Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloEfficient computation of the correlation dimension from a time series on a LIW computer
Anno di pubblicazione1991
Formato
  • Elettronico
  • Cartaceo
Autore/iCorana A.; Casaleggio A.; Rolando C.; Ridella S.
Affiliazioni autoriIstituto per i Circuiti Elettronici, Consiglio Nazionale delle Ricerche, Via All'Opera Pia 11, 16145 Genova, Italy
Autori CNR e affiliazioni
  • CLAUDIA ROLANDO
  • ALDO CASALEGGIO
  • ANGELO CORANA
Lingua/e
  • inglese
AbstractIn the last years analysis of nonlinear systems using chaos theory has widely increased. Many methods have been proposed for the computation of parameters able to give in a synthetic way informations about the considered system. One of the most used of such parameters is the dimension of the chaotic attractor, called fractal dimension. For practical purposes the correlation dimension ( D2) is often used which is strictly related to the fractal dimension, but much easier to compute using the algorithm proposed by Grassberger and Procaccia. This parameter can be obtained for any real time series, but its computation is very time consuming, then the use of vector or parallel computers can be very convenient. In this work, we propose two versions of this algorithm: the first one for the computation of a single correlation integral (C); the second one optimized to compute in a recursive way several C's in order to evaluate D2. An analysis of the computational kernels of the algorithm is presented and several different approaches are compared. An implementation of the algorithm is shown on the FPS M64/60 LIW computer (38 MFLOPS peak performance). The performance depends on the embedding dimension: we obtain a maximum asymptotic speed of 28 MFLOPS for the basic version and 16 MFLOPS for the recursive one; both versions run at about 12 MFLOPS for the dimensions used in practice. Nevertheless the recursive computation allows a reduction in the time spent for determining D2 of a factor ranging between 3 and 6 for practical applications.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da809
Pagine a820
Pagine totali-
RivistaParallel computing
Attiva dal 1984
Editore: North-Holland : Amsterdam - [poi] Elsevier Science [S.l.]
Paese di pubblicazione: Paesi Bassi
Lingua: inglese
ISSN: 0167-8191
Titolo chiave: Parallel computing
Titolo proprio: Parallel computing.
Titolo abbreviato: Parallel comput.
Numero volume della rivista17
Fascicolo della rivista6-7
DOI10.1016/S0167-8191(05)80068-7
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)
  • Scopus (Codice:2-s2.0-0026224302)
Parole chiavechaos theory; correlation dimension; vector/parallel computers; performance evaluation
Link (URL, URI)http://www.scopus.com/inward/record.url?eid=2-s2.0-0026224302&partnerID=q2rCbXpz
Titolo parallelo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IEIIT — IEIIT - Sede secondaria di Genova
Moduli CNR-
Progetti Europei-
Allegati
  • Efficient computation of the correlation dimension from a time series on a LIW computer