 S Umbria-Marche 
(3rd shock) 5.6 NRC 20.0 1.314 1.355 0.939 0.615 

23 S L'Aquila (as) 5.6 GSA 16.8 2.811 0.582 2.485 0.668 
24 S Parkfield 6.0 36177 19.4 3.430 1.487 2.248 0.921 
25 S Parkfield 6.0 36445 15.2 1.437 2.332 2.225 2.784 

26 S East Fukushima 
Pref 5.9 FKS011 24.0 1.798 1.583 1.564 1.363 

27 S Mid Niigata Pref 6.2 NIG021 21.0 2.499 0.764 2.799 0.873 
28 S Mt Fuji Region 5.9 SZO009 22.0 1.442 0.660 1.225 0.581 
29 S Mt Fuji Region 5.9 YMN006 20.0 2.373 0.797 1.629 0.552 
30 I Friuli (4th Shock) 5.9 SRC0 16.4 1.288 0.937 2.444 1.933 
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Fig. C -8 Record No. 3: time histories of the orthogonal components of horizontal acceleration, and re-

spective response spectra. 

 
Fig. C -9 Record No. 4: time histories of the orthogonal components of horizontal acceleration, and re-

spective response spectra. 

C.5 Knowledge of the structure 

For the structure in question the documents of the original structural design are not 
available. Based on a pre-existing architectural survey a structural survey was then 
carried out from scratch, which made it possible to reconstruct the structural sys-
tem. Based on the reconstructed structural geometry and estimated values of the 
loads, and with assumptions made for the materials and amounts of reinforcement 
(geometric percentages in the columns according to the regulations in force at the 
time of construction and reinforcement in the beams from a simulated design), a pre-
liminary linear model was set up that allowed an approximate evaluation of the differ-
ent importance of the elements, and was then used to direct the subsequent tests cam-
paign. The Fig. C-10 shows the model (the floors, modeled with equivalent rods as 
required by the code OpenSees used for subsequent nonlinear analysis, are not 
shown). The figure also shows in red the arrangement and the relative intensity of the 
loads on the beams. 
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Fig. C-10 Preliminary model and load distribution from the floors on the beams. 

 

The premilinary model constitutes the first step of the final model described in 
§C.8.2 , in which the geometry (nodes, elements, masses) is the final one, while for 
the elements a linear behaviour with cracked stiffness was adopted. The analysis per-
formed is of a modal type with a response spectrum and the state of stress of the ele-
ments (calculated with reference only to the columns) is measured by the expression: 

  (C.3) 

where the moments acting on the two planes of bending are those obtained by the 
modal combination. 
The Fig. C-11  shows the plan of the ground floor of the building with indication of 
the most stressed columns and of those chosen for carrying out the tests on the steel 
bars and the extraction of material for strength tests. The columns were chosen in 
general among those most stressed and adopting the criterion of repetitiveness. The 
reinforcement samples have been extracted from the columns of a larger cross section 
among those chosen, through not at the underground floor (not modeled). The results 
of the tests are shown in Table C-5 . 
As for the strength of concrete, the average value of the tests is 14.7 MPa, with a 
standard deviation of 2.82 MPa. It has been finally chosen to adopt an average of 14 
MPa with a 20% coefficient of variation. As regards the yield strength of the steel it 
was decided to adopt the mean value of 355 MPa, with a dispersion from literature 
equal to 10%. 
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Fig. C-11 Position of the elements subject to testing. 

 
Table C-5. Results of tests on the columns 

Element B (mm) H (mm) Rebar 
long. 

Rebar 
trasv. 

fc (MPa) fy (MPa) 

P3 300 500 6 f 20 2 f 6/200 16.7 - 
P15 300 600 6 f 20 2 f 6/200 15.4 - 
P26 300 300 4 2 f1 2 f 6/200 17.8 - 
P34 300 1000 8 20 f 2 f 6/200 11. 9 337 
P39 300 500 6 2 f1 2 f 6/200 11. 6 370 

Most stressed columns based on 
preliminary analysis
Columns suggested to inspections & 
testing (core and rebar sampling, rebar
layout survey
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C.6 Modelling of the uncertainties 

C.6.1 Logic tree 

For the purpose of this application it has been modelled by a logic tree only the epis-
temic uncertainty on the effect of the infills on the response of the structure. As is 
known, the infills can have a positive or negative effect, depending on their distribu-
tion in plan and in elevation, and on the ratios of stiffness and strength with respect to 
those of the structural members. The two choices are given equal weights. The Fig. C-
12 shows the in-plan distribution of the main infills to which a structural function can 
be attributed. The modeling with equivalent rods is described in § §C.8.2 . 

 
Fig. C-12 Distribution of the infills in plan. 

C.6.2 Continuous random variables 

In this application continuous random variables are used to describe the following un-
certainties: 

• Uncertainty in the strength of materials fc and fy, and in the ultimate deforma-
bility of the concrete εcu; 

• Model uncertainty relative to the thresholds of monotonic defor-
mation, θ y, ∆θ f  and ∆θa, in the sectional phenomenological laws for the de-
grading beam-column elements (see §C.8.2 ); 

• Model uncertainty relative to the thresholds of cyclic deformation, θV, θf and 
θa, for the a posteriori verification of the beam-column elements without deg-
radation (see § §C.8.2 ); 

• Uncertainty about the parameter of cyclic degradation of the elements γ; 
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• Uncertainty related to the resistance and deformability of the infills Ntu and u
tu, , for the branch of the logic tree in which they are included. 

