Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloSimple approximations of semialgebraic sets and their applications to control
Anno di pubblicazione2017
Formato
  • Elettronico
  • Cartaceo
Autore/iDabbene F.; Henrion D.; Lagoa C.M.
Affiliazioni autoriCNR-IEIIT; c/o Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, Italy; LAAS-CNRS Université de Toulouse CNRS, Toulouse, France; Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague, CZ-16626, Czech Republic; Electrical Engineering Department, The Pennsylvania State University, University Park, PA 16802, United States
Autori CNR e affiliazioni
  • FABRIZIO DABBENE
Lingua/e
  • inglese
AbstractMany uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the Schur and Hurwitz stability domains. These sets often have very complicated shapes (nonconvex, and even non-connected), which render difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrectangles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly nonconvex yet still simple approximations, based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encountered in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of convex linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Finally, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da110
Pagine a118
Pagine totali8
RivistaAutomatica (Oxf.)
Attiva dal 1963
Editore: Pergamon, - Oxford [etc.]
Paese di pubblicazione: Regno Unito
Lingua: multilingue
ISSN: 0005-1098
Titolo chiave: Automatica (Oxf.)
Titolo proprio: Automatica (Oxf.)
Titolo abbreviato: Automatica (Oxf.)
Numero volume della rivista78
Fascicolo della rivista-
DOI10.1016/j.automatica.2016.11.021
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)
  • Scopus (Codice:2-s2.0-85010460383)
Parole chiaveSemialgebraic set Approximation Sampling
Link (URL, URI)http://www.scopus.com/record/display.url?eid=2-s2.0-85010460383&origin=inward
Titolo parallelo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IEIIT — Istituto di elettronica e di ingegneria dell'informazione e delle telecomunicazioni
Moduli CNR
    Progetti Europei-
    Allegati