Consiglio Nazionale delle Ricerche

Tipo di prodottoContributo in atti di convegno
TitoloCombining statistical techniques and lexico-syntactic patterns for semantic relations extraction from text
Anno di pubblicazione2008
Formato-
Autore/iGiovannetti E.; Marchi S.; Montemagni S.
Affiliazioni autoriILC-CNR
Autori CNR e affiliazioni
  • EMILIANO GIOVANNETTI
  • SIMONETTA MONTEMAGNI
  • SIMONE MARCHI
Lingua/e-
AbstractWe describe here a methodology to combine two different techniques for Semantic Relation Extraction from texts. On the one hand, generic lexicosyntactic patterns are applied to the linguistically analyzed corpus to detect a first set of pairs of co-occurring words, possibly involved in "syntagmatic" relations. On the other hand, a statistical unsupervised association system is used to obtain a second set of pairs of "distributionally similar" terms, that appear to occur in similar contexts, thus possibly involved in "paradigmatic" relations. The approach aims at learning ontological information by filtering the candidate relations obtained through generic lexico-syntactic patterns and by labelling the anonymous relations obtained through the statistical system. The resulting set of relations can be used to enrich existing ontologies and for semantic annotation of documents or web pages.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da-
Pagine a-
Pagine totali-
Rivista-
Numero volume della rivista-
Serie/Collana-
Titolo del volume-
Numero volume della serie/collana-
Curatore/i del volumeAldo Gangemi, Johannes Keizer, Valentina Presutti, Heiko Stoermer
ISBN-
DOI-
Editore-
Verificato da refereeSì: Internazionale
Stato della pubblicazione-
Indicizzazione (in banche dati controllate)-
Parole chiaveOntology Learning from Text, Semantic Relation Extraction, Lexico-syntactic Patterns, Distributional Similarity
Link (URL, URI)http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-426/swap2008_submission_54.pdf
Titolo convegno/congressoSWAP 2008 - Semantic Web Applications and Perspectives
Luogo convegno/congressoRoma
Data/e convegno/congresso15-17 December 2008
RilevanzaInternazionale
RelazioneContributo
Titolo parallelo-
Note/Altre informazioni-
Strutture CNR
  • ILC — Istituto di linguistica computazionale "Antonio Zampolli"
Moduli/Attività/Sottoprogetti CNR
  • IC.P02.004.001 : Tecnologie linguistiche e gestione della conoscenza
Progetti Europei-
Allegati
Combining statistical techniques and lexico-syntactic patterns for semantic relations extraction from text (documento privato )
Tipo documento: application/pdf

Dati storici
I dati storici non sono modificabili, sono stati ereditati da altri sistemi (es. Gestione Istituti, PUMA, ...) e hanno solo valore storico.
Area disciplinareLanguage & Linguistics
Area valutazione CIVRScienze dell'Antichità, filologico-letterarie e storico-artistiche
NoteIn: SWAP 2008 - Semantic Web Applications and Perspectives (Rome, 15-17 December 2008). Proceedings, vol. 426. Aldo Gangemi, Johannes Keizer, Valentina Presutti, Heiko Stoermer (eds.). CEUR Workshop Proceedings, 2008. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-426/swap2008_submission_54.pdf
Descrizione sintetica del prodottoABSTRACT: We describe here a methodology to combine two different techniques for Semantic Relation Extraction from texts. On the one hand, generic lexicosyntactic patterns are applied to the linguistically analyzed corpus to detect a first set of pairs of co-occurring words, possibly involved in "syntagmatic" relations. On the other hand, a statistical unsupervised association system is used to obtain a second set of pairs of "distributionally similar" terms, that appear to occur in similar contexts, thus possibly involved in "paradigmatic" relations. The approach aims at learning ontological information by filtering the candidate relations obtained through generic lexico-syntactic patterns and by labelling the anonymous relations obtained through the statistical system. The resulting set of relations can be used to enrich existing ontologies and for semantic annotation of documents or web pages.