 
For all the mentioned variables it was adopted a marginal distribution of the lognor-
mal type, defined by two parameters: the median and standard deviation of the loga-
rithm β. 
As regards the statistical dependence among the variables, in general different types 
of variables were considered as independent from each other (eg: ), with the 
exceptions consisting of: 

• variables Κ40 and Ky, representing the error in stiffness at 40% of the yield 
strength and at the yield strength, that are considered perfectly correlated to 
ensure the condition K40 > Ky. In practice, then, it is sampled a single standard 
normal variable ε ~ N(0,1), which is amplified by the specific dispersion of 
each variable obtaining the factors 

40lnexp( )Kεσ  and lnexp( )
yKεσ  which multi-

ply the corresponding medians. 
• variables ∆θ f (Haselton et al 2007) and ∆θa (Zhu et al 2007) which represent 

the threshold of monotonic deformation at the peak strength of the constitutive 
law of the element and the cyclic threshold for collapse due to loss of vertical 
bearing, to be used in the a posteriori verification, are considered perfectly 
correlated to avoid unrealistic situations in which a very ductile element (∆θf 
>> 1) finds itself losing vertical bearing prematurely (∆θa << 1). As in the 
previous case one proceeds by sampling a single standard normal variable and 
amplifying it with the appropriate dispersion. 
 

As for the statistical dependence for variables of the same type between one element 
and another (spatial distribution of mechanical properties of materials, or correlation 
between the error terms of deformation models), it was adopted in a simplified man-
ner a model of equicorrelation, with the values shown together with the parameters of 
the marginal distribution in Table C-6 . 
As regards the variables that describe the properties of materials, the constant correla-
tion adopted is a simplification that ignores the dependence on the distance between 
the elements (an alternative model could have adopted a trend with a decay of the cor-
relation coefficient with increasing distance, slower for elements of the same floor 
and faster from one floor to another, to reflect the construction sequence). 
As for the model errors, the indicated correlation values are assigned on the basis of 
the judgment of the authors, as the adopted model (the set of deformation thresholds 
of Haselton et al 2007) does not provide the correlation between the errors28. 
 
 
 
 
 
 
 
                                                 
28 It is necessary in any case to impose a correlation between such terms since the sampling of inde-
pendent variables would inevitably lead to a high number of unrealistic combinations, for which, 
among other things, the structural analysis would not achieve convergence.  
 

yffc ⊥
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Table C-6. Continuous random variables: median, dispersion and correlation 
 

Variable Median Dispersion Correlation 
f c (MPa) 14.0 0.2 0.7 

εcu 0.006 0.2 0.7 
fy (MPa) 338.0 0.1 0.8 
K40 Eq.(4.16) 0.38 0.8 
Ky Eq.(4.17) 0.36 0.8 
θy Eq.(4.11) 0.33 0.8 
∆θ f Eq.(4.11) 0.61 0.8 
∆θα Eq.(4.15) 0.72 0.8 
θ f Eq.(4.9) 0.35 0.8 
θV Eq.(4.12) 0.27 0.8 
θa Eq.(4.13) 0.35 0.8 
γ Eq.(4.19) 0.5 0.8 
Ν tu Eq.(C.20) 0.25 0.7 
utu §C.8.2 0.25 0.7 

 

The simulation of correlated values is implemented by expressing the generic 
lognormal error ε (which multiplies the corresponding median) as a product of inde-
pendent lognormal variables29: 
  (C.4) 

in which ~ LN(0,βε), , and η ~ LN(0,βη).  The latter variable is sampled on-
ly once for the entire vector ε. The dispersions βε andβη are obtained as functions of 
the total dispersion of the model and of the correlation coefficient assigned using the 
expressions: 

  (C.5) 

  (C.6) 

In practice, then, for each random quantity (for example the strength of concrete), 
if m is the number of the structural elements, there are sampled m +1 lognormal inde-
pendent variables (the m variables   and ). 
The Fig. C-13 shows the histograms of the relative frequency of the sampled values of 
variabiles of the strength of the concrete, fc, and of the steel, fy. The figure also shows 
the lognormal densities from which the values were sampled (whose parameters are 
those shown in Table C-6). 

                                                 
29 The two factors in the expression of the error of the model correspond respectively to the component 
common to all the elements of the same type and to that which varies from one element to the other, 
even if nominally equal. The term η corresponds, for instance, to those among the potential hidden var-
iables not present in the model,which take on equal values for elements of the same type, as well as for 
the lack of fit, which is characterisitic of the analytical form chosen for the model and not of the ele-
ment. The second term  corresponds to the hidden variables that take on different values for nomi-
nally equal elements. 
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Fig. C -13 Properties of the materials: histograms of the relative frequency of sampled values and corre-
sponding density (histograms are obtained with all the sampled values, i.e. for all elements in all the N 

simulations). 
 

The Fig. C-14 shows the effect of the randomness of the materials and of the model 
errors on the constitutive law M- θ of the plastic hinge. The figure shows in blue the 
laws with degradation (continuous) and without degradation (dotted horizontal line 
after the peak) obtained with the median values of all random variables. The laws ob-
tained with a single realization of the variables are shown in the red line. The realiza-
tion of the strength is below the median, while that of the threshold of deformation is 
above the median. The figure also shows on the horizontal axis the cyclical thresholds 
corresponding to the start of the degradation and axial collapse (§C.8.3). 

