Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloProbabilistically Robust AC Optimal Power Flow
Anno di pubblicazione2019
FormatoElettronico
Autore/iM. Chamanbaz, F. Dabbene, C.M. Lagoa
Affiliazioni autoriiTrust Centre for Research on Cyber Security, Singapore University of Technology and Design, CNR IEIIT, Penn State University
Autori CNR e affiliazioni
  • FABRIZIO DABBENE
Lingua/e
  • inglese
AbstractThe increasing penetration of renewable energy resources, paired with the fact that load can vary significantly, introduce a high degree of uncertainty in the behavior of modern power grids. Given that classical dispatch solutions are "rigid," their performance in such an uncertain environment is in general far from optimal. For this reason, in this paper, we consider AC optimal power flow (AC-OPF) problems in the presence of uncertain loads and (uncertain) renewable energy generators. The goal of AC-OPF design is to guarantee that controllable generation is dispatched at minimum cost, while satisfying constraints on generation and transmission for almost all realizations of the uncertainty. We propose an approach based on a randomized technique recently developed, named scenario with certificates, which allows us to tackle the problem without the conservative parameterizations on the uncertainty used in currently available approaches. The proposed solution can exploit the usually available probabilistic description of the uncertainty and variability, and provides solutions with a-priori probabilistic guarantees on the risk of violating the constraints on generation and transmission.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da-
Pagine a-
Pagine totali-
RivistaIEEE Transactions on Control of Network Systems
Titolo chiave: IEEE Transactions on Control of Network Systems
Numero volume della rivista-
Fascicolo della rivista-
DOI10.1109/TCNS.2019.2921300
Verificato da refereeSì: Internazionale
Stato della pubblicazionePreprint
Indicizzazione (in banche dati controllate)-
Parole chiaveUncertainty, Generators, Renewable energy sources, Optimization, Control systems, Probabilistic logic, Power generation
Link (URL, URI)-
Titolo parallelo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IEIIT — Istituto di elettronica e di ingegneria dell'informazione e delle telecomunicazioni
Moduli/Attività/Sottoprogetti CNR
  • DIT.AD007.007.001 : CONES - Control of Networked Complex Systems
Progetti Europei-
Allegati