Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloA Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson's Disease
Anno di pubblicazione2018
FormatoElettronico
Autore/iClaudia Ferraris; Roberto Nerino; Antonio Chimienti; Giuseppe Pettiti; Nicola Cau; Veronica Cimolin; Corrado Azzaro; Giovanni Albani; Lorenzo Priano; Alessandro Mauro
Affiliazioni autoriDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano Dipartimento di Neurologia e Neuroriabilitazione, Istituto Auxologico Italiano Dipartimento di Neuroscienze, Universita' degli Studi di Torino
Autori CNR e affiliazioni
  • CLAUDIA FERRARIS
  • ROBERTO NERINO
  • GIUSEPPE PETTITI
  • ANTONIO CHIMIENTI
Lingua/e
  • inglese
AbstractA home-based, reliable, objective and automated assessment of motor performance of patients affected by Parkinson's Disease (PD) is important in disease management, both to monitor therapy efficacy and to reduce costs and discomforts. In this context, we have developed a self-managed system for the automated assessment of the PD upper limb motor tasks as specified by the Unified Parkinson's Disease Rating Scale (UPDRS). The system is built around a Human Computer Interface (HCI) based on an optical RGB-Depth device and a replicable software. The HCI accuracy and reliability of the hand tracking compares favorably against consumer hand tracking devices as verified by an optoelectronic system as reference. The interface allows gestural interactions with visual feedback, providing a system management suitable for motor impaired users. The system software characterizes hand movements by kinematic parameters of their trajectories. The correlation between selected parameters and clinical UPDRS scores of patient performance is used to assess new task instances by a machine learning approach based on supervised classifiers. The classifiers have been trained by an experimental campaign on cohorts of PD patients. Experimental results show that automated assessments of the system replicate clinical ones, demonstrating its effectiveness in home monitoring of PD.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da-
Pagine a-
Pagine totali-
RivistaSensors (Basel)
Attiva dal 2001
Editore: Molecular Diversity Preservation International (MDPI), - Basel
Lingua: inglese
ISSN: 1424-8220
Titolo chiave: Sensors (Basel)
Titolo proprio: Sensors. (Basel)
Titolo abbreviato: Sensors (Basel)
Numero volume della rivista-
Fascicolo della rivista-
DOI10.3390/s18103523
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)-
Parole chiaveParkinson's Disease, UPDRS, movement disorders, human computer interface, RGB-Depth, hand tracking, automated assessment, machine learning, at-home monitoring
Link (URL, URI)-
Titolo parallelo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IEIIT — Istituto di elettronica e di ingegneria dell'informazione e delle telecomunicazioni
Moduli CNR
    Progetti Europei-
    Allegati
    • A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson's Disease