 
Fig. C -14 Error models: M-θ constitutive relationship relative to a member with median values of the ran-

dom variables (blue) and for one of the samples (red). 
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C.7 Analysis 

As indicated in §2.6.3 , the assessment method B shares the limitations of the adopted 
static nonlinear analysis. 
In literature there are several proposals for the determination of the curve of incre-
mental dynamic analysis from non-linear static analysis, for example (Vamvatsikos 
and Cornell, 2005) (Dolsek and Fajfar, 2005) (Han and Chopra, 2006). 
Among these variants of the one that is chosen is due to (Han and Chopra, 2006) 
which is based on the modal non-linear static analyses (Chopra and Goel, 2002). This 
method is easy to implement in commercial programs, because it uses invariant force 
distributions, and is directly applicable to the actual buildings with spatial geometry 
(Reyes and Chopra, 2011). 

C.7.1 Static modal analysis method 

The modal static nonlinear method of analysis was introduced by Chopra and Goel 
(2002) with reference to plane frames. The method was then extended to spatial struc-
tures having a regular or irregular layout, still subject to one horizontal component of 
seismic motion, and finally to spatial structures excited by two orthogonal compo-
nents (Reyes and Chopra, 2011a). 
Here below the basic steps of the method with reference to spatial structures are pre-
sented. The proposed variant differs from that in (Reyes and Chopra, 2011a) which 
requires two separate analyses for the two components of motion and the use of a di-
rectional combination rule (for example the SRSS). 
 
The equations of motion of a discrete dynamical system with n degrees of freedom 
subject to two orthogonal components aX (t) and aY (t) of the seismic acceleration are 
written: 
  (C.7) 

in which M and C are the mass and damping matrices, F(u) is the vector of resisting 
forces, a non-linear function of displacements (depending on the modelling adopted, 
§C.8.2 ), tX and tY are the drag vectors in direction X and Y (the components of which 
are equal to 1 if the degree of freedom is a translation in the direction X or Y, and ze-
ro otherwise), and for simplicity the time dependence of excitation and the response 
has been omitted. 
 
The method proposes to adopt in approximation the modal decomposition even in the 
presence of nonlinear resistant forces. Equation (C.7) then takes the form: 
  (C.8) 

where qi is the i-th modal coordinate,  and  are the corre-

sponding modal mass and damping,  is the projection of the resisting 
forces on the i-th mode, and .  Dividing by the modal mass, one ob-
tains: 

( ) ( )YYXX aa ttMuFuCuM +−=++ 
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  (C.9) 

where  are the damping and the natural frequency of the i-th mode, and 

 are the factors of modal participation of the two orthogonal components of 
excitation. Dividing by the larger participation factor (for example, that in X 
direction) corresponding to the “prevailing” direction of the mode, one obtains:  

  (C.10) 

The preceding equation is that of a nonlinear oscillator have a resisting force Fi/LiX, 
subject to excitation , in which the component parallel to the sec-
ondary direction is weighted by the ratio between the participation factors. The fol-
lowing steps, described in the next paragraph, are those necessary for the determina-
tion of the constitutive non-linear law of the modal oscillator from a nonlinear static 
analysis. 

C.7.1.1 Determination of the equivalent oscillator 

As already indicated in 6.d.i of the assessment procedure (§C.3), for each significant 
mode two non-linear static analyses are carried out, corresponding to the two signs of 
thrust, positive and negative. If the structure is symmetrical with respect to the con-
sidered mode, one non-linear static analysis is sufficient. 
The result of the nonlinear static analysis consists of a database of local responses of 
the structure, hereinafter referred to as db and containing for example matrices of dis-
placements of the nodes, or forces and deformations in the elements (of a size respec-
tively equal to nsteps×nnodes and nsteps×nelements×ndeformations) and in a curve that express-
es the relationship between the shear at the base Vb and the displacement of a chosen 
control degree of freedom uc. 
The curves relative to the first prevailing modes in the two orthogonal directions will 
be typically characterized by a first ascending portion, by a peak or plateau and by 
one section with negative stiffness (whose starting point and slope depend on the type 
of modelling adopted and will correspond to an anticipated crisis of the structure in 
the case of a model with degradation, where in addition to strength degradation due to 
the geometric effect there will the addition of that of mechanical nature). The curves 
relating to higher modes will have in general a trend approximately linear or bilinear 
without negative stiffness. 
For spatial structures the shear at the base is that in the "prevailing" direction  of the 
mode, for which participation factor is greater. For example, if the prevailing direc-
tion is the X, the base shear is given by the expression: 

 t
biX X iV = t F  (C.11) 

Dividing the base shear by the corresponding participation factor one obtains: 
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  (C.12) 

with the substitution , where λ is the multiplier of loads and  express-
es the modal distribution of the forces of the i-th mode. The last term of the previous 
expression coincides with the resisting force of the oscillator in the equation (C.4), but 
for the factor LiX: 

  (C.13) 

One thus finds the transformation rule of the results of the static non-linear analysis in 
the law of the equivalent modal oscillator, for what concerns the resisting forces: 

  (C.14) 
As for the displacement, assuming that the fact that the displacements caused by a dis-
tribution of forces proportional to   are proportional to  (i.e. ) 
maintains validity in a non-linear context and taking into account that qi = ΓiXDi, one 
obtains the transformation rule for the displacements: 

  (C.15) 
The next step consists in the approximation of the relation F/L-D with an hysteretic 
analytic law generally of a multi-linear kind. The Fig. C-15 shows, to the left with 
reference to the model A, the relationship Vb -uc for the two directions of pushover 
relative to the distribution of forces of the first, second and third mode, and their rela-
tive trilinear approximations. In the figure one observes the general case in which the 
analysis, though pushed well beyond the peak along the descending portion, does not 
converge down to the point of zero shear at the base, where instead the trilinear ap-
proximating curve arrives. It can then occur the case during the following incremental 
dynamic analysis where the maximum displacement of the oscillator Dmax corresponds 
to a maximum displacement of the control point uc( Dmax ) larger than the maxi-
mum uc,end provided in the database db. 
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Fig. C -15 Capacity curve: trilinear approximationn for the model A, without degradation, to the left, and 
comparison between model A and model B with degradation, right. The negative tangent in the model 

without degradation is due to the geometric contribution to the stiffness. 
 

