Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloThe Precipitation Inferred from Soil Moisture (PrISM) near Real-Time Rainfall Product: Evaluation and Comparison
Anno di pubblicazione2020
Autore/iPellarin, T., Román-Cascón, C., Baron, C., Bindlish, R., Brocca, L., Camberlin, P., Fernandez-Prieto, D., Kerr, Y.H., Massari, C., Panthou, G., Philippon, N., Quantin, G.
Affiliazioni autori1 Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, F-38000 Grenoble, France 2 Laboratoire d'Aérologie, Université Toulouse Paul Sabatier, CNRS, F-31400 Toulouse, France 3 TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, IRSTEA, Montpellier, France 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 5 Research Institute for Geo-Hydrological Protection, Via Madonna Alta 126, 06128 Perugia, Italy 6 Centre de Recherches de Climatologie / Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 21000 Dijon, France 7 EO Science, Applications and Climate Department, Largo Galileo Galilei, 1, 00044 Frascati, Italy 8 CESBIO (CNRS/UPS/IRD/CNES), 18 av. Edouard Belin, bpi 2801, CEDEX 9, 31401 Toulouse, France
Autori CNR e affiliazioni
  • inglese
AbstractNear real-time precipitation is essential to many applications. In Africa, the lack of dense rain-gauge networks and ground weather radars makes the use of satellite precipitation products unavoidable. Despite major progresses in estimating precipitation rate from remote sensing measurements over the past decades, satellite precipitation products still suffer from quantitative uncertainties and biases compared to ground data. Consequently, almost all precipitation products are provided in two modes: a real-time mode (also called early-run or raw product) and a corrected mode (also called final-run, adjusted or post-processed product) in which ground precipitation measurements are integrated in algorithms to correct for bias, generally at a monthly timescale. This paper describes a new methodology to provide a near-real-time precipitation product based on satellite precipitation and soil moisture measurements. Recent studies have shown that soil moisture intrinsically contains information on past precipitation and can be used to correct precipitation uncertainties. The PrISM (Precipitation inferred from Soil Moisture) methodology is presented and its performance is assessed for five in situ rainfall measurement networks located in Africa in semi-arid to wet areas: Niger, Benin, Burkina Faso, Central Africa, and East Africa. Results show that the use of SMOS (Soil Moisture and Ocean Salinity) satellite soil moisture measurements in the PrISM algorithm most often improves the real-time satellite precipitation products, and provides results comparable to existing adjusted products, such as TRMM (Tropical Rainfall Measuring Mission), GPCC (Global Precipitation Climatology Centre) and IMERG (Integrated Multi-satellitE Retrievals for GPM), which are available a few weeks or months after their detection.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da-
Pagine a-
Pagine totali-
RivistaRemote sensing (Basel)
Attiva dal 2009
Editore: Molecular Diversity Preservation International - Basel
Lingua: inglese
ISSN: 2072-4292
Titolo chiave: Remote sensing (Basel)
Titolo proprio: Remote sensing. (Basel)
Titolo abbreviato: Remote sens. (Basel)
Numero volume della rivista-
Fascicolo della rivista-
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)-
Parole chiaveprecipitation, soil moisture, Africa, remote sensing
Link (URL, URI)
Titolo parallelo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IRPI — Istituto di ricerca per la protezione idrogeologica
Moduli/Attività/Sottoprogetti CNR
  • DTA.AD003.026.001 : SMOS+RAINFALL
Progetti Europei-