The figure on the right contains the comparison between model A and model B in 
terms of curves Vb-uc for the three previous modal distributions, which shows that the 
two curves coincide up to the value of the displacement of the control degree of free-
dom relative to the first local rupture, identified only by the model B during the anal-
ysis. 
The approximation of the curve F/L-D using a multi-linear relation can be carried out 
in different ways. With reference to the modes for which the analysis has produced a 
curve with a plateau and a section with negative stiffness, i.e. a tri-linear law as that 
for example of Ibarra et al (2005), whose monotonic load curve is defined by the 
force-displacement couples of three points (yield, peak or capacity, and ultimate), or 
by transformations thereof, one can proceed as in (Fragiadakis and Vamvatsikos, 
2010) by first determining the parameters of the first two segments (linear and hard-
ening), then determining the negative slope of the post-peak branch30: 

1. One identifies the maximum point on the curve Dmax - (F/L)max 
2. One finds the initial kel and post-elastic kh stiffnesses, for example with the cri-

terion of equal areas (underlaid by the bilinear and by the curve DF/L in the 
segment between D = 0 and D = Dmax ) 

3. One finds the post-peak stiffness kc  of a linear branch passing through Dmax - 
(F/L)max , having equation F/L-(F/L)max = kc (D-Dmax ), by minimizing the mean 
square error with respect to the analytical curve in the section D> Dmax . 

 
When the curve produced by the analysis presents different trends, as can happen for 
load distributions corresponding to higher modes, a linear or bilinear approximation 
can be adopted. 
 
In the case of models with degradation, the constitutive law includes the appropriate 
parameter values of cyclic degradation of the equivalent oscillator. In rigour, the de-
termination of the values of these parameters should be performed by subjecting the 

                                                 
30 In the application, actually, it was used an optimization procedure that simultaneously determines the 
three points of yield, peak and ultimate, resulting in a slightly lower overall error.  
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whole structure to imposed cyclic deformations: the corresponding analytical effort 
would be however not consistent with the approximation of the method B. In approx-
imation one may adopt, for example, as values of the parameters of degradation: a) 
the average of all the columns of the structure, b) average of the columns of the most 
stressed storey, if one such appears clearly from the examination of the inelastic de-
formation, c) the average weighed along the deformed shape, for example at the 
peak (F/L)max . In the application it has been chosen to adopt the average value on the 
columns. 

C.7.1.2 Determination of the IDA curve 

For each of the n significant modes one proceeds by performing an incremental dy-
namic analysis of the corresponding asymmetrical equivalent oscillator subjected to a 
signal  or ,  depending on the prevailing direc-
tion of the mode under consideration. 
The result consists of a set of n IDA curves that express the link between the intensity 
of the earthquake S, on the ordinate, and the displacement of the oscillator D, in the 
abscissas ("IDA curve"). 
For each curve, using the equation (C.9), it is possible to derive at each intensity level 
the corresponding value of the displacement in the control  degree of freedom uci (S = 
s ), and with this it is possible to determine, interpolating in the database dbi (see 
§C.7.1.1 ), all local responses of interest (in particular, for the application under con-
sideration, the drift θ in the columns31 and the interstory displacements ∆, as shown in 
the following in §C.8.3 ) relative to the i-th mode. 
In performing the interpolation, in order to obtain modal responses for equal intensi-
ties to produce, through an appropriate rule of modal combination (SRRS or CQC), 
the overall response of the structure, it is necessary to take account of the fact that, in 
general, the curves will not have the same number of points and that these will not be 
at the same levels of intensity S. In particular, the curves relative to those equivalent 
oscillators whose response does not present a section with negative stiffness will not 
have a plateau corresponding to the dynamic instability (Vamvatsikos and Cornell, 
2005) (Han and Chopra, 2006), as shown in Fig. C-16 (left). The deformation con-
tained in the database of the mode whose IDA curve presents a plateau with an inten-
sity lower than smin (the Mode 1 in the Fig. C-1632) will have very high value at the 
approach of this intensity. Therefore, whatever the chosen combination rule, the dis-
placements of the structure will be conditioned by those of that mode and will present 
significant increases for small variations of the intensity near smin. In the interpola-

                                                 
31 The fact that only the columns are considered allows the simplification of avoiding the subtraction of 
the response due to the gravitational loads from that of each mode, and its summation to the result of 
the modal combination, as indicated in (Chopra and Goel, 2002)(Han and Chopra, 2006) and (Reyes 
and Chopra, 2011). 
32 The figure shows two IDA curves characterized by a plateau, those relative to the first and second 
modes. The figure schematically represents the typical situation of a 3-D building in which there are 
two “first modes”, one prevailing in the X direction and the other in the Y direction. The difference in 
maximum intensity reflects a difference in the resistance between the two modes. The third mode rep-
resents a higher mode that is included since it has a participation that is still not negligible, though ac-
tually modest and such as to leave the structure substantially elastic. 

( )iXiYYX aa ΓΓ+− / ( )iYiXXY aa ΓΓ+− /
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tion33, it is thus not necessary to consider intensities larger smin since the overall curve 
has already reached a plateau of dynamic instability. One will choose a number of 
points adequate to determine the relationship between the limit state indicators (as 
shown in the following §C.8.3 ) and the intensity S, equally spaced between the ex-
tremes S = 0 and S = s min (for example ten points), as shown in Fig. C-16 (left). 

 
Fig. C -16 The IDA curves of the modes (left) and that of the entire structure (right). 

 

The figure (right) also shows the combined curve corresponding to the IDA for the 
considered structured-model-record, expressed in terms of seismic intensity S and the 
parameter commonly used to express the maximum deformation in a build-
ing, θmax. The latter is defined in the application as the maximum interstorey dis-
placement with the subtraction of the rotation of the beams. In particular, the formula-
tion adopted in the application is: 
  (C.16) 

that takes account of the two planes of bending (see §4.2 and §C.8.3). 
Having obtained the overall IDA curve S- θmax, one can determine the intensity corre-
sponding to the attainment of each limit state, sSL interpolating at the unit value of the 
corresponding variable YSL = 1. These intensities can be represented as shown in Fig. 
C-17 , where it is shown in qualitative terms both the case of the model with degrada-
tion and the model without degradation. 

                                                 
33 It may happen that, as indicated in §C.7.1.1, at some intensities near smin, the displacement Dmax cor-
responds to a displacement in the control degree of freedom larger than the maximum one uc,end in the 
database. In these cases, in approximation, one can extrapolate the modal deformation to the last point 
by amplifying it by the factor uc(Dmax)/uc,end. 
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Fig. C -17 The IDA curve of the entire structure and representation of the attainment of the three SLs, for 

the two types of modelling considered. 

C.8 Modelling 

C.8.1 Modelling of the site response 

As indicated in §2.2.2 , the change in the characteristics of the motion associated with 
the seismic response of the site under consideration requires in rigour an analysis of 
the local seismic response, which should take into account the uncertainty in the me-
chanical parameters of the soil. 
In this application, by way of simplification, it has been decided not to address this 
issue and to take account of the amplification with a deterministic factor independent 
of the period of vibration and intensity equal to 1.25. 

C.8.2 Modelling for the structural analysis 

The structural analyses (static nonlinear analyses on the 3D model and incremental 
nonlinear dynamic anlysis on the equivalent oscillators) have been performed with the 
code OpenSees (McKenna et al, 2010). 
The behavior of the beam-column joints has not been modelled. 
The beams and columns have been modeled with an assembly of an elastic element 
and two zeroLength elements at its ends. The two end sections have been assigned in-
dependent uniaxial laws for the different degrees of freedom (linear in particular for 
the torsion). The moment-rotation law adopted is the trilinear one of Ibarra et al 
(2005) modeled with the link ModIMKpeakOriented (Lignos and Krawinkler, 2012), 
as shown in Fig. C-18a. 
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due to P-d effect only
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Fig. C -18 Constitutive law of plastic hinge (a) and laws in the two planes of bending for a rectangular col-

umn (b). 
 

A conceptually equivalent alternative would be to use the finite element beamWith-
Hinges  (Fenves and Scott, 2006). The modeling strategy adopted is however more 
robust from the computational aspect as it always leaves the global algorithm, over 
which the user has more control, the task of reducing the unbalanced forces during the 
analysis. The analysis was in fact carried out also with the BeamWithHinges ele-
ment34, obtaining completely comparable results, but with considerable convergence 
problems. 
For the columns two distinct and independent laws in the two planes of bending have 
been assigned (Fig.C-18b). The figures also show the corresponding laws without 
degradation. The laws were evaluated for a normal stress constant equal to zero for 
the beams and equal to that produced by the vertical loads in the seismic combination, 
obtained by a static analysis on the preliminary model, for the columns. 
The equation which gives the ratio Mu / My has been used to obtain My from Mu , and 
the dispersion was neglected, which is however very low ( σLN = 0.10). The figure al-
so shows the thresholds of cyclic deformation, lower than the corresponding mono-
tonic thresholds, used to determine the limit state variables as detailed in 
§C.8.3. These thresholds are calculated with the model of Zhu et al (2007) and in or-
der to discriminate collapse due to ductile shear from that due to flexure a criterion 
proposed by the authors has been used, which anticipates shear failure (brittle or duc-
tile) if the geometric percentage of shear reinforcement , or if the element 
is squat , or the ratio between plastic shear    and shear 
strength (evaluated according to the model of Sezen and Mohele, Eq.4.21) 
is . The indicated equations were used to determine the median of the 
corresponding quantities, multiplied by the lognormal random variables described 
in §C.6.2. In the event that according to the above criterion failure is anticipated to 
occur in flexure (Mode 3), it has been assigned θa = θf  (since the model for θa ex-
pects the preceding failure to be of Mode 1 or 2) . 

                                                 
34 In assigning the moment-rotation laws to the sections in this case, the deformation thresholds have 
been divided for the same length of the plastic hinge required as input by the beamWithHinges element, 
for which it has been adopted the expression:  
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For each column N values of the total hysteretic normalized energy γ entering the 
model of cyclical degradation of Ibarra et al (2005) were also sampled according to 
Eq. 4.19. 
It should be noted that the parameter of degradation provided by Eq. 4.19 is defined in 
Haselton et al (2007) according to (Rahnama and Krawinkler, 1993) and (Ibarra et al, 
2005) as the ratio of the total hysteretic energy E t and the product M yθy . The mod-
el ModIMKpeakOriented used in OpenSees implements the law of Ibarra et al as 
modified by Lignos and Krawinkler (2012), in which the total hysteretic energy is 
normalized with respect to the product M yθp , i.e. between the yielding moment and 
the plastic part of the rotation, the latter resulting in a more stable parameter. Finally, 
the implementation of ModIMKpeakOriented requires as input the value of the so-
called cumulative plastic rotation Λ = λθp(Lignos and Krawinkler, 2012). It is there-
fore necessary to take into account of this difference, in the allocation of the value 
of γ, to the constitutive law: 

  (C.17) 

As stated above (§C.7.1.1 ) for the purpose of the incremental dynamic analysis of the 
equivalent oscillator the average value of γ (actually the value ) has been 
used.  Figure C-19 shows the distribution of γ on the columns of the structure for two 
of the N simulations. 

 
Fig. C -19 Distribution of γ on the columns for two of the N = 30 simulations. 

 

The infills have been modeled, in the branch of the logic tree corresponding to the 
case of model with degradation, by means of equivalent rods. Among the possible 
modeling alternatives by rods (Asteris et al , 2011) it has been chosen the easiest, with 
only two rods that join the beam-column nodes. This modeling does not allow to cap-
ture local effects of increased shear to beams and columns, but allows one to describe 
the effect on the global response due an irregular distribution of the panels in-plan and 
elevation. 
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A rectangular section has been assigned to the equivalent struts, with width equal to 
the actual thickness t = 0.15m of the masonry and height w determined as a function 
of the strut length d according to (Bertoldi et al , 1993): 

  (C.18) 

in which H is the height of the infilled story and  is a parameter of relative infill-
frame stiffness proposed by Stafford-Smith (1962, 1966) given by the expression: 

  (C.19) 

where = 5 GPa and   are respectively the Young modules of concrete and ma-
sonry,  the angle of inclination of the diagonal with respect to the horizontal, I the 
moment of inertia of the adjacent columns and  the free height of the infill. The 

two parameter K1 and K2 are determined in function of the product λ*H ( Table C.7). 

 
Table C-7. Parameters K 1 and K 2 of the equivalent rod model. 

Coefficient 
   

 

1.300 0.707 0.470 

 

-0.178 0.010 0.040 

 

The compressive strength of the equivalent connecting rod can be obtained by the 
product: 
  (C.20) 

between the area of the cross section of the rod and the minimum critical stress be-
tween those corresponding to the four mechanisms (Bertoldi et al , 1993) reported 
in Table C-8, in which  = 1 MPa and = 0.3 MPa are the resistances to compres-
sion and to shear of the masonry, and  = 0.2 MPa is the resistance to sliding in the 
joints. 
 

Table C-8. Resistance for the four failure mechanisms. 
Mechanism Rupture strength 

Diagonal tension 
 

Sliding joints 
 

Corner crushing 
 

Diagonal compression 
 

 

2*
1 K
H

K
d
w

+=
λ

*λ

4
*

4
2sin

mc

m

IHE
tE θλ =

mE cE
θ

mH

13.3* <Hλ 85.713.3 * << Hλ H*85.7 λ<
1K

2K

( )uu wtN σmin⋅⋅=

mf mt

gt

( ) ( )mmmmu f
w
dK

h
Kf 3.06.0/3.06.0 2*

1 +=





 ++= t

λ
tσ

( )[ ]mgu f
w
d 3.0cos45.0sin2.1 ++= tθθσ

( ) ( ) 88.0*
2

12.0*
1

cossin12.1
hKhK

fm
u

λλ
θθσ

+
= −

hKK
fm

u *
21

tan16.1
λ

θσ
+

=



CNR-DT 212/2013 

  175 

Mass, stiffness and resistance of the infills can be reduced by taking into account the 
actual position and size of the openings present, following the indications in Decani-
ni et al.(1994). In the present case, however, the openings have been neglected be-
cause of their modest size. 
The constitutive link, shown in Fig. C-20 , is completed by the values of the dis-
placements ud and uu which mark respectively the end of the "plastic" sections with 
the beginning of the degradation and the collapse of the panel. These limits were de-
fined, using indications from the literature, as equal to 2 and 4 times the elastic dis-
placement limit u y = Nu/k (where the stiffness k of the connecting rod is equal 
to Emwt/d ). 

 
Fig. C -20 Constitutive law of the equivalent rods for infills. 

 

Finally, as regards the uncertainty on the properties of the infills, as indicated in 
§C.6.2, the mechanical properties of the masonry material have not been modeled as 
random variables.  Two variables have been included, which describe, respectively, 
the overall effect of the uncertainty on the materials and on the model on the re-
sistance, εNu, and on the deformability/ductility, εUu. 

C.8.3 Limit state variables 

This section contains the expressions of state limit indicators adopted in the applica-
tion. The expressions are those indicated in §2.5, adapted to the present case. In par-
ticular, the local response quantities considered are, for the structural members, the 
flexural distortion θ  for the columns, and the interstory drift ∆ for the non-structural 
components (the infills). 
To take account of the state of biaxial deformation and of the different deformation 
capacities in the two planes of bending of the columns (see §4.2 ), it has been adopted 
the biaxial demand/capacity ratio given by the expression: 

  (C.21) 

in which  and   are the total flexural distortions (obtained by combination of 
the modal contributions as indicated in §C.7.1.2 ) in the two planes of bending 1-2 
and 1-3, and the corresponding capacities are, for the SLD: 
  (C.22) 
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and for the SLS: 
   o  SLS f Vθ θ θ=  (C.23) 

where the flexural or the shear limit apply according to the criterion specified in 
§C.8.2 . 
For the SLC, one must distinguish the case of the model with degradation from that of 
the model without degradation. In the first case the mode of collapse due to loss of 
vertical bearing capacity as a result of a shear failure is not modeled and, therefore, is 
checked later using the (biaxial) ratio between the distortion demand and the corre-
sponding cyclic capacity provided by the model of Zhu et al (2007), shown in 
§4.4.4.3 : 
  (C.24) 

In the case of the model without degradation one must instead define a local biaxial 
D/C ratio ySLC, fV that expresses the exceedance of the maximum available ductility and 
the beginning of the unmodelled degradation equal to  or 

 according to the criteria specified in §C.8.2. 
The attainment of the state limit of damage is quantified by the variable (see Eq.2.5): 

  (C.25) 

in which the capacity of the infills in terms of inter-floor sliding is 0.006. 
The attainment of the state limit of severe damage is quantified by the variable (see 
Eq.2.7): 
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in which it is assumed the value αS  = 0.3, and the cost functions have the following 
expressions35: 
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 (C.27) 

which vary linearly between 0 and 1, respectively for y SLS between 0 and 0.5 (ie the 
conventional cost repair equals that of replacing already at 50% of the ultimate strain, 
shear or bending), and for ∆ between 0 and 1%. 
Reaching the limit state of collapse it is quantified in the model with degrada-
tion through the variable (see Eq.2.10): 

  (C.28) 

In the model without degradation the variable used is (see Eq.2.8): 

                                                 
35 The value adopted for the αS is relatively high and corresponds to the characteristics of the school 
building considered, in which the economic value of the content and of the installations is reduced.  
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  (C.29) 

where the D/C relations are calculated with reference only to the columns. This varia-
ble defines the collapse in conservative terms as the exhaustion of ductility available 
from the first column. The capacities used are those provided by the cyclic model of 
Zhu et al (2007). 

C.9 Results 

This section describes and comments on the results for the three models analyzed, re-
spectively entitled: 

• Model A: model without degradation 
• Model B: model with degradation, without infills (first branch of the logic 

tree) 
• Model C: model with degradation and infills (second branch of the logic tree) 

The results for the models B and C are combined with the technique of the logic tree 
to obtain the final estimate of the risk in the case of the model with degradation. 

C.9.1 Model A 

The modelling without degradation represents the current state of the art, as noted in 
§C.1. For this case it has been chosen not to consider modelling alternatives to be-
weighted with the technique of the logic tree and therefore the point 6 of the proce-
dure illustrated in §C.3 is carried out only once. 
The process started by sampling N = 30 structures (§C.6.2 ), associated with the 30 
recordings selected, and carrying out for each one a modal analysis. In all cases three 
modes of vibration proved to be sufficient. For each of them both the positive and 
negative pushover analyses have been carried out. Fig. C-21  reports summarized re-
sults of these analyses, showing the 30 curves for the two signs (60 analyses) relative 
to the three modes, starting from left to right. 

 
Fig. C -21 Model A: Dispersion in the capacity curves for the three significant modes. 

 

fVSLCjpilastriSLC yY ,,max=
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The figure allows to evaluate the effect of the uncertainties modeled (§C.6.2 ) on the 
response of the structure. In particular, one observes how the effect is increasing pass-
ing from the initial stiffness, to the peak resistance, to the ultimate deformability. 
In this case the negative stiffness in the post-peak branch is due solely to the geomet-
ric nonlinearity. 
Fig. C-22  shows in greater detail the curves of the three modal pushover analyses, for 
two of the 30 models. The figure shows also the trilinear approximations and the fac-
tors Lrelative to the two orthogonal directions in plan (§C.7.1 ), proportional to the 
weight that each component of the motion has in the dynamic analysis of the corre-
sponding oscillator. 

 
Fig. C -22 Model A: Details of the capacity curves and the corresponding tri-linear approximations for the 

three significant modes (left to right) and for two of the 30 models sampled (top and bottom). 
 

Further details of the pushover analysis, with the deformations of the structure and the 
indication of the level of inelastic behaviour, as well as on the dynamic analysis of the 
single oscillator, are reported for brevity with reference only to model B in §C.9.3. 
The Fig. C-23 shows the IDA curves of the structure (obtained by a combination of 
the IDA modal curves, as indicated in §C.7.1.2 ) for the 30 models analyzed. On eve-
ry curve there are three points that indicate the global intensity-response pairs corre-
sponding, for each model and corresponding record, the limit states of damage 
(green), severe damage (blue) and collapse (red). The relationship between the inten-
sity of the earthquake and the limit state variables is shown in detail in Fig. C-24, in 
which the points that mark the attainment of the state limit are obviously aligned 
along the vertical axis at the unit value of the corresponding variable. In the figure 
there are also shown the values of the mean and standard deviation of the logarithm of 
the intensity SY = 1, i.e., the parameters of the fragility curve. 
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Fig. C-23 Model A: IDA curves of the structure (combination of the modal curves, see Fig. C-16 ). 

 
Fig. C-24 Model A: Details of the IDA curves in terms of limit state variables. 

 

The fragility curves relative to the three limit states are shown in Fig. C-25. These 
curves, integrated with the site hazard in terms of the spectral ordinate close to the av-
erage period of the 30 models, lead to the average annual frequencies of exceeding the 
three limit states. 

 
Fig. C-25 Model A: Fragility curves for the three limit states. 
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C.9.2 Models with degradation (models B and C) 

This modelling considers two alternatives, with equal weights in the logic tree. The 
presentation of the results follows the methods used for model A. 
For each of the two branches of the logical tree the process starts by sampling as pre-
viously N = 30 structures. Also in this case the results of the three vibration modes 
proved to be sufficient. The Fig. C-26 and C-27 show, respectively for the model B 
and C, the 30 curves for the two signs (60 analyses) relative to the three modes. One 
observes how the introduction of the infills increases the resistance (the maximum in 
the scale of the shear at the base is equal to 1500 kN in model B, and equal to 2000 
kN in model C). Given the peripherical and sufficiently regular disposition of the in-
fills in plan, the increase in stiffness is proportionally greater for the torsional mode 
that passes from the second mode in model B to the third mode in model C. 
Also in this case the effect of the uncertainties is increasing, in passing from the initial 
stiffness, to the peak resistance, to the ultimate deformability. 

 
Fig. C-26 Model B: Dispersion in capacity curves for the three significant modes. 

 
Fig. C-27 Model C: Dispersion in capacity curves for the three significant modes. 
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The Fig. C-28 shows the IDA curves of the structure for the 30 models analyzed, for 
branch B (above) and branch C (below) of the logic tree. As before, the three dots in-
dicate the attainment of the limit state of damage (green), severe damage (blue) and 
collapse (red). The most obvious effects of the introduction of the infills is the in-
creased intensity at collapse, with maximum values (the highest ordinates of the red 
points), which rise from less than 3 m/s2 to more than 4.5 m/s2, and an increase in the 
dispersion of these values. It is also noted that, in particular in case B, there is an 
overlap between the sets of corresponding points in different limit states: within each 
analysis of course the points are always in the correct sequence. 

 

 
Fig. C-28 Models B (above) and C (below): IDA curves of the structure (combination of modal curves, 

see Fig. C-16 ). 
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The relationship between the intensity of the earthquake and the variables of SL is 
shown in detail for both branches in the Fig. C-29 , in which are also shown the val-
ues of the mean and standard deviation of the logarithm of the intensity S Y = 1 . 

 

 
Fig. C-29 Models B (above) and C (below): Details of IDA curves in terms of the limit state variables. 

 
The fragility curves relating to the three limit states are shown at the top in Fig. C-
30 for model B and in Fig. C-31 for the model C. These curves, integrated with the 
site hazard in terms of the spectral ordinate close to the average period of the 30 mod-
els, lead to the average annual frequencies of exceeding the three limit states. 

 
Fig. C-30 Model B: Fragility curves for the three SL. 
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Fig. C-31 Model C: Fragility curves for the three SL. 

C.9.3 Further details of the analysis (model B) 

The Fig. C-32 illustrates the analysis of pushover of one of the 30 models in the posi-
tive direction of mode 3, of the type already shown in Fig. C-15 and Fig. C-22 . On 
the capacity curve, shown in the upper left, there are indicated three characteristic 
points: the yield strength, the peak (maximum ductility) and an intermediate point on 
the branch with negative stiffness. 

Fig. C-32 Capacity curve and deformations corresponding to the three points: yield strength, peak and 
intermediate on the branch of degradation. 
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The corresponding deformed shapes of the building are shown in the other three dia-
grams, in which there is also highlighted the level of deformation in the plastic hing-
es, following the convention already adopted in (Haselton and Deierlein, 2007). The 
areas of potential plastic hinge formation are indicated with empty black circles at the 
ends of the elements. The level of deformation is represented with another circle, of 
blue color, the diameter of which increases with the bidirectional quantity: 

  (C.30) 

 
where the peak flexural distortion θ (maximum ductility) is equal 
to θf or θV depending on the mode of failure of the element. When y j = 1, the diame-
ter of the circle is equal to that of the empty circle. Upon further growth of the defor-
mation the diameter increases and the color changes to red (which then signals the de-
scending branch of the constitutive link). 
One notes how, in particular at the state S3 on the descending branch, the diameter of 
the red circles in some elements is very high, even amounting to more than three 
times that of the black circle. This is possible since the mode of axial collapse 
(θ > θa) is not modeled, and then the analysis continues with redistribution of the 
shear to the element to the adjacent elements (the fact that the results in the points that 
follow are fictitious, because the element would lose its vertical bearing, is not a prob-
lem as such a mode of collapse is detected later using the state variable limit, Eq. 
C.28). 
Fig. C-33 shows, for the sake of illustration, some details of the incremental dynamic 
analysis of one of the equivalent oscillators. In particular, the time histories of the 
displacement D for three different intensities of excitation are shown at the top, while 
the bottom shows the corresponding force-deformation cycles. 

 
Fig. C-33 Example of cyclic degrading response of the equivalent oscillator (structure and signal n ° 1):  

time histories of the displacement response for three different intensities (top), the force-deflection cycles 
for the lower intensity (below, left), average (below, center) and for the higher intensity (down, right). 
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C.10 Conclusions 

The results of the analysis are condensed in Table C-9 . The aspect that comes out 
with most evidence is the low sensitivity of the results with respect to the modeling. 

Table C-9. The results of the three models compared. 
 A (no deg.) B (degradation / 

no infills) 
C (degradation / 

infills) 
Degradation (com-

bined) 
T 1 (s) 1:52 1:52 1.16 - 
λSLD 0.0315 0.0304 0.0383 0.0343 
λSLS 0.0127 0.0131 0.0078 0.0104 
λSLC 000119 000117 0.0009 0.0010 
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